パッシブガンマ法によるウラン廃棄物測定試験

(業務報告)

2002年11月

核燃料サイクル開発機構 東海事業所

本資料の全部または一部を複写・複製・転写する場合は、下記にお問い合わせください。

〒319-1184 茨城県那珂郡東海村村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課

Inquiries about copyright and reproduction should be addressed to:
Technical Cooperation Section,
Technology Management Division,
Japan Nuclear Cycle Development Institute
4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1184
Japan

© 核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute) 2002

パッシブガンマ法によるウラン廃棄物測定試験 (業務報告)

助川 泰弘** 鈴木 敏** 吉田 充宏* 大木 耕一* 入之内 重徳*

要旨

本報は、パッシブガンマ法によりウラン廃棄物中のウランを測定評価するために実施した、測定試験及び校正等についてまとめたものである。

試験の結果、以下のことを確認した。

- ① 電離箱サーベイメータによる表面線量率からのウラン量評価は、約50g以下ではガンマ線強度が少ないため難しい。
- ② NaI 検出器によるウラン廃棄物中のウラン量評価は、核種がウランのみの場合は、 評価可能であるが、外部透過線源(Co60)との混合スペクトルからはピーク確認が できないため、評価は困難である。
- ③ また、NaI 検出器による測定では、ウラン鉱石等のウラン系列、トリウム系列の 娘核種が存在する場合は、娘核種からのガンマ線の影響が大きく、ウラン量の評 価は困難である。
- ④ Ge 検出器によるウラン廃棄物測定においては、ウラン及びその他の核種評価が可能であることを確認した。
- ⑤ ウラン量評価においては、他の核種と重複しないウラン 238 と放射平衡であるプロトアクチニウム 234mから放出される 1,001kev のエネルギーが有効であることを確認した。

Ge 検出器を用いた測定装置の校正を行いバックグランドの評価から以下の測定感度・ 精度であることを確認した。

- ① 測定システム 1 (GS1)の測定感度は、ウラン 238 で約 4g/600 秒であり、200 以ドラム缶の測定精度は約±50%である。
- ② 測定システム 2(GS2)の測定感度は、ウラン 238 で約 2g/600 秒であり、200 以ドラム缶の測定精度は約±100%である。

^{*}環境保全・研究開発センター 環境保全部 環境保全課

^{**}原子力技術(株)

The measurement test of uranium in a uranium-contaminated waste by passive γ - rays measurement method (Document on Present State of Affairs)

Yasuhiro SUKEGAWA** Satoshi SUZUKI** Michihiro YOSHIDA*

Koichi OHKI* Shigenori IRINOUCHI*

Summary

This report is completed about the measurement test and the proofreading of passive γ - rays measurement method for Non - destructive assay of uranium in a uranium contaminated waste.

The following are the results of the test.

- ① The estimation of the amount of uranium by ionization survey meter is difficult for low intensity of γ -rays emitted from uranium under about 50g.
- ② The estimation of the amount of uranium in the waste by NaI detector is possible in case of only uranium, but the estimation from mixed spectrums with transmission source (60-cobalt) is difficult to confirm target peaks.
- 3 If daughter nuclides of uranium and thorium chain of uranium ore exist, measurement by NaI detector is affected by γ -rays from the daughter nuclides seriously. As a result, the estimation of the amount of uranium is difficult.
- The measurement of uranium in a uranium contaminated waste by germanium detector is possible to estimate of uranium and other nuclides.
- As to estimation of the amount of uranium, energy at 1,001kev emitted from 234m-protoactinium radiative equilibrium to 238-uranium had nothing to overlap with other nuclides peaks is effective.

The following are the results of measurement precision and sensitivity by the proofreading of germanium detector system.

- (1) Measurement sensitivity about a 200L drum of Gamma System1(GS1) is 4 g/ 600sec about 238-uranium, and measurement precision is about ±50%.
- 2 Measurement sensitivity about a 200L drum of Gamma System2(GS2) is 2 g/600sec about 238-uranium, and measurement precision is about $\pm 100\%$.

Waste Management and Fuel Cycle Research Center Tokai Works

^{*}Waste Management Section Waste Management Division

^{**}Nuclear Technology & Engineering CO.,LTD

目 次

1. はじめに	1
2. パッシブガンマ法測定原理	2
2.1 核種定量	2
2.2 吸収補正	
2.3 ウランから放出される γ 線 · · · · · · · · · · · · · · · · · ·	4
3. ウラン廃棄物中のウラン量測定評価検討試験	9
3.1 電離箱サーベイメータによるウラン量評価検討	9
3.2NaI 検出器によるウラン量評価検討	9
3.3Ge 検出器によるウラン量評価検討	10
4. 測定装置概要	14
4.1 測定装置	14
	14
5. 装置校正試験	20
	20
5.2 ピット 廃棄物測定時 校正試験	21
5.3 ウラン廃棄物測定に伴う校正試験	37
	69
6.廃棄物測定概要	71
6.1 ドラム缶測定	71
6.2HEPA フィルタ測定 ····································	78
	79
7.おわりに	82
8.今後の課題	83
9.参考文献	84

図目次

凶 2.1	吸収補正の概念図	3
図 2.2	ウラン崩壊系列 ····································	5
図 2.3	アクチニウム崩壊系列・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
図 3.1	ウラン線源スペクトル(NaI) · · · · · · · · · · · · · · · · · · ·	11
図 3.2	ウランと 60Co のスペクトル(NaI)	12
図 3.3	実廃棄物測定スペクトル例	13
図 4.1	パッシブガンマ測定装置の概念図	17
図 4.2	パッシブガンマ測定装置外観	18
図 4.3	解析ソフトフロ	19
図 5.1	UO ₂ 標準線源の形状 ····································	24
図 5.2	測定状況の概念	26
図 5.3	U 重量と 1001kev 計数率の関係(装置 A) ···································	27
図 5.4	U 重量と 186kev 計数率の関係(装置 A)······	28
図 5.5	U 重量と 1001kev 計数率の関係(装置 B) · · · · · · · · · · · · · · · · · ·	
図 5.6	U 重量と 186kev 計数率の関係(装置 B) ···································	30
図 5.7	外部透過線源の初期値測定概念 感度分布測定ポイント	31
図 5.8	感度分布測定ポイント	
図 5.9	空ドラム缶感度分布(装置 A;1001kev)	33
図 5.10		33
図 5.11	金属試験体(0.43g/cm³)感度分布(装置 A;1001kev)	33
図 5.12		34
図 5.13		34
図 5.14		34
図 5.15		35
図 5.16		35
図 5.17	金属試験体(0.43g/cm³)感度分布(装置 B;1001kev)	35
図 5.18		36
図 5.19	塩化ビニル試験体(0.3g/cm³)感度分布(装置 B;186kev) ····································	36
図 5.20	, , , , , , , , , , , , , , , , , , , ,	36 44
図 5.21	ハツンノカノマ側定装直の構成	44
図 5.22	パッシブガンマ測定装置の外観(GS1,GS2)	40
図 5.23		41
図 5.24 図 5.25	and the contract of the contra	49
図 5.26	エイルイーとファンイルの対示(GD2) ・ 効率曲約(CC1) · · · · · · · · · · · · · · · · · · ·	51
図 5.27		51
図 5.2 <i>t</i>		54
図 5.29	the state of the s	5 4
図 5.30	the state of the s	56
図 5.31		50 50
四 0.51	U 里C 100kev 司 奴字の肉原(字世里里司 奴字より)	JO

表目次

表 2.1	2 2 4 M24D4E 22 ME	
表 2.2	アクチニウム系列核種の特性	8
表 5.1	UO ₂ 標準線源データ ····································	25
表 5.2	チェックソース及び外部透過線源	46
表 5.3	B.G 測定結果 · · · · · · · · · · · · · · · · · · ·	50
表 5.4	B.G 測定結果(外部透過線源測定時) · · · · · · · · · · · · · · · · · · ·	50
表 5.5	B.G 測定結果(実廃棄物測定時) · · · · · · · · · · · · · · · · · · ·	50
表 5.6	効率の算出	53
表 5.7	検量線補正のための測定結果	55
表 5.8	単位重量あたりの計数率からの検量線作成結果	57
表 5.9	外部透過線源の初期値(I ₀)測定結果	59
表 5.10	検出限界値と測定時間の関係	60
表 5.11	検出限界値と測定時間の関係(外部透過線源測定時)	60
表 5.12	検出限界値と測定時間の関係(実廃棄物測定時)	60
表 5.13	GS1 感度分布測定結果(空ドラム缶) ····································	63
表 5.14	GS1 感度分布測定結果(塩ビ) · · · · · · · · · · · · · · · · · · ·	63
表 5.15	GS1 感度分布測定結果(金属) · · · · · · · · · · · · · · · · · · ·	63
表 5.16	GS2 感度分布測定結果(空ドラム缶) · · · · · · · · · · · · · · · · · · ·	64
表 5.17	GS2 感度分布測定結果(塩ビ) · · · · · · · · · · · · · · · · · · ·	64
表 5.18	GS2 感度分布測定結果(金属) · · · · · · · · · · · · · · · · · · ·	64
表 6.1	測定ドラム缶内容物割合	74

1.はじめに

放射性廃棄物を保管廃棄する場合、核燃料物質の使用等に関する規則第2条の11の記録として放射性物質の数量を記載する必要があるため、放射性廃棄物中の放射性物質の数量を把握することが不可欠である。よって、ウラン廃棄物については、各設備で使用したウラン組成,取扱量及び表面線量率から推定してきたのが実情であったが、廃棄物屋外貯蔵ピットの改善措置(平成9年9月)に際し、文部科学省(旧科学技術庁)より廃棄物を測定し、適切な数量の記載が必要であるとのコメントがあった。

このため、非破壊測定装置により、ウラン廃棄物のウラン量を推定するためにサンプル測定を行い、その平均値を推定値とした。その後、廃棄物屋外貯蔵ピットの廃棄物(以下「ピット廃棄物」という。)を全数測定し、修正することで了解を得た。また、その他のウラン廃棄物についても計画的に測定を行うこととした。

更に、ピット廃棄物問題により、保障措置対応についての調整が国, IAEA との間で行われ、ウラン量を測定し、計量報告後保管廃棄することとなった。

ピット廃棄物については、平成 12 年 1 月に計量報告後、検認査察を受け、保管廃棄手続きを行った。今後は、ピット廃棄物以外のウラン廃棄物中のウラン量測定,計量報告,保管廃棄手続きを計画的に行う予定である。

ここでは、これらウラン廃棄物中のウラン量測定のために実施した非破壊測定装置による試験及び校正等についてまとめたものである。

なお、ウラン廃棄物中のウラン量を測定する非破壊測定手法としては、パッシブガンマ法及びアクティブ中性子法などが考えられるが、数量の記載及び計量管理の観点(安全評価等に要求される高い感度・精度を要求されないこと)から、即時対応が可能で安価なパッシブガンマ法を選定した。

2.パッシブガンマ法測定原理

2.1 核種定量

パッシブガンマ法は、 廃棄物中の放射性核種 から放出されているガンマ線を計測し、得られる電気信号 を波高分析して、エネルギーを特定し、着目 する核種量を求めるものである。

なお、定量にあたっては、あらかじめ、着目するエネルギーの計数率とウラン量の関係を標準線源より求め、その関係式から求める場合と、効率から求める場合がある。

効率から算出する場合は、着目するエネルギーの計数効率を効率曲線から求め、 放出率,比放射能を考慮し、単位重量当たりの計数率(cps/g·s)を求める。この単位重 量計数率で試料測定より得られた着目エネルギーの計数率を除すことにより、吸収 が無い状態での核種量を求めることができる。

$$C = A \cdot N \cdot E$$
 (2.1)

$$Y = X/C$$
 (2.2)

C;单位重量計数率(cps/g·s)

A;比放射能(Bq/g)

Ν;着目エネルギーのγ線放出率

E;着目エネルギーの計数効率(cps/dps)

X;試料測定計数率(cps)

Y;核種量(g)

2.2 吸収補正

廃棄物中の放射性核種から放出されるγ線は、廃棄物構成物質(以下「マトリックス」という。)により吸収又は減衰され、計数値が小さくなるため、それらを補正する必要がある。これら補正を吸収補正という。

吸収補正の方法としては、既知の外部線源を使う方法と廃棄物重量との関係から 補正する方法があるが、実際の廃棄物は、内容物が種々雑多であり、均一性が期待 できないことから、ドラム缶詰廃棄物などの場合、外部線源による補正が有効的で ある。

以下に補正方法の考え方を示す。

1-T

図 2.1 のように対象廃棄物対して、Ge 検出器を配置し、外部透過線源を検出器の同一線上に置く。ここで、対象物入射前の γ 線強度を I_0 、透過後の γ 線強度を I とすると補正項 CF(Correction Factor)は、以下の式となる。

$$CF = I_0 / (\int_0^t I_0 e^{-\pi x} dx / \int_0^t dx)$$
 $= \pi t / 1 - e^{-\pi t}$ (π ;線吸収係数) (2.3)
ここで(図 2.1 において)、透過度をTとすると、
$$T = \frac{I}{I_0}$$
 (2.4)
$$I_0 = \frac{\ln T}{CF = -\frac{1}{2}}$$
 (2.5)

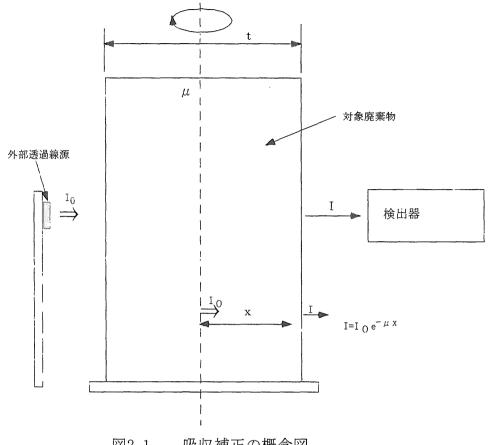


図2.1 吸収補正の概念図

(2.3)式において、ディメンジョン t にある補正ファクタkを乗じたものを考え、実際に測定から得られた透過度をTとすると、(2.5)式は以下となる。

$$C F = -\frac{k \cdot \ln T}{1 - T^{k}}$$
 (2.6)

ここで、CF を k の関数と考えて実際に測定して実験計算した結果最も適当な k の値として、T<0.1 なら k=0.75、0.1< T<1.0 なら k=0.823 としている。⁽¹⁾

2.3 ウランから放出される γ線

ウランは、アクチニドに属する元素であり、天然に産するウランは 3 種の同位体 ウラン 238(99.274%)、ウラン 235(0.7205%)、ウラン 234(0.0056%)の混合物である。

ウラン系列及びアクチニウム系列の崩壊系列を図 2.2 及び図 2.3 に示す。また、その核種特性を表 2.1 及び表 2.2 に示す。

ここで、ウランをパッシブガンマ法で測定評価するには、ウラン 235,ウラン 238 からのガンマ線を計測することが考えられるが、ウラン 235 のうち放出割合の高いガンマ線エネルギー186kev については、ラジウム 226 も同一エネルギーを放出するため、ウラン鉱石等ラジウムが存在する対象物には適用できない。また、鉱石等には、ウラン系列等の娘核種(Bi214 等)があり、コンプトンの影響が大きく感度が悪化するとともに、廃棄物に対する透過力を考慮し、ウラン 238 と放射平衡となっているプロトアクチニウム 234m(以下「Pa234m」という。)から放出される γ 線エネルギー1001kev を選定した。

