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Abstract

An improved analytic equation-of-state (EOS) model using flexible thermodynamic
functions is developed for a reactor safety analysis code, SIMMER-III. The present EOS
model is designed to have adequate accuracy in describing thermodynamic properties of
reactor-core materials over wide temperature and pressure ranges and to consistently satisfy
basic thermodynamic relationships without deterioration of the computing efficiency. The
fluid-dynamic algorithm for pressure iteration consistently coupled with the EOS model is
also described in the present report. The EOS data of the basic core materials, uranium
diox‘de, mixed-oxide fuel, stainless steel, and sodium, are developed up to the critical point
by compiling the most up-to-date and reliable sources using basic thermodynamic
relationships. The thermodynamic consistency and accuracy of the evaluated EOS data are

also discussed by comparison with the available sources.
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Chapter 1. Introduction

To analyze postulated severe-accident sequence in liquid-metal fast reactors (LMFRs), we
need thermodynamic properties of reactor-core materials over very wide ranges of temperature
and pressure. Especially, for an accident analysis code like SIMMER-III (Kondo et al.,
1992), which was developed to simulate multi-phase, multi-component thermal-hydraulic
phenomena occurring during accident progression, the properties up to the critical point are
required to complete an equation-of-state (EOS) model. In general, EOSs are the
thermodynamic relationships among independent state variables constituting the basic fluid-
dynamics equations and hence the EOS model is required to close and complete them.
Moreover it is crucial from the viewpoints of numerical accuracy and stability, as well as
computing efficiency in multi-phase, multi-component flow codes. Neither of the previous
codes SIMMER-II (Bohl and Luck, 1990) nor AFDM (Bohl et al., 1990) was satisfactory from
these aspects. In SIMMER-II, inconsistencies in the simple analytic EOS introduced
difficulty in determining vapor temperature at high pressure, resulting in many numerical
problems. To resolve these problems, a use of a tabular EOS model (Henneges and
Kleinheins, 1994) was tried in AFDM, but was not successful due to the combined effects of
time—consuming table search/interpolation and the iteration to obtain mechanical equilibrium.

Based on the past experiences, therefore, an improved analytic EOS model using flexible
thermodynamic functions is newly developed to treat the basic reactor-core materials including
mixed-oxide fuel, steel, sodium, control (B,C) and fission gas for the SIMMER-III code.
This model assumes the immiscibility of the reactor-core materials, such that a unique EOS can
be defined for each material. Proposed functions are forinulated so as to have adequate
accuracy in thermodynamic properties of the reactor-core raaterials at high temperature and high
pressure, and to consistently satisfy basic thermodynamic relationships over the wide
temperature range from the solid to supercritical state. The function forms use polynomial
equations for the liquid and solid phases and a modified Redlich-Kwong (MRK) equation for
the vapor phase (Fischer, 1992). The latter equation is almost as simple as the well-known
van der Waals equation, but it is much more accurate at least for vapors. Moreover, the MRK
equation is newly extended to include the dimerization process of sodium vapor so as to
describe the properties of sodium vapor appropriately. The heat- and mass -transfer model
(Morita et al., 1994) requires additional thermodynamic properties and their derivatives to
evaluate heat- and mass-transfer rates at each binary contact interface of different energy
components. The present analytic EOS model also defines the saturation temperature, specific
volumes, internal energies, and the heats of vaporization, based on the vapor partial pressure.

In this report, we describe the analytc EOS model for use in SIMMER-NI and
thermodynamic relationships among state variables, which are also necessary for evaluation of
thermodynamic properties from available sources. In Appendix Awe go into details about the

_1_
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MRK equation extended to a reacting system. The EOS modeling is also a very important
concern in designing the fluid-dynamics algorithm for pressure iteration and so a newly
introduced scheme ‘to SIMMER-III pressure iteration is described. All constants in the
proposed EOS functions for the basic reactor-core materials can be found in Chapter 4.
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Chapter 2. Analytic EOS model

2.1. EOS functions for solid properties

The EOS relationships are given for the structure components and solid particles in the liquid
fields. Structure components, such as can wall, cladding, pin fuel and crust fuel, are assumed to

be incompressible with poiynomial fits for temperature, T, and specific volume, Vs, as a

function of specific internal energy, €s,. The function for the structure temperature is given
by

Top = Tyqull — a5 w1 — U5, ) — a5, (1 -y, )’ - agy (1 — U, )’

eSm < eSol,M ’ aﬂd (la)

TLiq.M - TSol.M

I, =Tsqmt h (€5 — €soum),
M

€sam S €5y < Crigm» (1b)

e
where dg u, ds;m and Ggy are the fitting constants, Usm = and Py = €pigm — Esom-

Sol.M
For the structure specific volume,
' 2 3

Vg = Vgl + bgy (1 — U5,) + by (1 — g, )™ + bgy (1 - Us,) 1,

eSm < eSoI.M 1) and (23)
vLiq.M = Usorm
Vs = Usam + h ~—(€sm — €saim),
.M

Csam S €sm < CLigms (2b)

where bg, w, Dy and bgy are the fitting constants.  Equations (1b) and (2b) are used for

extrapolation to the metastable state above the liquidus temperature.

For particles, such as fuel, steel and control, compression resulting from higher cell pressure,
P, is assumed such that they can be treated similar to liquid, but otherwise obey structure
functional relationships. The expressions for the particle temperature, T;,,and specific volume,
U, ,are

o

v | IMm
Tm=Ta +(—é’;_) p.and 3)

M
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where a subscript Lm applies to particles this case. The terms with a “ +” superscript in Egs.
(3) and (4) lack pressure dependence and apply o the sublimation curve of a solid state. The

actual sublimation pressure is considered to be low enough to be ignored.  The terms, T and

v;:m ,have the same energy-dependent curves as those for structure. The pressure derivatives,

(%J and (a;;'" ] , are assumed to be constant independent of specific internal energy.

M M
2.2. EOS