なお、ラジウム 226 等娘核種が存在しない低密度廃棄物であれば 186kev のエネルギーによる評価で問題はないと考える。

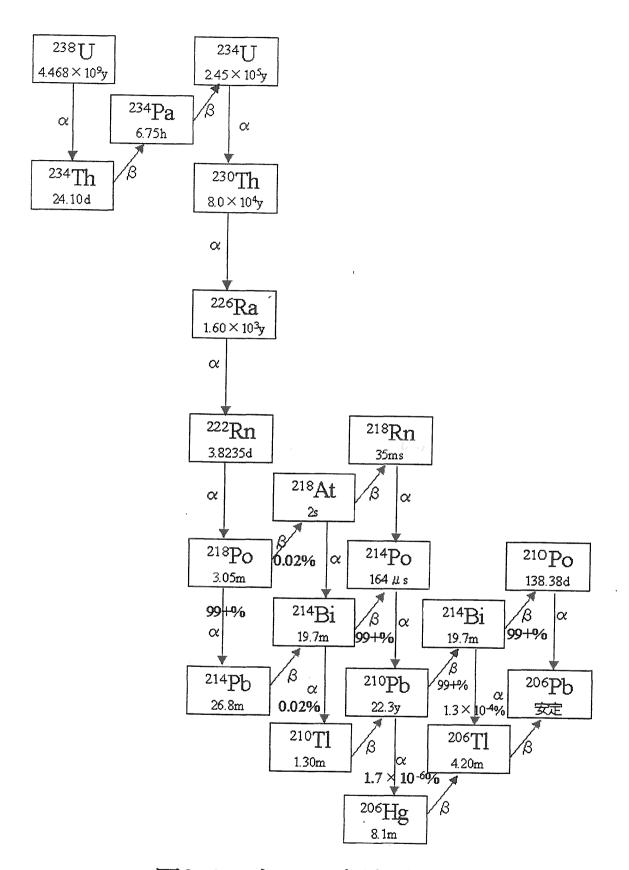


図2.2 ウラン崩壊系列

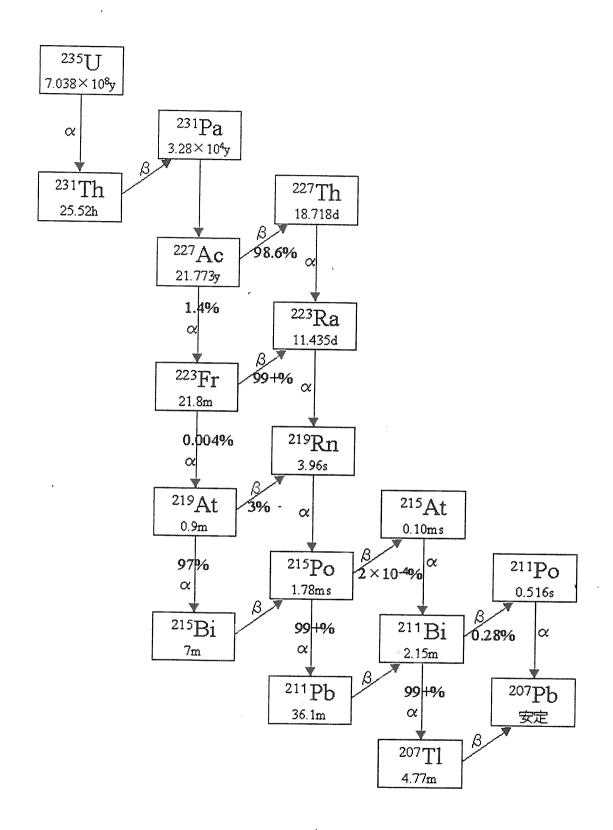


図2.3 アクチニウム崩壊系列

表2.1 ウラン系列核種の特性

表2.1 ワフン糸列核種の特性							
核種	半減期		α線 	β線		ア線	
		エネル 放出割	ギー(Mev) 合	エネル放出書	ノギー(Mev) 別合	エネル放出記	レギー(Mev) 割合
238U	4.51 × 10 ⁹ y	4.295	100%			0.048	0% (23%)
234Th	24.10d			0.100 0.191	35% 65%	0.029 0.063 0.091	
234mPa	1.175m			0.58 1.50 2.31	1% 9% 90%	0.75 1.00	IT 1% 15%
234Pa	6.66h			1.13	1	0.043 0.80	
234U	2.48 × 10 ⁵ y	4.717 4.768	28% 72%		0000	0.051	0% (28%)
230Th	8.0 × 10 ⁴ y	4.615 4.682	24% 76%			0.067 他We	ak(24%)
226Ra	1620y	4.589 4.777	5.7% 94.3%			0.186	4% (2%)
222Rn	3.825d	5.48	100%				
218Po	3.05m	5.998	100%	?	0.014%	<u> </u>	
218At	1.3s	6.70 6.65	0.013% 0.001%	?	.Weak		
218Rn	1.9 × 10 ⁻² s	7.13	V.Weak			0.61	
214Pb	26.8m			0.59 0.65	56% 44%	0.241 0.294 0.350	24%
214Bi	19.9m	5.505	0.04%	0.4 1.0 1.51 1.88 3.26	9% 23% 40% 9% 19%	0.609 0.769 0.934 1.120 1.238 1.378 1.509 1.764 1.848 2.204 2.432	8% 4% 27% 10% 12% 4% 22% 2.3%
214Po	1.64 × 10 ⁻⁴ s	7.680	100%				
210Tl	1.32m			1.96	0.04	数本	V.Weak
210Pb	19.4y			0.017 0.063	85% 15%	0.047	5% (80%)
210mBi	5.013d	5.06	1.7 × 10 ⁴	1.155	100%		
210Po	138.40d	5.305	100%			0.8	$1.2 \times 10^{-3}\%$
206TI	4.19m			1.51	$1.7 \times 10^{-4}\%$		

「原子力工業 第18巻 第7号 p104より」

表22 アクチーウム系列核種の特性

	表2.2	アクチニロ	7ム系列核種の	り特性
		α線	β線	γ線
核種	半減期	エネルギー(Mev 放出割合	/) エネルギー(Mev) 放出割合	エネルギー(Mev) 放出割合
235U	7.1 × 10 ⁸ y	4.58 8% 4.40 57% 4.37 18%		0.095 9% 0.143 11% 0.186 54% 0.205 5%
231Th	25.52h		0.30max	0.026 2% 0.084 10%(複合)
231Pa	3.25 × 10 ⁴ y	5.06 10% 5.02 23% 5.01 24% 4.95 22% 4.73 11%	i	0.027 6% 0.029 6%(複合)
227Ac	21.6y	4.95 1.2%	- 0.046 99%	0.070 0.08%
227Th	18.2d	5.699 4.0% 5.708 8.7% 5.712 5.0% 5.755 21% 5.865 3.0% 5.958 3.5% 5.976 24% 6.036 23% 他 7.8%		0.050 8% 0.237 15%(複合) 0.31 8%(複合)
223Fr	22m	$5.34 4 \times 10^{-3}\%$	1.115 ~1%	0.050、0.080、 0.234 1%以下
223Ra	11.435d	5.534 10.3% 5.602 24% 5.712 50% 5.742 10.5% 5.830 0.05% 5.853 0.3% 5.867 1.0%		0.149 10%(複合) 0.270 10% 0.33 6%(複合)
219Rn	4.00s	6.419 5% 6.547 13% 6.813 82%		0.272 8% 0.401 5%
215Po	1.778ms	7.360 =100%		
215At	0.1ms	8.0 微弱		
211Pb	36.1m		1.39 80% 0.5 20%	0.405 3.4% 0.427 1.8% 0.702 0.4% 0.766 0.6%
211Bi	2.16m	6.273 17% 6.617 83%	0.3%	0.700 0.0% 0.832 3.4% 0.351 14%
211Po	0.52s	7.45 ~0.	3%	0.550 微弱 0.90
207TI	4.79m		1.44 100%	
207Pb	安定			

放出割合はウラン235と平衡として表されている 「原子力工業 第18巻 第7号 p105より」

3.ウラン廃棄物中のウラン量測定評価検討試験

ウラン廃棄物中の放射性物質量を推定するため、非破壊測定によりウラン量を評価することを検討する。

ウラン廃棄物中の放射性核種としては、回収ウラン取扱いにおいて僅かな核分裂性 核種を含むものの、ほとんどがウランであることなどからパッシブガンマ法及びアク ティブ中性子法による非破壊測定技術の適用が考えられる。

ここでは、測定の簡便さ、コスト等からパッシブガンマ法による検討を行った。

3.1 電離箱サーベイメータによるウラン量評価検討

(1) 概要

模擬ドラム缶中にウラン標準線源を設置し、ウラン量と表面線量率の関係を調査し、その関係式からウラン量を推定可能か検討した。

(2) 試験条件

試験には、0.16g、1.6g、1.6g、51g の UO_2 (天然ウラン)の線源を用い、それぞれの線源ごとにドラム缶半径の1/2、ドラム缶高さの1/2 に配置し、ドラム缶表面における電離箱サーベイメータの指示値を調査した。

(3) 結果及び考察

紙(嵩密度=0.13g/cm³) を充填した模擬ドラム缶において、51g の線源で 0.6 μ Sv/h であり、それ以外の線源では検出限界以下であった。

従って、ウランからの γ 線が弱いため、線量率とウラン量の関係を取得するには、低濃度領域では困難である。

なお、高濃度領域でも組成が変わる(組成及び核種の変化)と各エネルギーのγ線放出数やコンプトンなどの影響があるため、線量率とウラン量の相関性は無くなると考えられる。

3.2 NaI 検出器によるウラン量評価検討

(1) 概要

NaI 検出器による天然ウラン線源のスペクトル及び外部透過線源との混合スペクトルを確認し、ピーク解析の可能性を調査するとともに、スペクトル状況からウランの測定について検討した。

(2) 測定条件

・ 対象エネルギー; 238U(234mPa) 1001kev、235U 186kev

ウラン標準線源;天然ウラン、1.6g、16g、51gのUO2

外部透過線源 ;60Co 1170kev

· 測定時間 ; 600sec

(3) 結果

- ・ ウラン線源のみでは、766kev,1001kev,1460kev のピークを確認できる(図 3.1 参照)が、透過線源との混合スペクトルでは、60Co のピークによるコンプトン散乱 の影響によりウラン線源からのピークは確認できなかった。(図 3.2 参照)
- ・ これにより、廃棄物測定においては、廃棄物測定、外部透過線源付廃棄物測定の

- 2回測定が、廃棄物の吸収補正をするためには必要となる。
- ・ 検出限界は、試験を実施したプルトニウム廃棄物処理開発施設内バックグランドから 3 シグマ法(式 5.14)より約 10gU である。

3.3 Ge 検出器によるウラン量評価検討

(1)概要

Ge 検出器により廃棄物中のウラン量を評価するために、ウラン線源及び実廃棄 物のスペクトルを確認するとともに、検出限界値を推定した。

(2)測定条件

• Ge 検出器 : ポータブル Ge 検出器

・ 対象エネルギー; 238U(234mPa) 1001kev、235U 186kev

ウラン標準線源;天然ウラン、1.6g,16g,51gのUO₂

・ 線源位置 ;空ドラム缶中心 · 外部透過線源 : 60Co 1170kev

· 測定時間 ; 1000sec

• 実廃棄物

:廃棄物屋外貯蔵ピット保管廃棄物

(3)結果

ウラン線源の測定から、ピーク解析等に問題が無く、評価できることを確認す るとともに、ウラン量と計数率の相関性に問題ないことを確認した。

実廃棄物測定のスペクトル例を図3.3に示す。透過線源60Coのコンプトン散乱 の影響はあるものの、妨害ピークはなく、1001kev のピークを用いてウラン量を 評価できることを確認した。なお、低エネルギー側のバックグランドが高いことから 遮蔽体を使用することが望ましい。

ポータブル Ge 検出器の検出限界値は、廃棄物屋外貯蔵ピット作業建家内でのバ ックグランドから、3シグマ法(式 5.14)により、約 9gU であった。

上記結果を基に、実廃棄物のサンプル測定を行った。

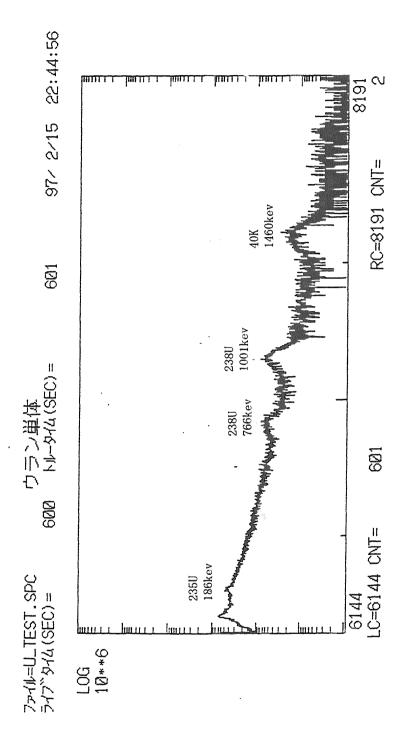
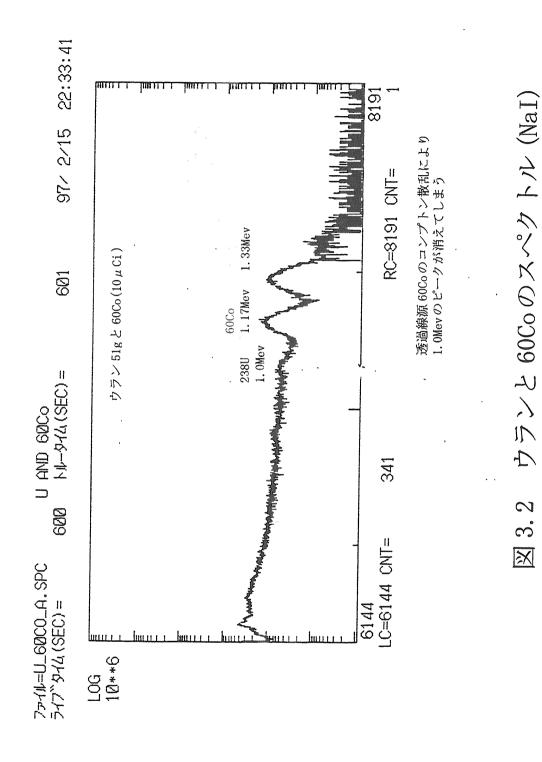
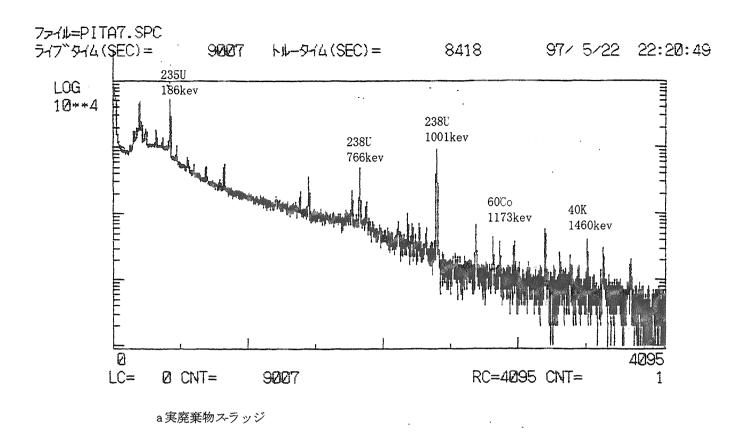




図 3.1 ウラン線源スペクトル (NaI)

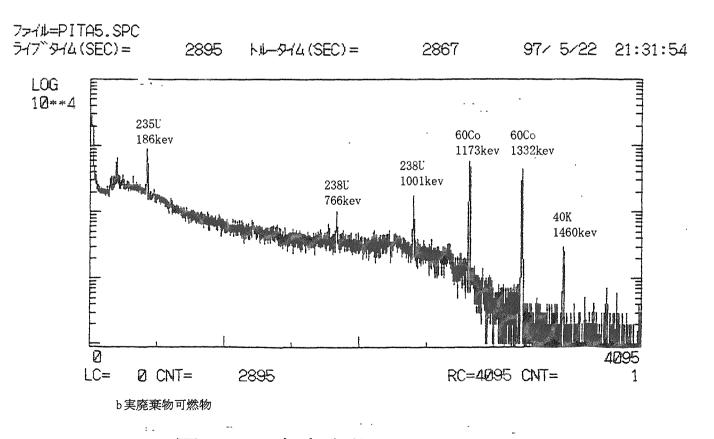


図3.3 実廃棄物スペクトル例

4. 測定装置概要

ウラン量測定試験に用いたパッシブガンマ測定装置の概要を記述する。なお、ウラン廃棄物測定では、ピット廃棄物測定で3台のパッシブガンマ測定装置を用い、その後のウラン廃棄物測定では、前記3台のうちの1台と新たに購入した1台を用いている。前記3台については、既存品を組み合わせたシステム(5.2項の測定装置)であり、他1台(5.3項の測定装置)については、新規にシステムアップしたものである。ここでは、装置構成については、ほとんど同様であるため、新規にシステムアップした装置等について記述する。

また、前記3台の測定装置のうち2台については、プルトニウム燃料センター等から装置の一部を借用して組み立てたものであるため、現在は、返却済みである。

4.1 測定装置

本装置は、Ge 検出器、ターンテーブル、透過線源、計測部、 γ 線解析ソフトで構成されている。

装置概念図を図4.1に示し、外観を図4.2に示す。

測定手法は、放射性核種の自然崩壊による γ 線を半導体検出器及びマルチチャンネルアナライザー(以下「MCA」という。)などで構成された計測部により計測し、標準的モデルとの比較により、その存在量を求めるもので、パッシブガンマ法と呼ばれている。

本装置は、廃棄物の運搬及び運搬等の手続き等労力を無くすように、遮蔽体を設けた検出器をハンドリフターに乗せ、ターンテーブル及び計測部もコンパクトな可搬型として、廃棄物保管施設等への移動を可能にしたものである。

遮蔽体は、約3cm で内側からPb,Cu,Phルによる構成であり、簡単に取り外しができる様に、4 分割型とし γ 線のストリーミングが無いように、鍵型で合わせるようにしたものである。

透過線源は、ターンテーブルにマグネットで取り付けられた棒にセットし、廃棄物等の積み下ろしの際はマグネット付き棒ごと外し、ドラムポータ等により廃棄物を移動できるようにした。

また、計測部については、通常 NIM 規格モジュールで計測ラックが必要となり、移動が大変なため、アンプ,高圧電源,ADC,MCA 等一体型の計器を採用し、パソコンラックに常備できるようにした。

4.2 測定評価プロブラム

測定評価プログラムのフローを図 4.3 に示す。

γ線解析プロブルについては、国内のメーカでは環境中核種に対するプロブルしかないため、廃棄物(体積がある物)等を対象にプルトニウムを評価するプロブルを昭和63年に作成し、PNC/GAMMAとしてプルトニウムを対象とした測定試験に運用してきた。

これらプログラムにウラン測定に係る情報及び吸収補正に係る改良を加え、プルトニウム、ウラン及び環境中核種を評価できるように改良したものである。(プログラム名;JNC/GAMMA)

JNC/GAMMA は、基本的に環境用 γ 線解析プロデラムの γ 線解析においてプルトニウムやウラン鉱石などのように X線領域等の低エネルギースペクトルが複雑な場合に、強制的にピークを分離する機能を持ち、核種の定量において、検量線又は効

率曲線から核種を定量し、その後、外部透過線源の情報から吸収補正を行った核種量を算出するものである。

以下にその一部の計算過程を示す。

(1) 検量線による定量(吸収補正前)

あらかじめ設定した検量線を下式で表される。

 $Ip(cps)=a_1\times G+b_1$

(4.1)

ここで、 $\mathbf{a}_1,\mathbf{b}_1$ はあらかじめ設定した入力パラメータを使用し、ピーク解析結果のピーク面積(\mathbf{Ip})から定量値(\mathbf{G})を次式から求める。

 $G(g) = (Ip - b_1)/a_1$

(4.2)

ここで、IP=(ターゲットピークのエリアカウント)/(測定時間ライブタイム)

含有量 Y(g/試料)及び単位重量当たりの含有量 y(g/gram)、放射能 A(Bq)、放射 濃度 D(Bq/gram)は次のように計算される。

Y(g/試料)=G(g)

(4.3)

y(g/gram) = G/W

(4.4)

 $A(Bq) = Y \times R$

(4.5)

 $D(Bq/gram) = y \times R$

(4.6)

ここで、W;試料重量、R;比放射能

(2) 効率曲線による定量

ピーク解析結果のピーク面積 Ip(cps)から放射能 A(Bq)は次のように求める。

 $A(Bq) = Ip/(\epsilon p \times Yi/100)$

(4.7)

ここで、Yi;核種放出比(%)、εp;対象エネルギーでの絶対効率

更に単位重量当たりの放射能濃度 D(Bq/gram)は、

D(Bg/gram) = A/W

(4.8)

これより、含有量 Y(g/試料)及び単位重量当たりの含有量 y(g/gram)は、

Y(g) = A/R

(4.9)

y(g/gram) = D/R

(4.10)

(3) ダイレクト吸収補正

サンプルのピーク面積 I(cps)とし、あらかじめ測定してある吸収無しの透過線源ピーク面積 $I_0(cps)$ より透過度 T を求める。

T= ____

T

(4.11)

 $T_0 \in (-0.693 \times \Delta t/half)$

ここで、Δt;試料測定日―吸収無しの透過線源測定日 half;透過線源の半減期

また、吸収補正係数 CF は次のように求める。

$$-k \times ln(T)$$

 $CF = \frac{1 - T^{k}}{1 - T^{k}}$

(4.12)

= 0.75(T < 0.1), k = 0.823(0.1 < T < 1.0)

(4) 計算による近似吸収補正

(4.11)式より T を求め、Tm とする。

基準廃棄物における透過度 Ts は、

 $T_S = I_S / I_O = a_3 \times E^{b_3} \times c_3$

(4.13)

ここで、

$$a_3 = 0.4605$$

 $b_3 = 0.5$

 $c_3 = 0.2304$

E=リファレンスピークエネルギーで単位は (MeV)

(注意:a₃、b₃、c₃は解析核種やエネルギーに依存しないパラメータ。)

次に、ターゲット核種のエネルギー毎に近似透過度 Tne を求め、エネルギーを変数とした吸収補正係数 CF (Eng)を求める。

$$CF (Eng) = \frac{-k \times ln(Tne)}{1 - Tne^{k}}$$
(4.14)

ここで

Tne = { $a_3 \times Eng^{b3} \times c_3$ } ⁿ

Eng = ターゲット核種のエネルギーで単位は (MeV)

次数nは、 $Tm = Ts^n$ の関係より、リファレンスピークエネルギーから測定廃棄物毎に求めることができ、

n = ln Tm/ln Ts となる。

(5) 検量線を使用した定量(吸収補正後)

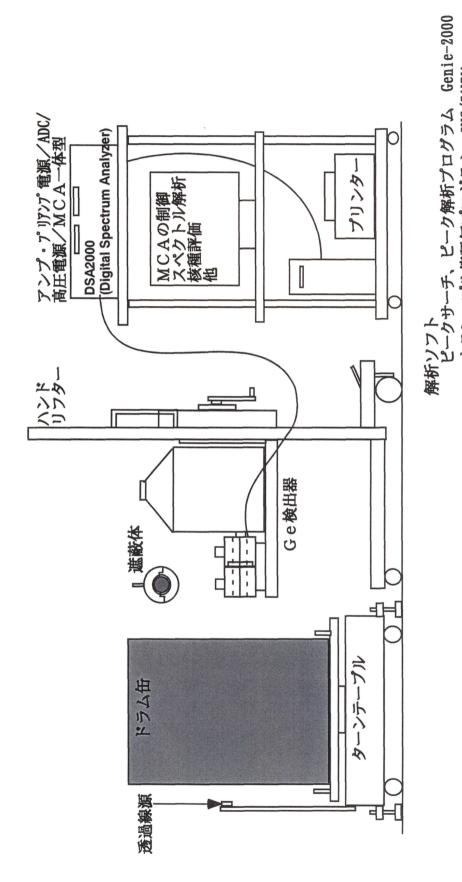
放射能濃度(Bq/gram)=D×CF (4.15)

$$=G\times(R/W)\times CF$$

$$=\frac{Ip-b1}{a1}\times \frac{R}{W}\times \frac{(-k\times ln(I/I_0))}{(1-(I/I_0)^k)}$$

含有量(g/試料)=G×CF

$$=\frac{\text{Ip}-\text{b1}}{\text{a1}} \times \frac{(-\text{k}\times\text{ln}(\text{I}/\text{I}_0))}{(1-(\text{I}/\text{I}_0)^{\text{k}}))}$$
(4.16)


(6) 効率を使用した定量(吸収補正後)

放射能濃度(Bq/gram)=D×CF (Eng) (4.17)
$$=A/W \times CF \text{ (Eng)}$$

$$=\frac{Ip}{\epsilon p \times Yi} \times \frac{1}{W} \times \frac{(-k \times \ln(a_3 \cdot e^{b^3} + c_3)^n)}{(1-(a_3 \cdot e^{b^3} + c_3)^n)^k}$$

含有量(g/試料)=Y×CF (Eng) (4.18)

$$= \frac{\text{Ip}}{\epsilon \text{ p} \times \text{Yi}} \times \frac{1}{R} \times \frac{(-\text{ k} \times \ln(\text{a}_3 \cdot \text{e}^{\text{b}_3} + \text{c}_3)^{\text{n}})}{(1 - (\text{a}_3 \cdot \text{e}^{\text{b}_3} + \text{c}_3)^{\text{n}})^{\text{k}}}$$

パッシブガンマ測定装置の概念図

ウラン・プル等評価プログラム JNC/GAMMA I SOXキャリプレーション

図4.2 パッシブガンマ測定装置外観

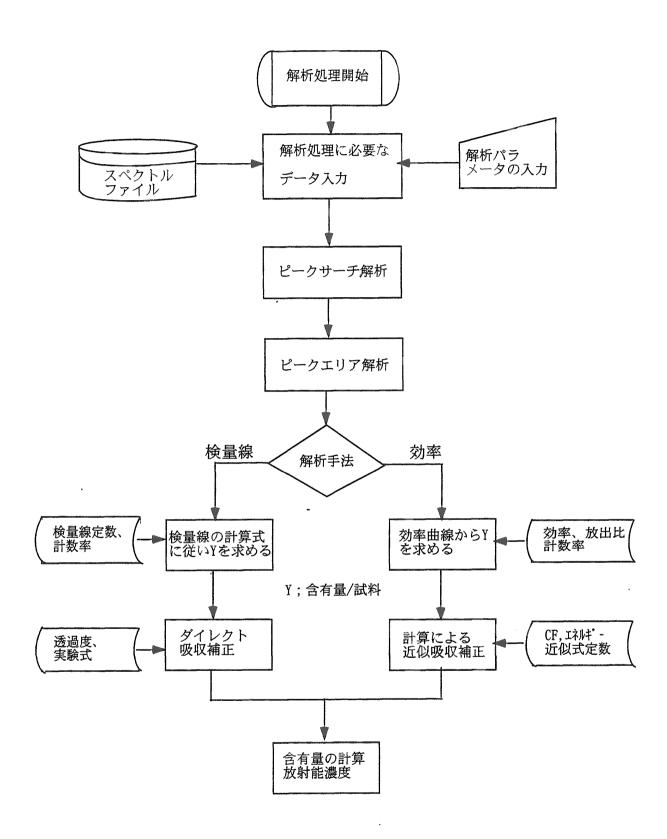


図4.3 解析ソフトフロー

5.装置校正試験

本試験では、ウラン廃棄物中のウラン量を評価するため、それぞれのパッシブガンマ測定装置の校正及び感度把握等について行ったものである。

5.1 標準線源及び標準試験体

(1) UO2標準線源

本試験に用いた UO_2 標準線源の形状を図 5.1 に、線源データを表 5.1 に示す。なお、本標準線源は、アクティブ中性子法による測定試験用に製作したものであるため、中性子断面積の小さいアルミニウム容器に封入したものである。このため、以下にアルミニウム容器による着目 γ 線の減衰を求め、把握しておくものとする。

着目 γ 線エネルギ-; 186kev、1001kev として、核データのあるエネルギ-で算出アルミニウム容器の厚さ; 0.2cm

アルミニウム密度; 2.7(g/cm³)

アルミニウム全減衰係数(cm²/g);近似値として 0.2Mev;0.122、1Mev;0.0613 (アイソト-プ手帳より)

アルミニウム線吸収係数(cm⁻¹)の算出
 0.2Mev; 0.3294=0.122(cm²/g)×2.7(g/cm³)

1Mev; $0.1655 = 0.0613 (\text{cm}^2/\text{g}) \times 2.7 (\text{g/cm}^3)$

・ アルミニウム 0.2cm 容器での減衰

0.2Mev の場合

 $I=I_0 e^{-\mu t}$ より、 $I/I_0 = e^{-0.3294 \times 0.2}$ =0.936 よって、6.4%減衰

1Mev の場合

 $I=I_0 e^{-\mu t}$ より、 $I/I_0 = e^{-0.1655 \times 0.2}$ =0.967 よって、3.3%減衰

(2) 60Co 標準線源

- ① ピット廃棄物測定時校正試験に使用
- ・ガンマ測定装置Aの外部透過線源等に使用

60Co; 板状、382kBq(1998年4月21日現在、借用品)

- ・ガンマ測定装置 B の外部透過線源等に使用 60Co;立方体、963kBq(1998年4月21日現在、借用品)
- ② ウラン廃棄物測定に伴う校正試験に使用
- ・GAMMA SYSTEM 1 (=ガンマ測定装置 B)の外部透過線源に使用 60Co; 板状、411kBq(分析日 2000 年 2 月 1 日)
- · GAMMA SYSTEM 2

60Co; 板状、411kBq(分析日 2000 年 2 月 1 日)

5.2 ピット廃棄物測定時校正試験

廃棄物屋外貯蔵ピット(以下「ピット」という)における廃棄物管理問題が問われ、 ピット廃棄物の取り出し・詰替及び運搬作業を行った。この際、規制当局から核 燃料使用規則の第2条11記録のトに基づき、適切な放射性物質の数量を記載する ようにとの指導があった。

このため、ピットで詰替えた固体廃棄物のウラン量について、廃棄物の種類(可燃、難燃、不燃)ごとにサンプリングし、非破壊測定装置(パッシブガンマ法)により測定評価して、その平均値から間接的に推定した数量を記載した。

その後、ピット廃棄物については、保管施設にて全数を測定し、数量を補正・ 見直すこととして、ガンマ測定装置 A,B の校正試験を実施して、保管廃棄物の測 定を実施した。

ここでは、校正試験について記述する。

(1) 検量線作成

ウラン量を計数率から求めるために、 γ 線エネルギ-ピーク(1001kev)計数率とウラン量との関係を取得し、関係式を求めた。

① 方法

 UO_2 標準線源を空ドラム缶中心に配置し、ウラン量を変え、その時の計数率を取得して、1001kev 計数率とウラン量の関係を検量線とする。

· 条件

測定状況を図5.2に示す。

ターンテーブルの回転:10rpm

標準線源 : UO₂標準線源(天然ウラン)

ウラン量(g) : 44.46g(No.5)、14.52g(No.6)、1.43g(No.3)

検出間距離(cm):38.5cm (ドラム缶表面から 10cm)線源設置高さ:ドラム缶内底から 41.5cm(内高中心)

着目エネルギ-(kev) : 238U 1001、235U 186(参考)

測定時間(sec) : No.5 1000、No.6 3000、No.3 5000

測定回数 : 3回

② 結果

ガンマ測定装置 A

ウラン量と 1001kev 計数率の関係を図 5.3 にウラン量と 186kev 計数率の関係を図 5.4 に示す。

ウラン量と計数率の関係は、1001kev、186kev とも良い相関性であり、下記に示す実験式が得られた。

Y(1001kev cps)=1.2814E-2×X(g) (決定係数; 0.998) Y(186kev cps)=2.4482E-2×X(g) (決定係数; 0.988)

・ ガンマ測定装置 B

ウラン量と 1001kev 計数率の関係を図 5.5 にウラン量と 186kev 計数率の関係を図 5.6 に示す。

ウラン量と計数率の関係は、1001kev、186kev とも良い相関性であり、下記に示す実験式が得られた。

Y(1001kev cps)=1.0140E-2×X(g) (決定係数; 0.998) Y(186kev cps)=3.1089E-2×X(g) (決定係数; 0.997)

上記、実験式をピット廃棄物測定における検量線として使用した。

(2) 外部透過線源の初期値測定

① 目的及び方法

外部透過線源に用いる 60Co 線源の透過度算出のための初期値(I_0)を測定する。

方法は、外部透過線源位置に線源をセットし、ターンテーブル上に空ドラム 缶を置いた状態での計数率を取得した。

条件

線源 : 60Co(10 μ Ci)

着目エネルギー:1173kev 測定時間 :1000sec 測定回数 :3回

測定概略図を図5.7に示す。

② 結果

ガンマ測定装置 A で初期値(I_0)は、15.437cps、ガンマ測定装置 B での初期値(I_0)は、28.336cps であった。

なお、廃棄物測定においては、上記数値を測定日までの減衰補正を行い、 I_0 として使用した。

(3) 感度分布測定

① 目的

ドラム缶内における核種の空間分布の依存性を把握し、ドラム缶測定における感度分布を評価するとともに、核種偏在による誤差を評価する。

② 方法

図 5.8 に示すように、各種試験体ドラム缶内の 9 ポイントの位置にウラン標準線源をそれぞれ設置し、計数率を取得した。

ここで、ドラム缶中心ポイントで得られた計数率を 1.0 と規格化し、他のポイントでの計数率との相対比を求め、感度分布を取得した。

· 条件

線源 : UO2標準線源(天然ウラン)

ウラン量: 44.5g(No.5)

試験体 : 空ドラム缶(23Kg)、塩化ビニル(0.3g/cm³:83kg)

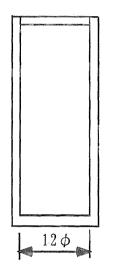
金属(0.43g/cm³:109kg)

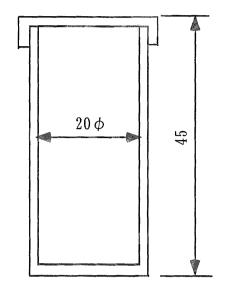
タ-ンテ-ブル回転 : **10rpm** 測定ポイント : 9箇所

着目エネルギ- : 1001kev、186kev

外部透過線源:無し測定時間:2000sec測定回数:3回

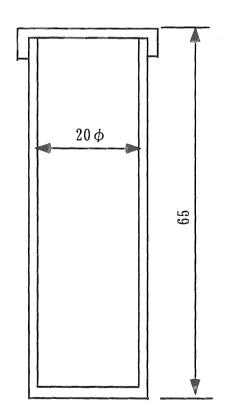
③ 結果


ガンマ測定装置 A


- 1001kev 及び 186kev の感度分布測定結果をそれぞれ図 5.9~図 5.11 及び図 5.12~図 5.14 に示す。
- ・ 1001kev におけるそれぞれの試験体での感度分布幅は、空ドラム缶で約±55%、塩化ビニル試験体で約±86%、金属試験体で約±95%であった。

- ・ 同様に 186kev における感度分布幅は、空ドラム缶で約±58%、塩化ビニル 試験体及び金属試験体では、検出されないポイントがあるため±200%以上 となっていると考えられる。
- ・以上のことから、感度分布幅から核種偏在による誤差は、エネルギーの高い 1001kev の方が、186kev より低く、廃棄物等体積試料の測定には適している。
- ・ また、1001kev を対象としての測定による誤差を推定すると、金属試験体の 感度分布幅約±95%に加え、統計誤差、吸収補正誤差、検量線誤差等から約 ±100%程度である。

ガンマ測定装置 B


- 1001kev 及び 186kev の感度分布測定結果をそれぞれ図 5.15~図 5.17 及び 図 5.18~図 5.20 に示す。
- ・ 1001kev におけるそれぞれの試験体での感度分布幅は、空ドラム缶で約 \pm 71%、塩化ビニル試験体で約 \pm 94%、金属試験体で約 \pm 106%であった。
- ・ 同様に 186kev における感度分布幅は、空ドラム缶で約±78%、塩化ビニル 試験体で約±157%、金属試験体では、検出されないポイントがあるため± 200%以上となっていると考えられる。
- ・ ここで、ガンマ測定装置 A よりガンマ測定装置 B の方が感度分布幅が悪化しているのは、ガンマ測定装置 B が A の Ge 検出器より効率が約3割低いことに加え、装置 B の Ge 検出器の遮蔽体(約5mm の鉛板)が薄かったために、バッググランドレベルが高く感度が悪化したためと考えられる。

①容器A型 (No.3)

②容器B型(No.6)

材質;アルミニウム

(単位;mm)

③容器C型(No.5)

図5.1 UO₂標準線源の形状

表5.1 UO2標準線源データ

分析日;平成10年4月21日

	······································		/ / // / // //	
品位				
天然ウラン				
238U	99.274			
235U	0.720			
234U	0.006			
線源No.	UO ₂ 重量(mg)	U重量(mg)	235U重量(mg)	238U重量(mg)
3	1634.2	1433.11	10.32	1422.71
5	50500.1	44463.99	320.14	44141.18
6	16559.8	14522.94	104.57	14417.50

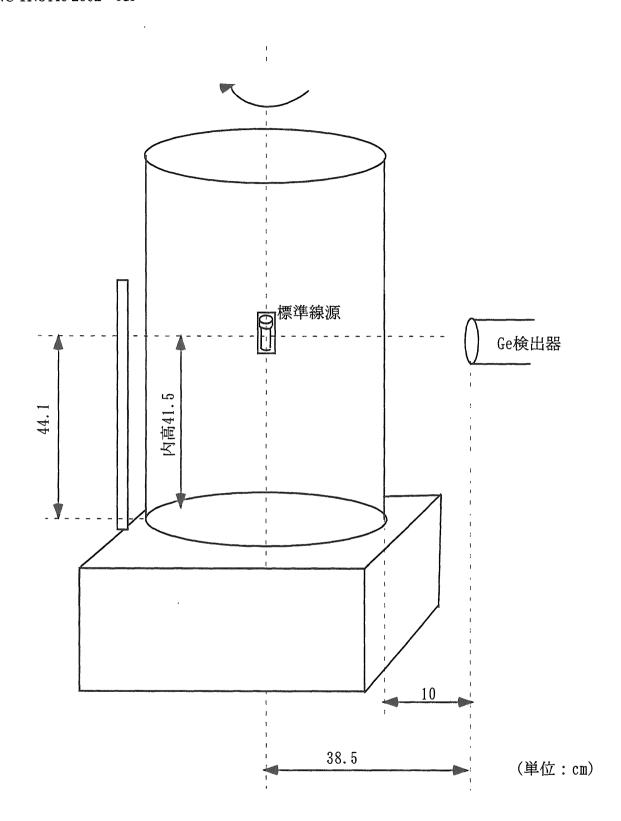
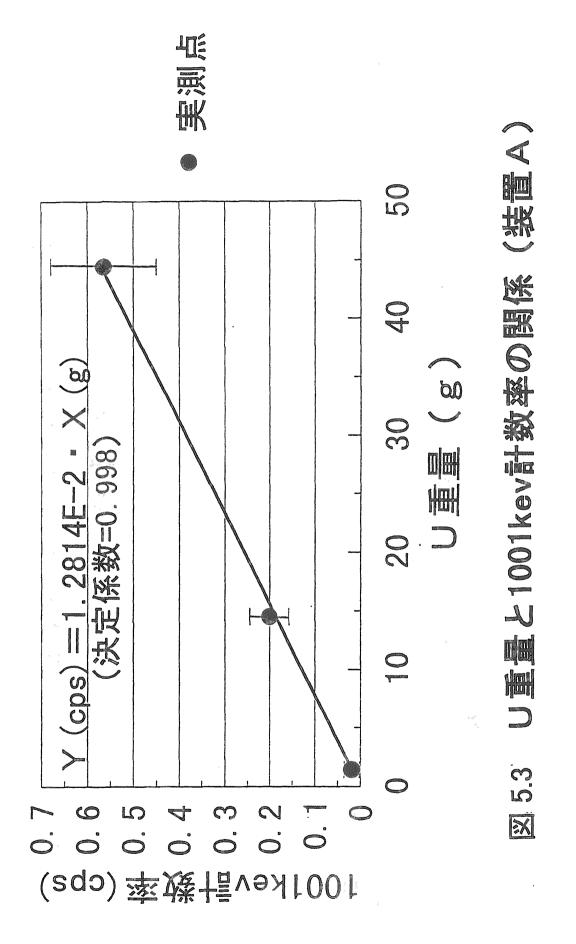
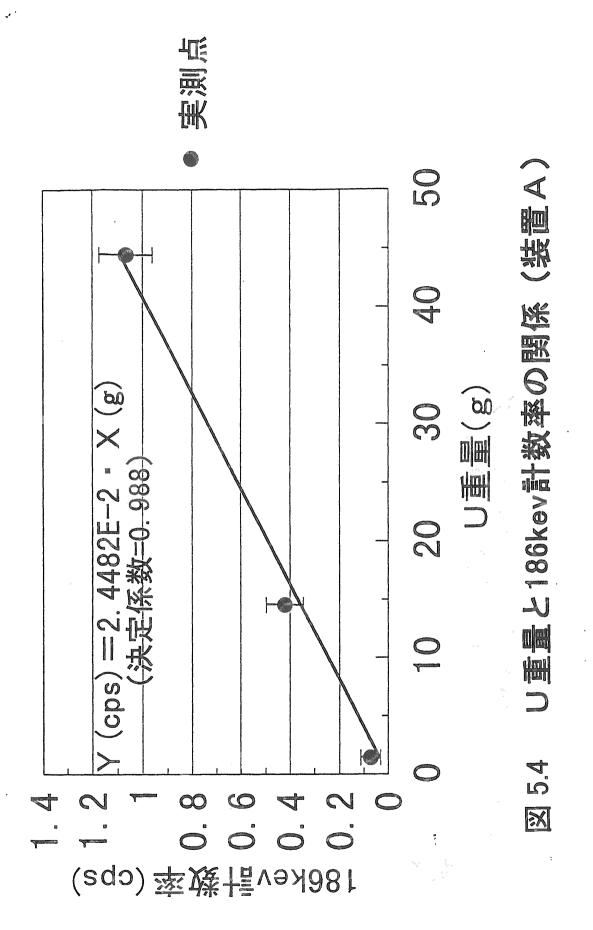
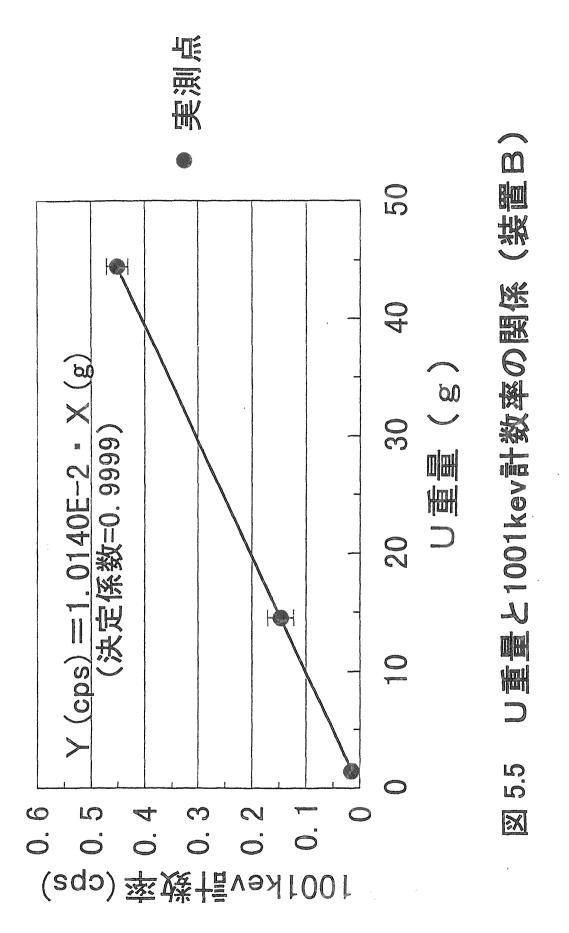
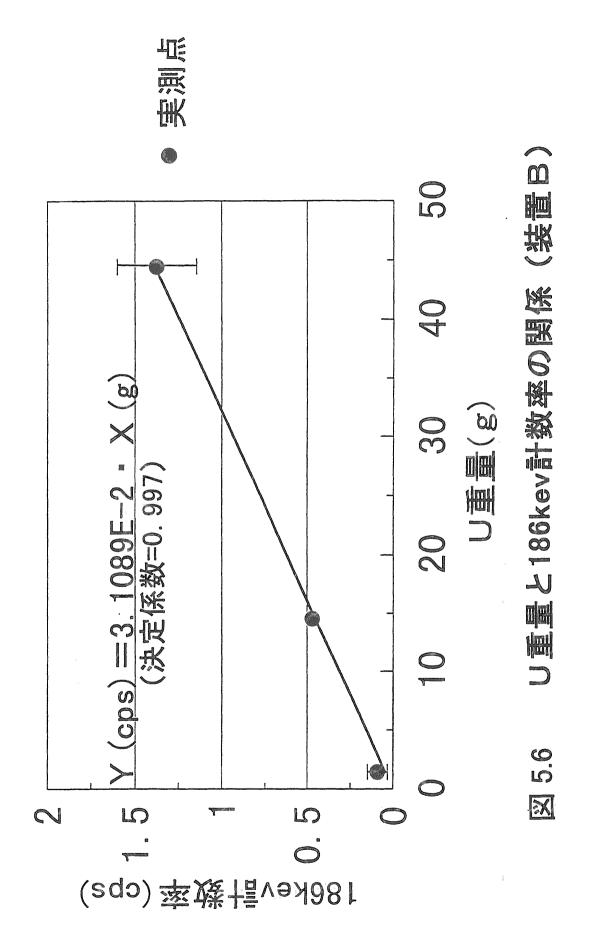






図5.2 測定状況の概念

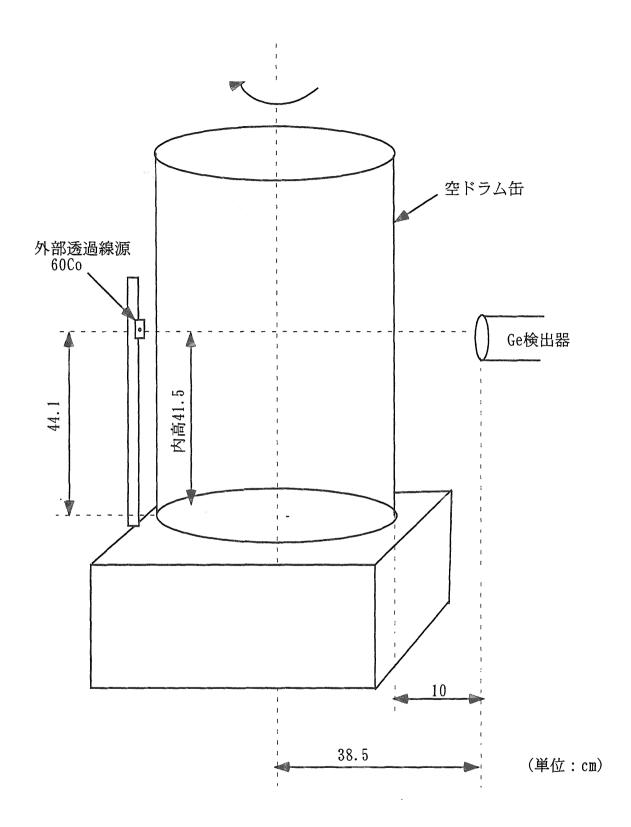


図5.7 外部透過線源の初期値測定概念

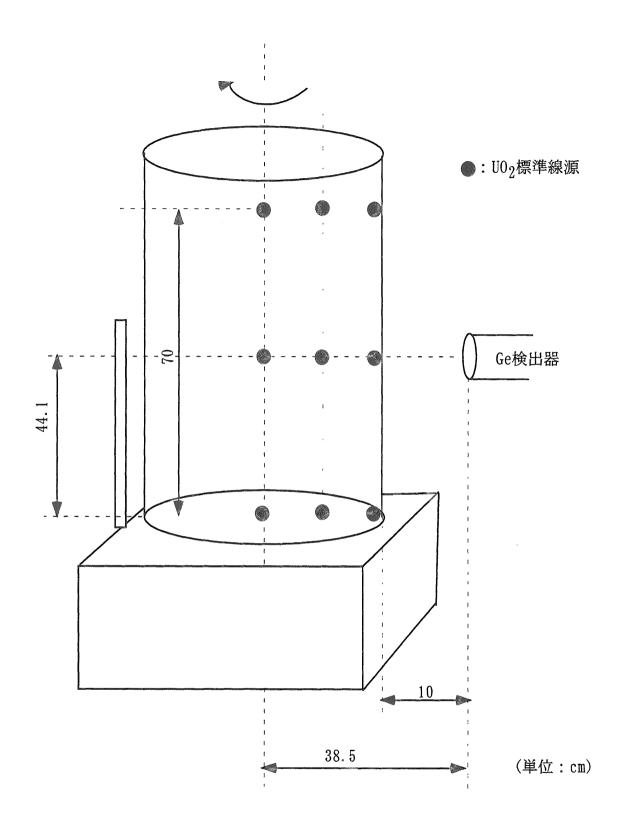


図5.8 感度分布測定ポイント

2002-019			3) kev)
0.34 0.40	1.13 2.20	0.39 0.44	金属試験体(0.43g/cm³) 感度分布(装置A;1001kev)
0.30	1.00	0.34	金属試験4感度分布(
	ang kananang pada manang banka ana Pilih papaganang ak ka Pilih mang ak ka Pilih at Pilih an		図5.11
91		49	3g/cm ³))1kev)
39 0.46	14 2.08	0.42 0.49	(本 (0. :A ; 100
42 0.39	1.00 1.14	\	V 法 後間
0.42	1.0	0.37	塩化ビニル試験体(0.3g/cm ³) 感度分布(装置A;1001kev)
			図5.10
0.48 0.43 0.37	1.00 1.10 1.47	0.46 0.44 0.40	度分布 v)
3 0.4	1.1	9 0.0	缶感 301ke
0.48	1.00	0.41	空ドラム缶感度分布 (装置A;1001kev)
_			図5.9

(0.11) (0.15) —	1.00 1.29 3.91	()数値は、3回測定のうち 1回以上末検出	金属試験体(0.43g/cm ³) 感度分布(装置A;186kev)
			図5.14 金
0.21 — (0.19)	1.00 1.32 2.90	(0.23) (0.10) (0.16) (16) (16) (10) (10) (10) (10) (10) (10) (10) (10	図5.13 塩化ビニル試験体(0.3g/cm ³) 感度分布 (装置A;186kev)
0.29 0.22 0.13	1.00 1.03 1.28	0.25 0.22 0.14	図5.12 空ドラム缶感度分布 (装置A;186kev)

図5.17 金属試験体(0.43g/cm ³) 感度分布(装置B;1001kev)	図5.16 塩化ビニル試験体(0.3g/cm ³) 図5 感度分布(装置B;1001kev)	図5.15 空ドラム缶感度分布 (装置B;1001kev)
0.30 0.36 0.36	0.37 0.35 0.43	0.58 0.47 0.44
1.00 1.21 2.41	1.00 1.12 2.23	1.00 1.34 1.88
0.38 0.39 0.45	0.43 0.46 0.50	0.58 0.58 0.49

(0.20) (0.28) ()数値は、3回測定のうち 1回以上未検出 図5.20 金属試験体 (0.43g/cm ³) 成 由へ右 (社署R・186kev)	0.18 0.19 0.13 図5.19 塩化ビニル試験体(0.3g/cm ³) 電電が充った (注画の 1.0cl.cm)	0.40 0.36 0.21 図5.18 空ドラム缶感度分布 (非異 0.19 0.10 (非異 0.10 0.10 0.20)
1.00 1.55 4.79	1.00 1.32 3.26	1.00 1.30 1.78
(0.24) 0.19 0.27	0.32 0.34 0.27	0.42 0.43 0.25

5.3 ウラン廃棄物測定に伴う校正試験

(1) 概要

ウラン系廃棄物倉庫には廃棄物屋外貯蔵ピットの閉鎖措置工事等において発生 したウラン廃棄物及び他ウラン系施設で発生したウラン廃棄物を受け入れ、保管 している。

これら廃棄物中のウラン量を測定評価するため、測定準備として測定装置の校正を行った。

ここでは、ウラン廃棄物(ドラム缶)中の U 量を定量するために用いるパッシブガンマ測定装置の校正について記述する。

なお、測定では 1001kev ピークより 238 U 量を評価し、 235 U の 186kev ピーク については、 226 Ra の影響があるため使用していないが、参考として校正を行った。

(2) 装置構成

パッシブガンマ測定装置の構成を図 5.21、外観を図 5.22 に示す。

校正する装置は 2 台であり、それぞれ GAMMA SYSTEM1(GS1), GAMMA SYSTEM2(GS2)とする。

装置は、検出部として Ge 検出器 (プリアンプ内蔵)、高圧電源や測定時間等を 制御する DSA-2000 とパソコンからなる。

検出器の相対効率(NaI3 ϕ 検出器との相対的効率)は、GS1 が約 19%、GS2 が 約 45%である。また、解析ソフトは、GENIE-2000 及び JNC/GAMMA で構成されている。

Ge 検出器に入射した γ 線は電気信号に変換され、DSA-2000 を通し、パソコン上で解析されるしくみとなっている。 γ 線の入射量は U 量に比例するため、測定時のピーク計数率とあらかじめ作成した検量線(ピーク計数率と U 量の関係式)から U 量の定量を行う。その際、ドラム缶に含まれる廃棄物の種類により γ 線の吸収の度合いが違うため、 γ 線吸収に対する補正が必要となる。補正は Ge 検出器軸上(ドラム缶を挟んで反対側)に外部透過線源 60 Co を設置し、空ドラム缶を測定したときの値と廃棄物を測定したときの値との比より行う。

(3) 線源

チェックソース及び外部透過線源を表 5.2 に示す。 線源については、試験毎に必要なものを選定し、使用した。

(4) エネルギー校正

① 方法

エネルギー対チャンネルのずれを確認し調整を行うため、測定時に使用するエネルギー範囲内にピークを持ついくつかのチェックソースを測定することによりエネルギー対チャンネルの校正を行う。

エネルギー校正の測定条件を図5.23に示す。

なお、測定時間は 1,000 秒(1 回)とする。また、チェックソースを以下に示す。

チェックソース	ピーク (kev)
$^{241}\mathrm{Am}$	59.04
¹³³ Ba	302.9,356
$^{137}\mathrm{Cs}$	661.65
⁶⁰ Co	1173.24,1332.5

② 結果

エネルギーとチャンネルの関係を図5.24、5.25に示す。

総チャンネル数を 4,096ch、チャンネル毎のエネルギーを約 0.4kev に設定した(測定エネルギー範囲に近い範囲約 $50\sim1,600$ kev に設定するため)。また、チャンネル対エネルギーの関係式は以下のようになった。

GS1: Y (energy) = $4.001E-1 \times ch - 2.375E-1 \text{kev}$ (5.1)

GS2: Y (energy) = $4.000E \cdot 1 \times ch + 2.187E \cdot 2kev$ (5.2)

(5) B.G 測定

① 方法

検出限界計数率及び検出限界値の算出に必要となるウランピークのバックグランド(以下「B.G」という)計数率を確認するため、チェックソースを設置しない状態で測定を行う。

また、外部透過線源と実廃棄物による影響を評価するため、外部透過線源 (⁶⁰Co:1173kev) 測定時及び実廃棄物(測定において有意なウランピーク が検出されない廃棄物) 測定時についても評価を行う。

B.G の領域は、実廃棄物を測定し、ウランのピーク領域を確認して決めたものである。測定条件は、図 5.23 と同様である。

なお、測定時間は5,000秒(1回)とする。

② 結果・考察

測定結果を表 5.3~表 5.5 に示す。

GS1 の B.G 計数率は、186kev(²³⁵U), 1001kev(²³⁸U)で、それぞれ 0.391, 0.034cps となり、GS2 については、それぞれ 1.004, 0.070cps となった。

また、外部透過線源測定時についても評価した結果、GS1 についてはそれぞれ 1.051, 0.744cps となり、GS2 についてはそれぞれ 3.982, 1.371cps となった。

同様に、実廃棄物測定において、ピークが検出されない場合の値(B.G相当)は、可燃でそれぞれ 2.843, 1.178 cps、難燃でそれぞれ 2.542, 0.675 cps、不燃でそれぞれ 0.915, 0.137 cps となった(GS1 のみ実施)。

- ・ 外部透過線源測定時の計数率が B.G 計数率と比べると高くなったが、これは 60 Co の γ 線が空ドラム缶で散乱し、当該エネルギー範囲の γ 線が多く発生したためだと考えられる。
- ・ 実廃棄物については、186kev 付近においては廃棄物に含まれる ^{226}Ra の 影響、1001kev 付近についてはドラム缶及び廃棄物での散乱により計数率 が高くなったと考えられる。但し、難燃物や不燃物のように密度が高くなると γ 線の遮蔽効果が現れ、外部透過線源測定時の計数率よりも低い値と なる場合があることが分かった。

(6) 効率曲線の取得

① 方法

γ線エネルギーと検出器の効率(計数率/γ線放出率)の関係を取得する ため、測定時に使用するエネルギー範囲内にピークを持ついくつかのチェックソースを用いて測定を行う。測定条件は図 5.23 と同様である。

なお、測定時間は 5,000 秒(1 回)とする。また、チェックソースを以下に示す。

チェックソース	ピーク(kev)
$^{241}\mathrm{Am}$	59.04
¹³³ Ba	81,276.4,302.9,356,383.85
⁵⁷ Co	122.1,136.47
$^{137}\mathrm{Cs}$	661.65
$^{54}\mathrm{Mn}$	834.83
88Y	898.02
⁶⁰ Co	1173.24,1332.5

② 結果

効率曲線を図 5.26、5.27 に、186kev (²³⁵U) 及び 1001kev (²³⁸U) に対する効率の算出結果を表 5.6 に示す。

GS1 の効率は、186kev (²³⁵U), 1001kev (²³⁸U) で、それぞれ 6.191E-04, 1.250E-04 となり、GS2 については、それぞれ 1.100E-03, 3.016E-04 となった。

(7)検量線作成

検量線を作成するためには、本来ウラン標準線源を用いてウラン量と計数率の関係を取得することが理想である。しかし、環境保全・研究開発センターでは非破壊測定に用いるウラン標準線源を所有していないため、核燃料サイクル開発機構への組織改正前に実施したウラン標準線源による検量線(PWTFに保管してあるウラン標準線源により作成)をチェックソース等により補正することを検討した。

① チェックソース(60Co)による補正

a.方法

廃棄物屋外貯蔵ピットの詰替廃棄物測定時に取得した検量線を同一のチェックソース(@Co)の測定結果との比較により補正する。

測定条件を図 5.28 に示す。

なお、測定時間は1,000秒(3回)とし、平均の値を使用する。また、線源と以前の検量線を以下に示す。

- ・外部透過線源: 60Co (399kBq, 分析日 1997.11.26, PWTF 所有)
- ・以前の検量線(装置 B)

$$Y (cps) = 4.31061 \times X (g) \cdots 235U (186kev) (5.3)$$

$$Y (cps) = 1.01946E-2 \times X (g) \cdots 238U (1001kev) (5.4)$$

b.結果

検量線補正のための測定結果を表 5.7 に、検量線を図 5.29、5.30 に示す。 GS1, GS2 の 60Co 平均計数率は、それぞれ 6.853, 17.867cps となった。 しかし、以前(H10.12.4)の計数率(10.605cps)と比較するためには、線源の減衰を考慮しなければならないため、減衰補正を行う必要があり、補正後の計数率は 7.728cps となった。

また、これらの計数率を比較し、以前の検量線を現在の装置に合うように補正した結果、以下のようになった。

GS1の検量線

$$Y (cps) = 3.82287 \times X (g) \cdot \cdot \cdot \cdot \cdot 235U (186kev) (5.5)$$

$$Y (cps) = 9.04105E - 3 \times X (g) \cdots 238U (1001kev) (5.6)$$

GS2 の検量線

$$Y (cps) = 9.96624 \times X (g) \cdot \cdot \cdot \cdot \cdot 235U (186kev) (5.7)$$

$$Y (cps) = 2.35701E \cdot 2 \times X (g) \cdot \cdots \cdot 238U (1001kev) (5.8)$$

② 単位重量あたりの計数率(count/(sec·g))からの補正検討

a.方法

検量線はU量の異なる標準線源を測定し、U量と対象ピーク計数率(cps)の関係を求めているが、U標準線源がない場合は、①項のように同一線源計数率を比較し検量線を補正するか、効率から単位重量あたりの計数率(count/(sec·g))を算出し検量線を作成する方法がある。

ここでは、効率曲線から得られる 186kev, 1001kev の効率と以下の式より単位重量あたりの計数率(count/(sec·g))を算出し、検量線を検討する。

235,238U(186,1001kev)単位重量あたりの計数率(count/(sec·g))

=効率(count/gamma)×235,238Uγ線放出数(gamma/decay)

$$\times \lambda \, \text{N(decay/(sec \cdot g))}$$
 (5.9)

b.結果・考察

計算結果を表 5.9、検量線を図 5.31、5.32 に示す。

計算の結果、以下のようになった。

GS1: Y (cps) =
$$2.67355E+1\times X$$
 (g) · · · $235U$ (186kev) (5.10)

$$: Y (cps) = 9.17630E - 3 \times X (g) \cdots 238U (1001kev) (5.11)$$

GS2: Y (cps) = $4.74887E+1\times X$ (g) \cdots ^{235}U (186kev) (5.12) : Y (cps) = $2.21351E \cdot 2\times X$ (g) \cdots ^{238}U (1001kev) (5.13)

- ・GS1 について、²³⁸U(1001kev)に対する検量線は、同一線源(60Co)の計数率で補正した検量線の傾きより実測で作成した検量線の傾きに近い値(線源による自己吸収を考慮していないため以前の検量線の傾きと比べると約 11%小さい値)となったが、実際 U が存在することによるコンプトン散乱等 B.G の考慮がされていない。
- ・235U(186kev)に対する検量線については、エネルギー特性の相違及び 実測では線源自体による自己吸収が多いが、本方法では影響(考慮)し ないため実測で作成した検量線の傾きよりも約6倍大きくなった(GS1)。 このことより、235Uに対する検量線については、Uの形態により235U量 の定量にばらつきが生じるため、信頼性が低いと考えられる。更に、 186kevピークには226Raのピークも重なってくるため235U(186kev) の評価は難しい。
- ・実測では、線源の自己吸収や B.G を考慮した同一線源計数率の比較により補正した ²³⁸U(1001kev)に対する検量線を用い ²³⁸U 量を定量することとする。よって、式(5.6)及び(5.8)を用いることとする。

(8) 外部透過線源の初期値(In)測定

① 方法

U 量定量時の吸収補正係数に用いる外部透過線源(⁶⁰Co)の初期値(I₀)を確認するため、外部透過線源位置に ⁶⁰Co を設置し、ターンテーブルに空ドラム缶を置いた状態で測定を行う。

測定条件は、図 5.28 と同様である。外部透過線源は、GS1, GS2 それぞれ専用のものとする。

なお、測定時間は1000秒(3回)とし、平均値を使用する。

② 結果

測定結果を表 5.9 に示す。

GS1, GS2 の平均計数率は、それぞれ 9.753, 23.933cps となった。これは、検出器の効率が反映した結果だと考えられる (GS1 の効率は GS2 の約 1/2)。なお、U 量測定時は上記数値を初期値として、測定日までの減衰補正を行い、 I_0 として使用する。(プログラム内に初期値を入力後は、自動減衰補正される)

(9) 検出限界値の評価

① 方法

(5)項の B.G 測定結果と以下の式より、検出限界値と測定時間の関係を確認する。

また、外部透過線源の影響及び廃棄物の影響を調べるため、外部透過線源がある場合の B.G 及び外部透過線源があり、廃棄物(186kev のピークがでないもの)を置いた状態での B.G からも検出限界値を算出する。

検出限界計数率 (cps) =

$$\frac{K}{2} \left\{ \frac{K}{Ts} + \sqrt{\frac{K}{Ts}^2 + 4ND \left(\frac{1}{Ts} + \frac{1}{Tb} \right)} \right\} (5.14)$$

ここで Ts: 試料の測定時間 sec

Tb: B.G 測定時間 sec

K:標準偏差に対する倍数3(3σより)

ND: B.G 計数率 cps

検出限界値(g)=検出限界計数率(cps)/単位重量計数率(cps/g) (5.15)

② 結果・考察

検出限界値と測定時間の関係を表 5.10~5.12 及び図 5.33 に示す。

- a. 表 5.10 より、100 秒間隔で検出限界値の減衰率を評価した結果、600 秒までは1割強の減衰率があったが、700 秒以降に関しては数%の値となった。このことより、700 秒以上測定時間をかけても検出限界値がなかなか下がらないことが分かった。その他、外部透過線源測定時及び実廃棄物測定時については、500 秒以降数%の減衰率となったが、データ整理及び倉庫内ドラム缶運搬等の時間を考慮すると、測定時間は600 秒が妥当であると思われる。以上より、GS1 の238U 検出限界値(U のみ存在する場合)については3.593gとなり、GS2 については1.812gとなった。
- b. また、外部透過線源測定時についても評価した結果、GS1 については 15.633g、GS2 については 8.021g となった。
- c. 同様に実廃棄物についても評価を行った結果、可燃で 21.642g、難燃で 16.591g、不燃で 8.172g となった (GS1 のみ実施)。
- d. 外部透過線源測定時については、検出限界値が U のみ存在する場合より高くなったが、これは外部透過線源 60 Co($^{1173.24}$ kev)の $^{\gamma}$ 線が空ドラム缶を透過する際のコンプトン散乱により、下位の 1001 kev 付近のエネルギーを持つ $^{\gamma}$ 線となり検出され、B.G が高くなったためだと考えられる。
- e. また、可燃、難燃の実廃棄物については、ドラム缶及び廃棄物により γ 線が散乱し、1001kev 付近の γ 線が増えたため、外部透過線源測定時よりも高い検出限界値となった。しかし、不燃の実廃棄物については、密度が高く γ 線の透過量が少ない(遮蔽効果)ため、他種の廃棄物と比べると低い検出限界値となった。測定時間については、基本的に 600 秒とするが、ウランピークの検出状況によっては延長することとする。

(10) 感度分布測定

① 方法

ドラム缶内の線源位置による検出感度の違いを確認するため、模擬ドラム缶について、チェックソースを各ポイントにて測定し、ドラム缶中心(ポイント②)での計数率を1としたときの各ポイントの相対感度を確認する。

また、感度分布測定条件を図5.34に示す。使用する模擬ドラム缶及びチェ

ックソースは以下のものとし、測定時間は1,000 秒(3回)、測定ポイントは9箇所とする。

- ・模擬ドラム缶
 - : 空ドラム缶(23 kg)
 - : 塩ビ 0.3g/cm³ (83 kg)
 - : 金属 0.43g/cm³ (109 kg)
- ・チェックソース: ⁵⁷Co(122.1kev), ⁶⁰Co(1173.24kev) ※ それぞれ ^{235,238}U ピーク(186,1001kev)に近いピーク

② 結果・考察

· GS1

結果を表 5.13~5.15 に、感度分布を図 5.35、5.36 に示す。

122.1kev の感度分布は図 5.35 のようになり、空ドラム缶で約 \pm 56%、塩ビ試験体 $(0.30~g/cm^3)$ で約 \pm 67%、金属試験体 $(0.43~g/cm^3)$ で約 \pm 186% となった。

1173.24kev の感度分布は図 5.36 のようになり、空ドラム缶で約 $\pm 40\%$ 、塩ビ試験体 $(0.30~g/cm^3)$ で約 $\pm 54\%$ 、金属試験体 $(0.43~g/cm^3)$ で約 $\pm 49\%$ となった。

· GS2

結果を表 5.16~5.18 に、感度分布を図 5.37、5.38 に示す。

122.1kev の感度分布は図 5.37 のようになり、空ドラム缶で約 $\pm 45\%$ 、塩ビ試験体 $(0.30~g/cm^3)$ で約 $\pm 194\%$ 、金属試験体 $(0.43~g/cm^3)$ で約 $\pm 398\%$ となった。

1173.24kev の感度分布は図 5.38 のようになり、空ドラム缶で約 $\pm 39\%$ 、塩ビ試験体 (0.30 g/cm^3) で約 $\pm 99\%$ 、金属試験体 (0.43 g/cm^3) で約 $\pm 99\%$ となった。

- ・ 中段については、円周に近づくほど感度が大きくなり、その傾向は高エネルギーよりも低エネルギーの方が顕著に現れた。また、高エネルギーの方がドラム缶内の感度差が小さく、それぞれのポイントにおいて中心計数率との差も小さかった。これは、高エネルギーは透過率が高く、物質を通過し検出される数が多いが、低エネルギーは逆に透過率が低く、中心にある場合はγ線の透過距離が長くなり、透過する間に吸収又は散乱される数が多く、検出される数が少なくなるためだと考えられる。
- ・ 金属試験体の低エネルギー(122.1kev)の感度分布において、上下段については、中段と同じような傾向を示したが、空ドラム缶,塩ビ試験体については、円周に近づくにつれ感度が小さくなった。

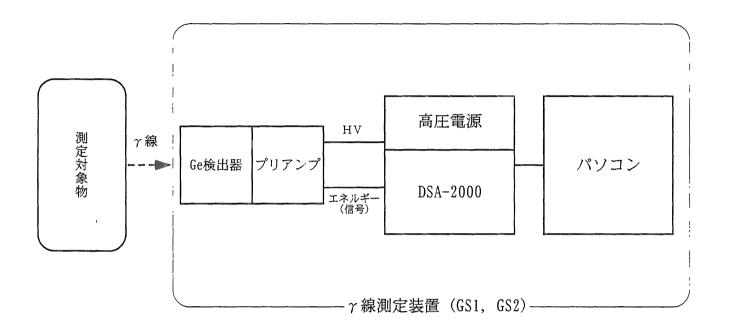
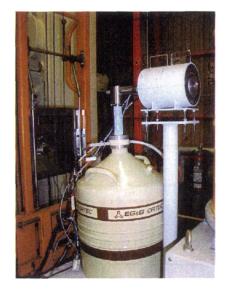



図5.21 パッシブガンマ測定装置の構成

制御部 (パソコン等)

検出部 (Ge検出器,液体窒素用タンク)

G S 1

ターンテーブル

制御部 (パソコン等)

検出部 (Ge検出器,液体窒素用タンク)

ターンテーブル

G S 2

図 5. 2 2 パッシブガンマ測定装置の外観(GS1, GS2)

表 5.2 チェックソース及び外部透過線源

	核種	放射能量	分析日
	²² N a	343.1kBq	2000.12.15
チ	⁵⁴ M n	397. 0kBq	2000.12.15
エ	⁵⁷ C o	318.6kBq	2000.12.15
ッ	⁶⁰ C o	339.8kBq	2000.12.15
ク	⁸⁸ Y	352. 5kBq	2000. 12. 15
ソ	¹³³ B a	350.1kBq	2000.12.15
_	¹³⁷ C s	346.5kBq	2000.12.15
ス	²⁴¹ A m	390.4kBq	2000.12.15
	²⁰³ H g	844. 3kBq	2000.12.15
外			
部			
透	⁶⁰ C o	411kBq	2000. 2. 1
過	(2個)		
線			
源			

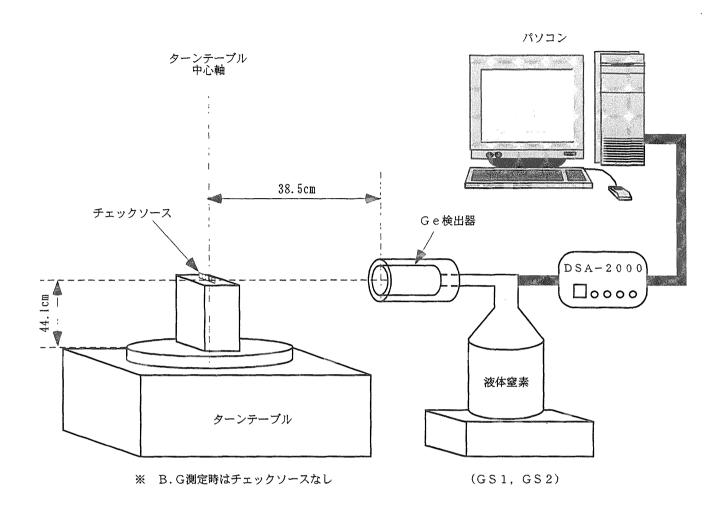
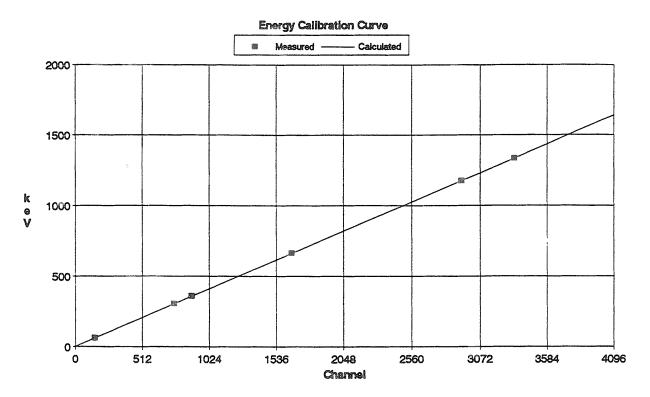



図5.23 エネルギー校正の測定条件

Datasource: DET01 Energy = -2.375e-001 keV FWHM = 8.002e-001 keV

+ 4.001e-001*Ch + 2.401e-002*E^1/2

図5.24 エネルギーとチャンネルの関係(GS1)

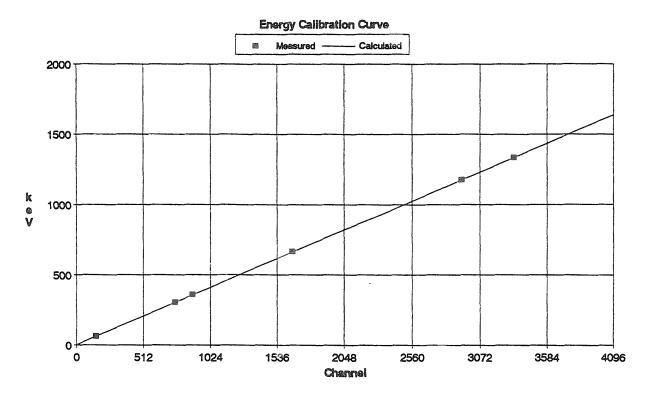
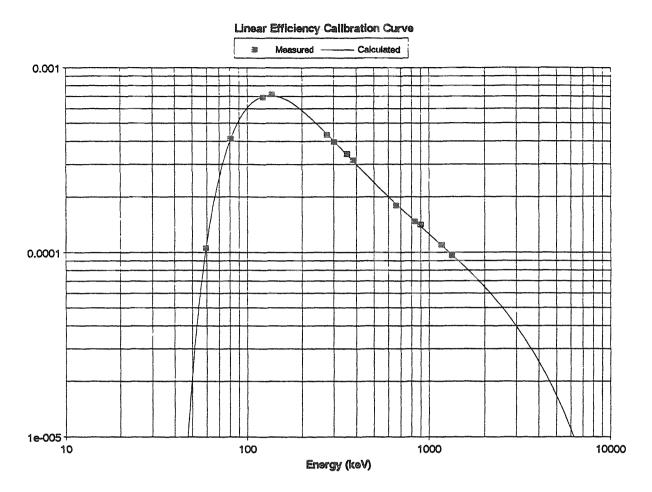


図5.25 エネルギーとチャンネルの関係(GS2)

表 5.3 B.G 測定結果

装置	文刘4' - 項目	計数値	測定時間(s)	計数率(cps)	エネルギー範囲	チャンネル範囲
GS1	186kev (²³⁵ U)	1954	5000	0.391	183. 4-187. 8	459-470
651	1001kev (²³⁸ U)	169	5000	0.034	998. 1-1004. 9	2495-2512
G S 2	186kev (²³⁵ U)	5019	5000	1.004	183. 2-190. 0	458-475
032	1001kev (²³⁸ U)	352	5000	0.070	996. 8-1003. 6	2492-2509

※1 エネルギー範囲(B.Gとしての範囲)は、U含有廃棄物(実廃棄物)を測定した時のUピークより決定した。


表 5.4 B. G 測定結果 (外部透過線源測定時)

装置	球样'-	計数値	測定時間(s)	計数率 (cps)
GS1	186kev (²³⁵ U)	1051	1000	1.051
651	1001kev (²³⁸ U)	744	1000	0.744
GS2	186kev (²³⁵ U)	3982	1000	3.982
G 5 2	1001kev (²³⁸ U)	1371	1000	1.371

表 5.5 B. G測定結果 (実廃棄物測定時)

装置	- Andrews - Andr	球件'-	計数値	測定時間(s)	計数率(cps)		
	可燃	186kev (²³⁵ U)	1706	600	2.843		
	HJ 38%	rj km	-1 XM	1001kev (²³⁸ U)	707	600	1.178
C 0 1	S1 難燃 不燃	186kev (²³⁵ U)	1525	600	2.542		
631		1001kev (²³⁸ U)	405	600	0.675		
		186kev (²³⁵ U)	549	600	0.915		
	11766	1001kev (²³⁸ U)	82	600	0.137		

%2 なお、表 5.3 (b) (c) におけるチャンネル範囲については、B.G測定時の範囲と同じとした。

Datasource: D:\GENiE2K\CAMFILES\GS1.13.4.26.KOURITU.CNF log(Eff) = -1.708e-004*E - 3.976e+000 + 2.711e+002/E - 2.793e+004/E^2 + 1.082e+006/E^3 - 2.255e+007/E^4

図5.26 効率曲線(GS1)

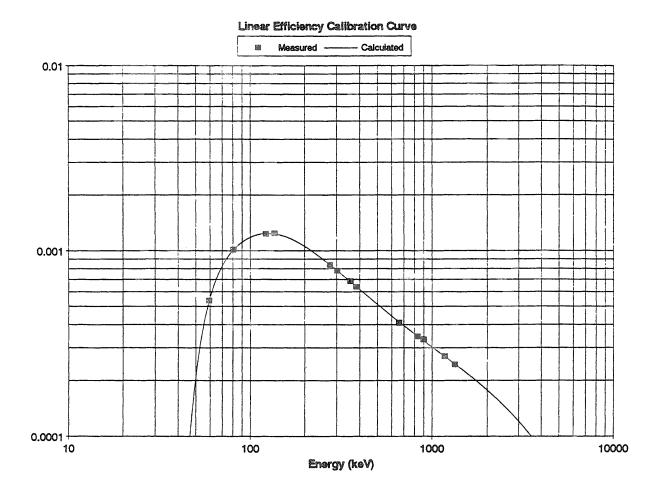


図5.27 効率曲線(GS2)

表5.6 効率の算出

装置	対象核種	エネルギー(kev)	log(eff)	効率eff
GS1	²³⁵ U	186	-3. 208E+00	6.191E-04
631	²³⁸ U	1001	−3. 903E+00	1.250E-04
G S 2	²³⁵ U	186	-2.959E+00	1.100E-03
G . 3 . 2	²³⁸ U	1001	−3. 521E+00	3.016E-04

※ eff=効率 (Count/Gamma)

GS1の効率曲線は図5.24より

log(eff) = -1.708E-4*ENERGY-3.976+2.711E+2/ENERGY-2.793E+4/ENERGY²+1.082E+6/ENERGY³-2.255E+7/ENERGY⁴

GS2の効率曲線は図5.25より

log(eff) = -1.310E-4*ENERGY-3.604+2.423E+2/ENERGY-2.899E+4/ENERGY²+1.497E+6/ENERGY³-3.322E+7/ENERGY⁴

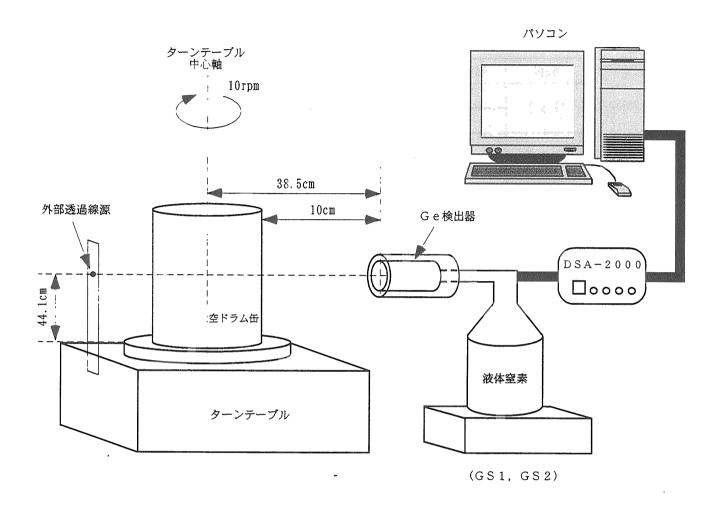


図5.28 測定条件(外部透過線源の測定)

表5.7検量線補正のための測定結果

		以前の I ₀ 計数率 (cps)	E	I ₀ 計数率(cps)		平均計数率 I ₀ (cps)	以前の I ₀ 補正後計 数率(cps)	装置Bとの比 GS2はGS1との比
	装置B	10.605					7.728	
	GS1 (装置B)		6. 940	6. 920	6. 700	6.853		0.887
ſ	G S 2		18.000	17. 900	17. 700	17.867		2.607

(検量線の算出方法について)

装置BのIoを補正すると

※装置Bでの測定日 H10.12.4 GS1, GS2での測定日 H13.5.1 ⁶⁰Coの半減期T(年) 5.271 経過時間t(年) 2.407

以前の I_0 補正後計数率 (cps) = $I_0 \times N / N_0$ = $I_0 \times (1/2)^{-1/T}$ = 7.728 となる

以前の装置Bの検量線は以下であるから

参考データ(以前に行った校正試験より)

	186kev (²³⁵ U)	1001kev (²³⁸ U)
計数率cps	1.380	0.450
^{235, 238} U量	0.320	44.141

GS1の傾き=装置Bの傾き×装置Bとの比 GS2の傾き=GS1の傾き×GS1とのより

GS1 186kev 検量線 Y (cps) = $\frac{3.82287E+00}{1001 \text{kev}}$ ×X (g) ----- $\frac{235}{100}$ U (g) 1001kev 検量線 Y (cps) = $\frac{9.04105E-03}{9.96624E+00}$ ×X (g) ----- $\frac{238}{100}$ U (g) GS2 186kev 検量線 Y (cps) = $\frac{9.96624E+00}{2.35701E-02}$ ×X (g) ----- $\frac{238}{100}$ U (g) 1001kev 検量線 Y (cps) = $\frac{2.35701E-02}{2.35701E-02}$ ×X (g) ----- $\frac{238}{100}$ U (g)

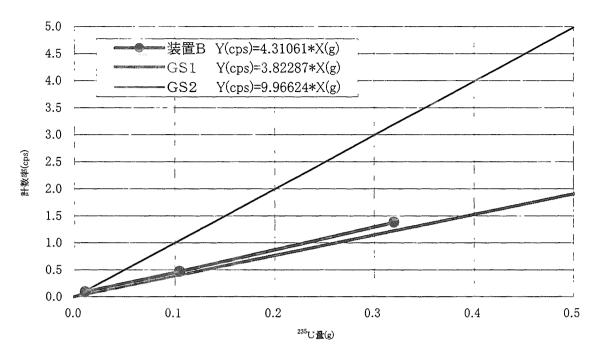


図5.29 ²³⁵U量と186kev計数率の関係(同一線源計数率の比較より)

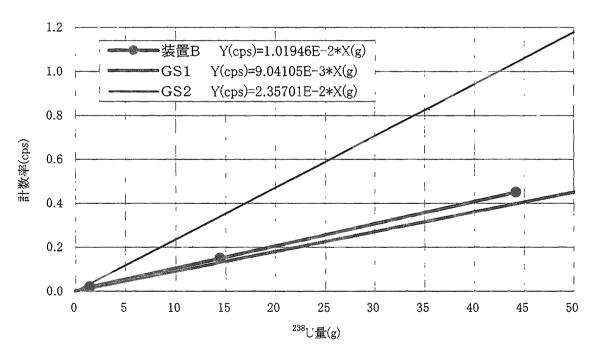


図5.30 ²³⁸U量と1001kev計数率の関係(同一線源計数率の比較より)

表5.8 単位重量あたりの計数率 (count/(sec·g)) からの検量線作成結果

	G:	S 1		S 2
	186kev (²³⁵ .U)	1001kev (²³⁸ U)	186kev (²³⁵ U)	1001kev (²³⁸ U)
効率	6.191E-04	1.250E-04	1.100E-03	3.016E-04
I γ/100 γ線放出数	0.5400	0.0059	0.5400	0.0059
半減期T(sec)	2.221E+16	1.410E+17	2.221E+16	1.410E+17
分析日	1998/12/4	1998/12/4	1998/12/4	1998/12/4
測定日	2001/5/1	2001/5/1	2001/5/1	2001/5/1
経過時間t(sec)	7. 595E+07	7.595E+07	7.595E+07	7. 595E+07
t/T	3.419E-09	5. 386E-10	3.419E-09	5. 386E-10
λN	7. 997E+04	1.244E+04	7.997E+04	1. 244E+04
単位重量あたりの計数率	2.67355E+01	9.17630E-03	4.74887E+01	2. 21351E-02

λN=Ln2/T*6.022045E+23*/^{235,238}U質量数

(λ:崩壊定数, N=原子数)

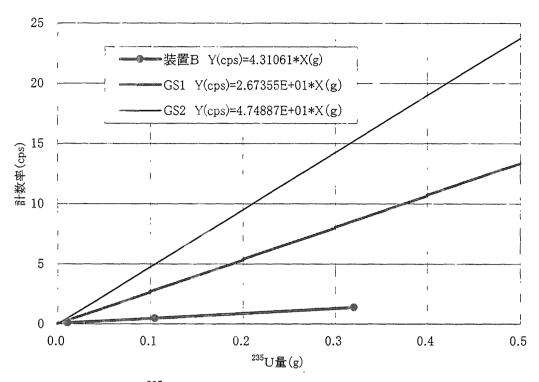


図5.31 ²³⁵U量と186kev計数率の関係(単位重量計数率より)

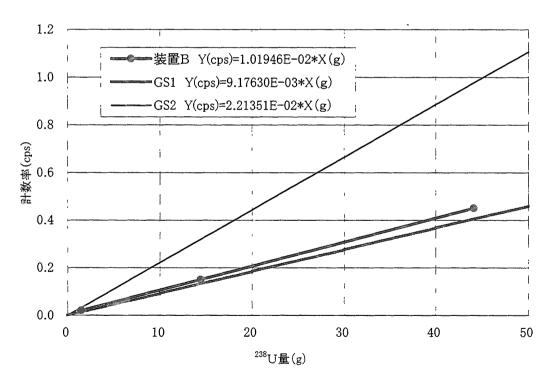


図5.32 ²³⁸U量と1001kev計数率の関係(単位重量計数率より)

表5.9 外部透過線源の初期値(Ⅰ0)測定結果

外部透過線源⁶⁰Co 強度411kBq

項目 装置		I₀(1173.24kev) カウント)	平均計数率 (cps)	測定時間 (sec)	測定日
GS1	9900	9600	9760	9. 753	1000	H13.4.27
GS2	24200	24100	23500	23.933	1000	H13.5.1

表5.10 検出限界値と測定時間の関係

	G:			GS2					
測定時間 (sec)	238 U検出 限界計数率 (cps)	²³⁸ U検出 限界値 (g)	検出限界値 減衰率	測定時間 (sec)	²³⁸ U検出 限界計数率 (cps)	²³⁸ U検出 限界値 (g)	検出限界値 減衰率		
100	0.117	12.898	Windows .	100	0.137	5.818	_		
200	0.068	7.543	42%	200	0.084	3.570	39%		
300	0.051	5.647	25%	300	0.065	2.742	23%		
400	0.042	4.650	18%	400	0.054	2.296	16%		
500	0.036	4.025	13%	500	0.047	2.011	12%		
600	0.032	3.593	11%	600	0.043	1.812	10%		
700	0.030	3.274	9%	700	0.039	1.663	8%		
800	0.027	3.027	8%	800	0.036	1.547	7%		
900	0.026	2.830	7%	900	0.034	1.453	6%		
1000	0.024	2.669	6%	1000	0.032	1.376	5%		
1100	0.023	2.534	5%	1100	0.032	1.376	0%		
1200	0.022	2.419	5%	1200	0.030	1.256	9%		

表5.11 検出限界値と測定時間の関係(外部透過線源測定時)

	G:			GS2					
測定時間 (sec)	238 U検出 限界計数率 (cps)	²³⁸ U検出 限界値 (g)	検出限界値 減衰率	測定時間 (sec)	²³⁸ U検出 限界計数率 (cps)	²³⁸ U検出 限界値 (g)	検出限界値 減衰率		
100	0.320	35.405	_	100	0.416	17.656			
200	0.224	24.798	30%	200	0.296	12.538	29%		
300	0.186	20.573	17%	300	0.247	10.467	17%		
400	0.165	18.223	11%	400	0.219	9.307	11%		
500	0.151	16.704	8%	500	0.202	8.554	8%		
600	0.141	15.633	6%	600	0.189	8.021	6%		
700	0.134	14.834	5%	700	0.180	7.622	5%		
800	0.128	14.213	4%	800	0.172	7.312	4%		
900	0.124	13.715	4%	900	0.166	7.063	3%		
1000	0.120	13.307	3%	1000	0.162	6.859	3%		
1100	0.117	12.966	3%	1100	0.162	6.857	0%		
1200	0.115	12.677	2%	1200	0.154	6.542	5%		

表5.12 検出限界値と測定時間の関係 (実廃棄物測定時)

120.12	GS1 GS1													
		可燃			難燃		不燃							
測定時間 (sec)	²³⁸ U検出 限界計数率 (cps)	²³⁸ U検出 限界値 (g)	検出限界値 減衰率	²³⁸ U検出 限界計数率 (cps)	²³⁸ U検出 限界値 (g)	検出限界値 減衰率	²³⁸ U検出 限界計数率 (cps)	²³⁸ U検出 限界値 (g)	検出限界値 減衰率					
100	0.400	44.200	_	0.315	34.841	_	0.176	19.504	_					
200	0.289	32.003	28%	0.225	24.886	29%	0.118	13.101	33%					
300	0.246	27.183	15%	0.190	21.007	16%	0.097	10.746	18%					
400	0.222	24.528	10%	0.171	18.886	10%	0.086	9.495	12%					
500	0.206	22.829	7%	0.159	17.533	7%	0.079	8.711	8%					
600	0.196	21.642	5%	0.150	16.591	5%	0.074	8.172	6%					
700	0.188	20.763	4%	0.144	15.895	4%	0.070	7.777	5%					
800	0.182	20.085	3%	0.139	15.358	3%	0.068	7.474	4%					
900	0.177	19.545	3%	0.135	14.932	3%	0.065	7.235	3%					
1000	0.173	19.105	2%	0.132	14.584	2%	0.064	7.042	3%					
1100	0.169	18.739	2%	0.129	14.296	2%	0.062	6.881	2%					
1200	0.167	18.429	2%	0.127	14.052	2%	0.061	6.746	2%					

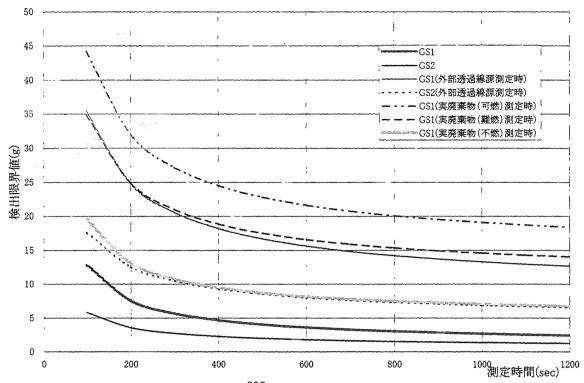


図5.33 測定時間と²³⁸U検出限界値の関係(1001kev)

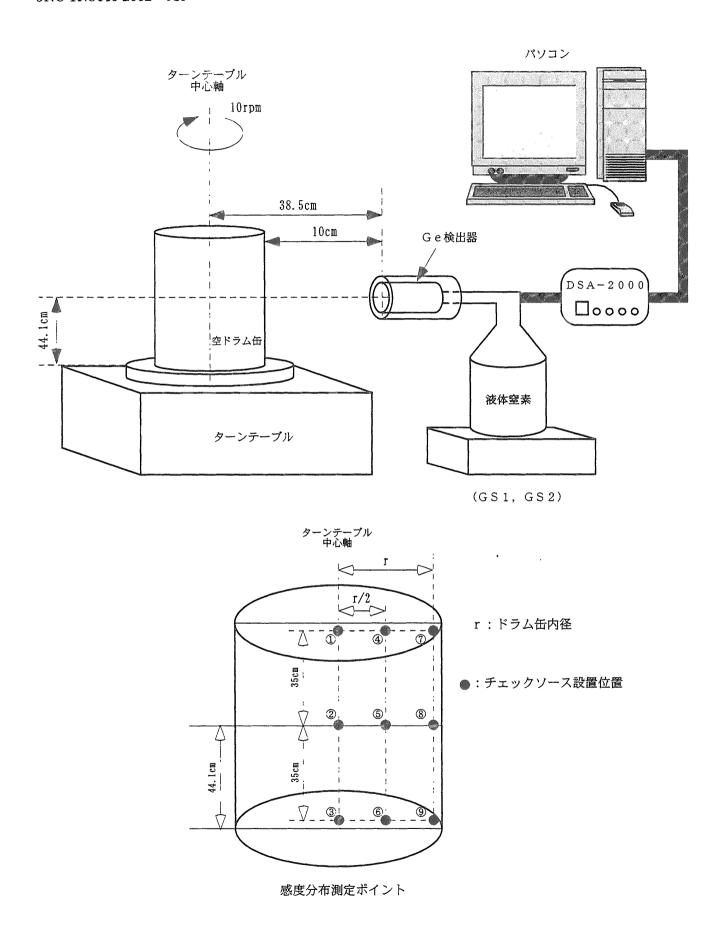


図 5.34 感度分布測定条件

表5.13 GS1感度分布測定結果(空ドラム缶)

\sim	\sim	4
(т	\mathcal{T}	- 1

001										
項目	122ke	122kev計数値(count)			②中心 との比	117 3 ke	v計数値(co	ount)	平均計数率 (cps)	②中心 との比
1	40400	40200	39500	40.033	0.48	16500 16900 16800			16.733	0.56
2	82900	82700	83000	82.867	1.00	29700	29800	30200	29.900	1.00
3	37900	39500	38100	38.500	0.46	16600	16800	16600	16.667	0.56
4	37400	37600	37100	37.367	0.45	16300	16600	16400	16.433	0.55
5	93400	92200	91700	92.433	1.12	34100	33400	33000	33.500	1.12
6	32100	31800	31700	31.867	0.38	15600	15500	15800	15.633	0.52
7	22500	22500	22200	22.400	0.27	12500	12600	12400	12.500	0.42
8	112509	107114	117505	112.376	1.36	37400	36000	35500	36.300	1.21
9	20800	20500	20000	20.433	0.25	12500	12600	12200	12.433	0.42
								測定時間	1000	秒

表5.14 GS1感度分布測定結果(塩ビ)

GS 1

<u>GS1</u>							The second secon			
東目 ポイント	122kev計数値(count)			平均計数率 (cps)	②中心 との比	1173kev計数値(count)			平均計数率 (cps)	②中心 との比
1	7300	7550	7310	7.387	0.30	8520 8520 8460			8.500	0.46
2	25300	24600	24500	24.800	1.00	18500	18400	18500	18.467	1.00
3	5700	5900	5530	5.710	0.23	7560	7630	7440	7.543	0.41
4	7360	7520	7080	7.320	0.30	8580	8720	8600	8.633	0.47
(5)	28700	29600	29600	29.300	1.18	21800	22000	22300	22.033	1.19
6	5340	5100	5210	5.217	0.21	7500	7630	7450	7.527	0.41
7	5870	5990	6350	6.070	0.24	8280	8250	8500	8.343	0.45
8	37900	37000	37400	37. 433	1.51	26600	26400	26500	26.500	1.44
9	4020	4510	4200	4. 243	0.17	6720 6730 6910			6.787	0.37
								測定時間	1000	秒

表5.15 GS1感度分布測定結果(金属)

\sim	\sim	1
(J	\circ	_1

621						~~~~		- Parket - P		- Disk - 100
项目 **(/)	122kev計数値(count)			平均計数率 (cps)	②中心 との比	1173kev計数値(count)			平均計数率 (cps)	②中心 との比
1	1000	1120	874	0.998	0.11	6890 6560 6980			6.810	0.38
2	9450	8560	8260	8. 757	1.00	17800	18000	17900	17.900	1.00
3	714	810	758	0.761	0.09	6160	6290	6130	6. 193	0.35
4	1540	1470	1760	1.590	0.18	7500	7460	7500	7.487	0.42
(5)	16000	15400	15400	15.600	1.78	21600	21900	21600	21.700	1.21
6	1690	1520	1930	1.713	0.20	6860	6780	6900	6.847	0.38
\mathcal{T}	3910	4170	4140	4.073	0.47	7680	7850	7650	7.727	0.43
8	34700	32500	32800	33. 333	3.81	23600	23400	22600	23. 200	1.30
9	2360	2400	2280	2.347	0.27	5820	6040	6070	5.977	0.33

測定時間 1000 秒

表5.16 GS2感度分布測定結果(空ドラム缶)

G S 2

002										
東日本"化本	122kev計数値(count)			平均計数率 (cps)	②中心 との比	1173kev計数値(count)			平均計数率 (cps)	②中心 との比
1	72600	72800	72500	72.633	0.48	40100	40000	40000	40.033	0. 53
2	153000	152000	153000	152.667	1.00	76400	76300	76000	76. 233	1.00
3	76300	76100	75600	76.000	0.50	41400	41200	41100	41.233	0.54
4	63 700	63100	64000	63.600	0.42	36400	36600	37000	36.667	0.48
(5)	162000	164000	164000	163.333	1.07	79300	78900	79400	79. 200	1.04
6	67000	67000	66900	66.967	0.44	39600	39100	39400	39. 367	0.52
7	38000	37500	37500	37.667	0.25	25700	25900	25600	25. 733	0.34
8	174000	174000	173000	173.667	1.14	85100	84800	-85 00 0	84.967	1.11
9	36100	36700	360 0 0	36.267	0.24	27200	28800	28400	28.133	0.37
								2017年11年1日日	1000	4 /\

測定時間 1000 秒

表5.17 GS2感度分布測定結果(塩ビ)

G S 2

<u> </u>	/									
項目 * (2)	12 2k e	122kev計数値(count)			②中心 との比	1173kev計数値(count)			平均計数率 (cps)	②中心 との比
1	12400	12100	12600	12.367	0.28	20300	20400	20400	20.367	0.45
2	43700	45500	43300	44.167	1.00	45300	45100	45000	45.133	1.00
3	10800	10700	10900	10.800	0.24	19100	18900	19000	19.000	0.42
4	13500	13500	12900	13.300	0.30	19600	20 000	19600	19.733	0.44
(5)	65100	64700	63000	64.267	1.46	53200	53000	52900	53.033	1.18
6	11000	11000	11600	11.200	0.25	18200	18300	18200	18. 233	0.40
7	9530	9570	9420	9.507	0.22	16300	16300	16400	16.333	0.36
8	181000	180000	181000	180.667	4.09	105000	105000	105000	105.000	2.33
9	10200	9560	9890	9.883	0.22	16500	16200	16200	16.300	0.36
								測定時間	1000	秒

測定時間 1000 秒

表5.18 GS2感度分布測定結果(金属)

G S 2

		The second secon	and the second s	the state of the s	The state of the s		The second secon			
東日本イン	122kev計数値(count)			平均計数率 (cps)	②中心 との比	1173kev計数値(count)			平均計数率 (cps)	②中心 との比
1	1610	2050	1510	1.723	0.10	16300	16500	16500	16.433	0.37
2	17500	16200	17200	16.967	1.00	43800	44600	44600	44. 333	1.00
3	1670	1420	1660	1.583	0.09	15700	15500	16000	15.733	0.35
4	2820	2560	2520	2.633	0.16	17100	16500	17000	16.867	0.38
(5)	30700	32100	29700	3 0. 833	1.82	52400	52100	52300	52.267	1.18
6	3440	3230	3540	3.403	0.20	17300	17300	17200	17.267	0.39
7	6050	6040	5890	5.993	0.35	14300	14400	14400	14.367	0.32
8	136000	137000	136000	136.333	8. 04	102000	102000	102000	102,000	2.30
9	5220	5600	5710°	5.510	0.32	14700	14700	14700	14.700	0.33

測定時間 1000 秒

0.24 0.11 0.18 0.47	1.00 1.78 3.81	0.17 0.09 0.20 0.27 金属 (0.43g/cm³)
0.30 0.30 0	1.00 1.18 1.51	0.23 0.21 0. 描述 (0.30g/cm ³)
0.48 0.45 0.27	1.00 1.12 1.36	0.46 0.38 0.25 登ドラム缶

図5.35 感度分布 (GS1:122.1kev)

	0.33
	0.38 cm ³)
1.00	0.35 0.38
1.44	0.37
1.19	0.41 0.41), 30g/cm ³)
1.00	0.41 0.41 10.41 塩ビ (0.30g/cm ³)
	<u> </u>
-	
. 21	. 42
	52 0.4
-	0.52
1.00	0.56 0 空ドラム缶
	
	1.00 1.12 1.21 1.30

感度分布 (GS1:1173.24kev)

X

- 66 -

60	22
	0.22
1.46	0.25 /cm³)
1.00	0.24 0.25
60	0.22
	Ì
1.46	0. 25
1.00	0.24 0.25 ・ 塩ビ (0.30g/cm ³)
1.14	0.24
	0.50 0.44 ジラム缶
1.00	0.50 0 空ドラム缶
	1.00 1.07 1.14 1.00 1.46 4.09 1.00 1.46 4.09

図5.37 感度分布 (GS2:122.1kev)

0.37 0.38 0.32	1.00 1.18 2.30	0.35 0.39 0.33	金属 (0.43g/cm ³)
0.45 0.44 0.36	1.00 1.18 2.33	0.42 0.40 0.36	塩ビ (0.30g/cm³) 金/ 咸度分布 (GS2:1173,24kev)
0.53 0.48 0.34	1.00 1.04 1.11	0.54 0.52 0.37	雲ドラム缶 図5.38

- 68 -

5.4 HEPA フィルタ測定用校正

(1) 概要

フィルタ梱包物中のウラン量を測定評価するため、フィルタ梱包物において大半を占める HEPA フィルタ($610 \times 610 \times 300 \mathrm{mm}$)についての測定手法を検討した。

(2) 方法

測定装置は、効率の高い GS2 を用い、フィルタ測定条件を図 5.39 の様にした。

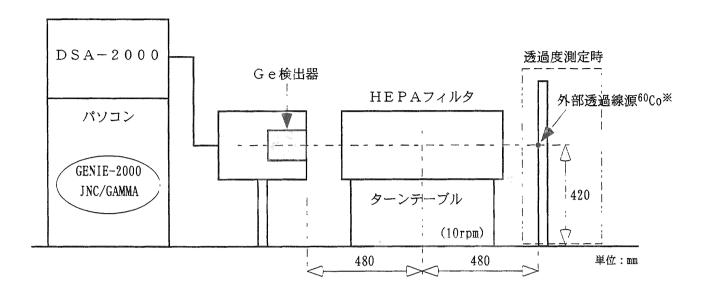
測定対象物となる HEPA フィルタはマトリクス(外形,構造)が同様であることから放射線吸収の度合いは一定であると考え、いくつかの HEPA フィルタを測定し、透過度の平均値から吸収補正を行うこととする。(そのため、各測定においては外部透過線源を設置しない)

なお、ウラン量評価は、効率から評価するものとする。

(3) 結果

実際の HEPA フィルタの透過度測定から以下に示す補正係数が得られた。

透過度 T(平均): 平均 6.1169E-1 $\sigma=9.34E-3$ ($\pm1.53\%$) 吸収補正係数(C.F): $-K\times LnT$ /($1-T^K$)より 1.21587(T<0.1:K=0.75)(0.1< T<1.0:K=0.823)


透過度測定の標準偏差からばらつきが少なく応用可能である。よって、上記数値を HEPA フィルタの吸収補正係数とする。

238U 量の算出方法

U から放出される ²³⁸U(^{234m}Pa)の 1001kev に着目し、600 秒測定(検出限界値^{*1}の評価から選定)を行い、1001kev 計数率と以下の式から ²³⁸U 量を算出する。

※1 1001kev の B.G 計数率より算出し 2.462g である

 $X (g) = Y (cps) / 1.51635E-2 \times C.F (1.21587)$

※ ⁶⁰Co·····1173kev, 411kBq(分析日2000.2.1)

図5.39 HEPAフィルタ測定条件

6. 廃棄物測定概要

ウラン廃棄物中のウラン量についての測定は、ピット廃棄物についてコンテナ廃棄物を除き、ほぼ測定終了しているが、その他の廃棄物については、測定を行っていないため、継続的に廃棄物測定を実施するものとした。

このため、第2ウラン系廃棄物貯蔵施設運開後、速やかに移動するウラン系廃棄物倉庫(廃棄物屋外貯蔵ピットの閉鎖措置に伴う廃棄物等を保管)について測定を行ったので、その測定概要を示す。

6.1 ドラム缶測定

(1) 方法

ウラン系廃棄物倉庫のうち保管廃棄物からのガンマ線による影響が低い場所 にパッシブガンマ測定装置を配置し、パレット積みされたドラム缶を順次測定し た。測定装置設置場所を図 6.1 に示す。

装置については、2式あるが測定場所及び人員の関係から1台を配置し、他方については、他施設等からの廃棄物等の測定及び解析プログラムの調整改良並びに不具合が生じた場合の予備とした。

なお、測定時間については、原則としてドラム缶 1 本当たり 600 秒としたが、ピット閉鎖措置における躯体のはつりコンクリートについては、600 秒で1001kev のピークは確認できるが解析ができないものが多かったため、1200 秒程度の測定を行った。これにより、はつりコンクリート中のウラン量が評価できた。

(2) 結果

① 測定ドラム缶について

表 6.1、図 6.2 に測定ドラム缶内容物割合を示す。

測定したドラム缶の内訳は、不燃物については金属(除染難)が 463 本 (21.3%)、コンクリート・土砂が 261 本 (12.0%)、金属(除染容)が 153 本 (7.0%)、その他・フィルタが 58 本 (2.7%) であった。また、可燃については、木片、紙、ウエス及び酢ビが約 96.2%、難燃物については、塩ビ及びゴムが約 91.7%であった。

これらについては、ピットの閉鎖措置に係る作業から発生した廃棄物であるため、廃棄物の取出し詰替え作業に使用した機器及び器材並びにピット躯体のはつり除染から発生したコンクリートが大半を占めており、その他、防護資材及びグリーンハウス(塩化ビニル製)である。

② 238U量について

図 6.3 に 238 [] 量の割合と内訳を示す。

測定総本数 2,178 本のうち約 70%が ND(検出限界値未満)であり、検出された廃棄物についてもほとんどが、238U 量で 60g 以下であった。

また、全体の 1 本あたりの平均 238U 量は 9.0g である。

なお、²³⁸U が検出された内容物の種別割合としては、コンクリート・土砂類 *1 が約 26.0%、金属が約 23%、木片が約 42%であった。

※1; 一般のコンクリート中に含まれる 238 U 量 (B.G レベル) は、ピット内壁分析時に採取した東海事業所内の一般コンクリート中 238 U 量の平均値($^{9.6}$ E- 03 Bq/g)から推定すると、約 $^{7.7}$ E- 07 g 238 U/g である。よって、ドラム缶 1 本を 200 kg とすると、約 $^{0.15}$ g 238 U/ドラム缶であり、今回測定された値は有意な値と判断される。

③ 測定データからの調査検討について

測定データからドラム缶重量と γ 線の吸収度合の関係及び U の核種組成について調査したので概要を以下に示す。

図 6.4 にドラム缶重量と透過度の関係を、図 6.5 にドラム缶重量と吸収補正係数の関係を、図 6.6 に ²³⁸U 量と ²³⁵U(186kev)/²³⁸U(1001kev)(計数率比)の関係を示す。

- a. 図 6.4 より、ドラム缶重量が比較的軽ければ透過度は1に近い値となり、反対に重ければ透過度は0に近くなる傾向があった(右下がりのグラフ)。これは、γ線は廃棄物の密度が高くなれば透過率が低くなるという性質を持っているが、同時に透過度も低くなることを示している。今回の測定では、外部透過線源による吸収補正を行っているが、図より同じ重量でも透過度に幅を持っていた。理論上は右下がりの直線になる(反比例)ことから、廃棄物の充填状態(均一、不均一性等)によりばらつきが生じたものと考えられる。
 - ※ 透過度 (I/I₀): 実廃棄物での外部透過線源 ⁶⁰Co (1173kev) 計数率

/空ドラム缶での外部透過線源 ⁶⁰Co(1173kev)計数率

- b. 図 6.5 より、ドラム缶重量が重くなるほど吸収補正係数が大きくなる傾向があった(右上がりのグラフ)。これは、透過度と反対の性質を持つためで、廃棄物の密度が高くなればγ線の透過率が下がり、透過度も下がるため、その分透過度が1に近い廃棄物よりも補正が必要であることを示している。この吸収補正係数は透過度を用いて算出しているため、重量に対して透過度が幅を持っていたことから、それに伴い吸収補正係数も幅を持ちながら重量とともに増加する傾向が見られた。以上のことより、廃棄物重量から吸収補正を行うことは、誤差が大きいため、雑廃棄物への適用は難しいと考えられる。
- c. Uの種類(天然 U、劣化 U 等)により、235U と 238U の組成比(計数率比) が異なることから、測定データを用いてUの組成を把握できないかについて調 べた結果 (天然 U のみ)、図 6.6 より、235U/238U (計数率比) は 5~15 に集 中し、238U 量が少ないほどばらつく傾向が見られた。高い方にばらつく場合は、 $B.G(^{226}Ra)$ の影響、低い方にばらつく場合は、 ^{235}U から放出された γ 線が廃 棄物による吸収・散乱の影響で減少したためだと考えられる。ここで、以前測 定した標準線源(天然 U 約 44g) についての測定結果から、235U/238U(計数 率比) を算出したところ、空で 2.8, 塩ビ (0.30g/cm³) で 1.7, 金属 (0.43 g/cm³) で 1.3 となり、実測定の値の方が約 3.8~11.5 倍大きくなった。また、理論値 は約4.3となり、実測定の方が約1.2~3.5倍大きい値となった。これは、実廃 棄物に多く含まれる 226Ra の影響により 235U 計数率が高くなったことか、透過 線源(60Co)によるコンプトン散乱による影響と考えられる。また、標準線源測 定時の結果が理論値より低くなった理由としては、線源自体による 235U の自 己吸収及び廃棄物による吸収によるものと考えられる。以上より、単純に比較 することから比率を求めることは難しく、今後、更なる情報(天然 U以外の測 定データ等)の取得及び補正を行うことが必要と考えられる。

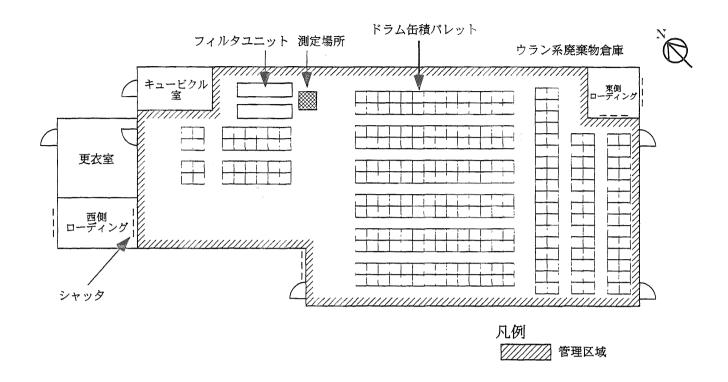


図6.1 測定場所位置図

表 6	.	1	測定	F	ラ	ム缶	内	容	物割	合
1	, .	-	1/11/1	•	_		, ,		1/J 14 J	

内容物の種類		測定本数		全体に対する割合 各燃性			に対する割合	
			合計		合計		合計	
可燃	木片	392		18.0%	38.2%	47.1%	100.0%	
	紙・ウエス	262		12.0%		31.5%		
	酢酸ビニル	146	832	6.7%		2.4%		
	ポリエチレン	20		0.9%		1.4%		
	ガムテープ	12		0.6%		17.5%		
難燃	塩ビ	260	411	11.9%	18.9%	63.3%	100.0%	
	ゴム	117		5.4%		28.5%		
	その他	34		1.6%		8.3%		
不燃	金属(除染難)	463	935	21.3%	42.9%	49.5%	100.0%	
	コンクリート・土砂	261		12.0%		27.9%		
	金属(除染容)	153		7.0%		16.4%		
	その他	48		2.2%		5.1%		
	フィルタ(その他)	9		0.4%		1.0%		
	フィルタ(木枠)	1		0.0%		0.1%		
合計			2178		100.0%			

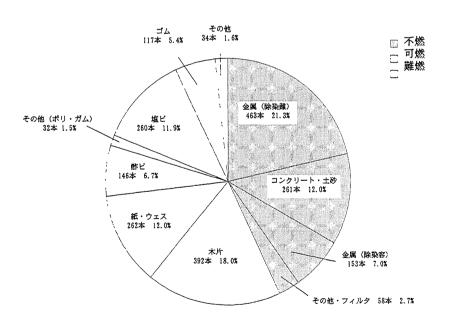


図6.2 測定ドラム缶内容物割合

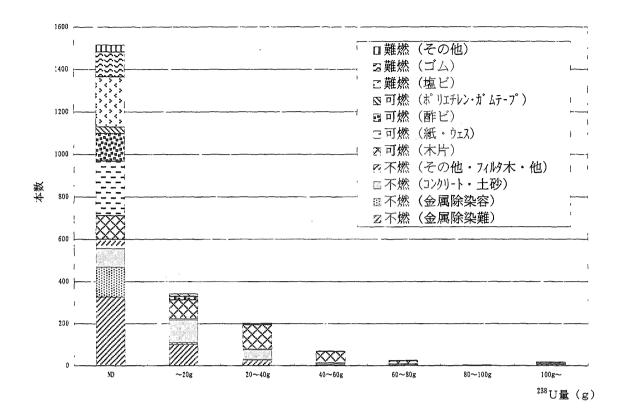


図6.3 測定ドラム缶の238 U量内訳

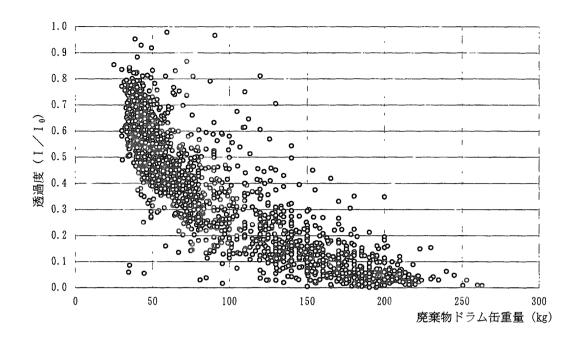


図6.4 ドラム缶重量と透過度の関係

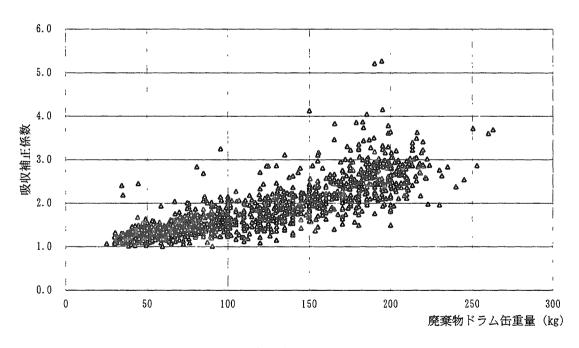


図6.5 ドラム缶重量と吸収補正係数の関係

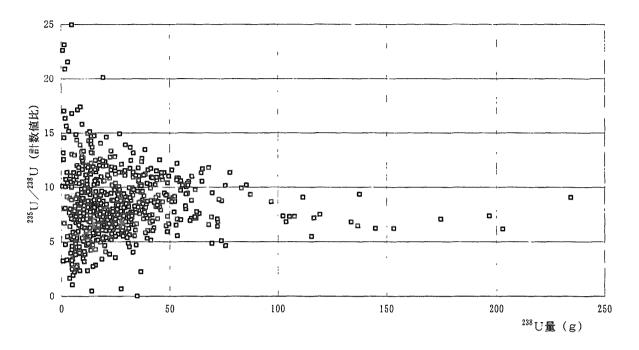


図 6.6 ²³⁸ U量と²³⁵ U/²³⁸ U (計数値比)の関係

6.2 HEPA フィルタ測定

(1) 概要

フィルタ梱包物についての測定評価方法を検討し、ウラン系廃棄物倉庫に保管されていた40個について測定を行った。

(2) 方法

5.4 項で記述した測定条件及び評価方法により、HEPA フィルタの測定を行った。なお、測定に使用した装置は、GS2 である。

また、測定した HEPA フィルタは、廃棄物屋外貯蔵ピットの廃棄物取出し作業及びピットの閉鎖措置作業で設置した建家系排気フィルタユニット及びグリーンハウス系フィルタユニットに使用されたものである。

(3) 結果

測定した HEPA フィルタのうち、3 割が有意値を示し、7 割が検出限界値未満以下であった。

検出された HEPA フィルタは、廃棄物取出し作業時の GH 系に使用していたものである。

また、これまで他施設ではドラム缶同様外部透過線源を使用して測定を行っていたが、本測定手法は測定前条件として透過度の確認とその値から検量線の算出を行えば、他施設で保管されている HEPA フィルタについても適用可能である。更に、HEPA フィルタにとどまらず、内容物の構造(マトリクス)が同様(既知)である廃棄物については有効な手法であると考えられる。

6.3 コンテナ測定概要

ウラン廃棄物中のウラン量測定において、コンテナ(1.1m³等)については、その測定に係る駆動、計測システム、吸収補正方法などがドラム缶サイズを対象としたシステムと異なるため、コンテナサイズを対象とした測定システムを設計・製作する。

本システムについては、第2ウラン系廃棄物貯蔵施設に設置し、コンテナ及びドラム缶を測定評価するものである。

ここでは、本システムの設計及びアルゴリズム構築のための測定試験等についての概要を記述する。

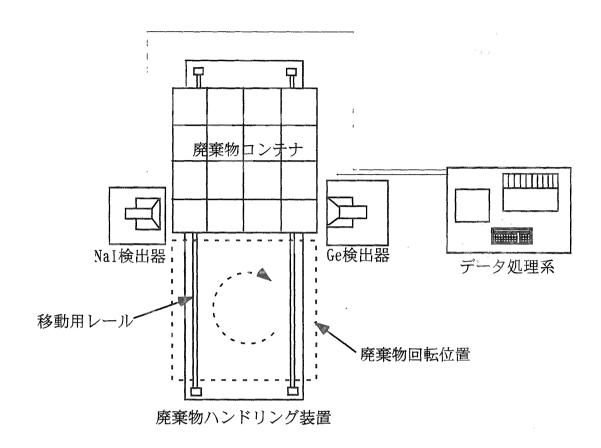
(1) 測定システム概要

測定システムの概念図を図 6.1 に測定回路構成を図 6.2 に示す。システムは、Ge 検出器(1台)及び NaI 検出器(3台)を用い、それらに係る計測システムと廃棄物のハンドリング装置(測定台)から構成される。

測定は、NaI 検出器により側面を3台×4分割で4面計測するもので、縦方向の3区分は3台の検出器で同時に計測する。また、Ge 検出器は側面を縦1分割、横4分割して4面を計測する。

なお、測定時間は、約4時間/コンテナ以下となるよう進めている。

(2) 測定評価方法


廃棄物中ウラン量の評価方法は、NaI 検出器及び Ge 検出器から得られるデータ (1001kev、766kev, 186kev のピーク計数率及び領域計数率(215~703kev の領域)) から核種の定性・定量を行うとともに、廃棄物中での吸収(減衰)補正を行うものである。

補正方法は、ピーク計数比及び領域/ピーク計数比を用いて行う。

(3) 測定試験

本装置によるコンテナ等廃棄物中のウラン量を測定評価するためのアルゴリズム構築に向け、NaI 及び Ge 検出器のスペクトル解析、分割測定における検量線の検討、廃棄物による吸収補正方法の確認、核種偏在による補正方法の検討、測定時間と検出下限値の確認などについて測定試験を行う。

これら試験より、各関係式を導き、解析フローを構築して測定解析プログラムの作成、検証を行う。

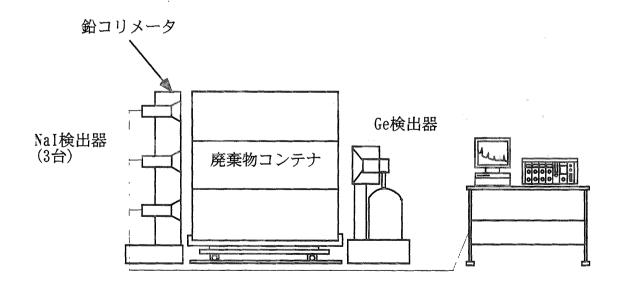


図6.7 コンテナ測定装置の概念図

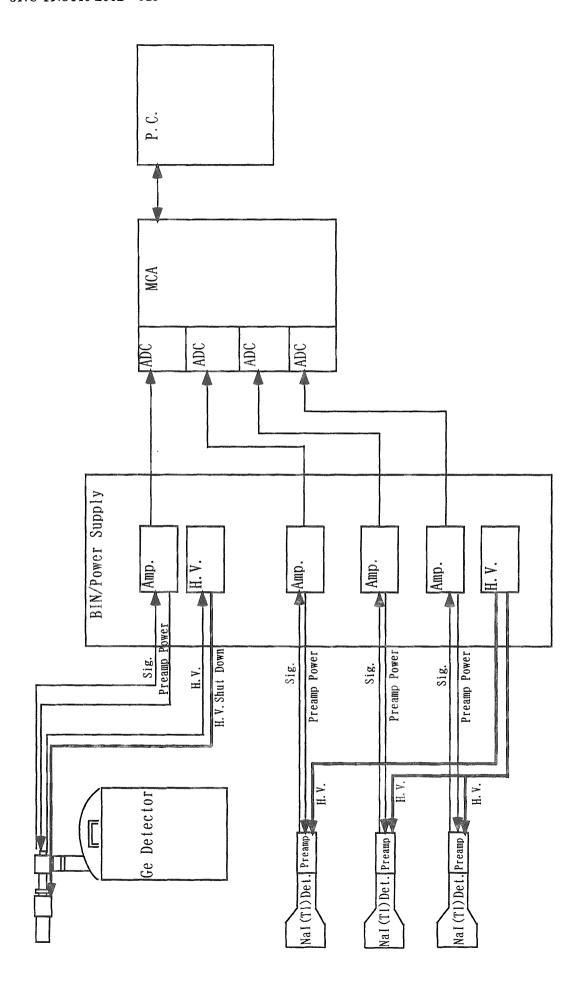


図6.8 コンテナ測定装置の測定回路構成

7. おわりに

ウラン廃棄物中のウラン量を測定する非破壊測定手法として、パッシブガンマ法を選定し、廃棄物が保管されている場所で簡易に測定できる可搬型のパッシブガンマ測定装置をシステムアップした。本装置の特性把握及び校正等を行い以下のことを確認した。

- ① パッシブガンマ法においてウラン量を評価するには、他の核種と重複しないウラン 238 と放射平衡であるプロアクチニウム 234m から放出される 1,001kev のエネルギーが有効であり、ウラン 238 量と 1,001kev 計数率の関係に良い相関が得られ、検量線として使用できることを確認した。
- ② 今回のパッシブガンマシステム構成における測定精度・感度は Ge 検出器の相対効率にも依存するが、約 $5g^{238}U/600$ 秒であり、200 以ドラム缶の測定精度は約 $\pm 100\%$ である。
- ③ 測定精度は、対象容器内の感度分布(核種偏在)によるものが支配的で、金属(嵩密度 0.43g/cm³)の場合、核種偏在による誤差が約±95%、その他、統計誤差、吸収補正誤差などを含めると±100%程度となる。
- ④ 廃棄物の密度と測定精度の関係としては、γ線の吸収が大きくなるため、密度が上がれば指数関数的に悪化する。なお、エネルギーが低い場合は、顕著となる。
- ⑤ HEPA フィルタのようにマトリックス及び形状が一様である場合は、あらか じめ模擬廃棄物などにより吸収補正係数を求めることにより、外部透過線源 を使用することなく評価することが可能であり、数値取扱いを考慮すると有 効である。

ウラン廃棄物の測定から、以下のことを確認した。

- ① パッシブガンマ測定装置が可搬型であるため、保管されている廃棄物状況に応じ、装置移動が容易であり、また、施設間においては、廃棄物を移動するのでなく、装置を移動するため、測定に係る作業効率の向上及び廃棄物運搬要員等についても削減できる。
- ② なお、測定には、施設内廃棄物の移動、装置へのセッティング、測定解析、データ整理などがあるため最低 2 名は必要である。
- ③ 測定環境については、廃棄物倉庫などの空調管理されていない場所では、出来る限り機器に連続通電し、計測器等基盤に結露が生じないようにすることが必要である。
- ④ 今回測定した廃棄物は、廃棄物屋外貯蔵ピットの閉鎖措置に伴い発生した廃棄物は、必ずはとんどであるが、測定結果から約7割が検出限界値未満であり、検出されたものには、Biなどの娘核種が含まれる廃棄物が確認された。

8. 今後の課題

今回のパッシブガンマ法での測定は、あくまでも放射性廃棄物の数量の記載及び 計量管理を目的としたものであり、安全上の評価及び担保をするためには、測定感 度・精度とも向上させることが必要である。

また、現状の測定レベルは数 Bq/g であり、クリアランスの測定を目的とした場合は、クリアランスレベルを 0.1Bq/g 以下と仮定すると、それを担保するためには、2 桁程度低減する必要があり、この対応にパッシブガンマ法の適用は難しいと考えられ、アクティブ中性子法など他の測定手法の適用が必要である。

なお、現状のパッシブガンマ法で測定感度を上げる(検出限界値を下げる)方策としては、バックグランドの低減(装置を遮蔽体で囲む箱型)、検出器の効率アップ、測定時間の長時間化があるが、1 桁程度が限界であると考えられる。

廃棄物測定については、今後も継続して、ドラム缶及びコンテナ廃棄物等について、第2ウラン系廃棄物貯蔵施設等において実施し、放射性廃棄物の数量を補正することを考えており、一方、保障措置については、計量報告、検認査察を受け、保管廃棄手続きを行うことで検討されている。

最後に、今後非破壊測定手法及び装置に係る調査研究・技術開発を行うため及び 現状の技術を集約し、効率的な業務運営のためにも組織体制づくりが必要であると 考える。

9.参考文献

(1)J.L.Parkar, and T.D.Reilly: "Attenuation Corrections for the Passive Gamma-Ray Assay of Cylindrical Samples" LA-6142-PR, 1975 P.P.16

(2) 岡野真治:"環境放射能 ",原子力工業 Vol18, No7,p104~p105(1972年)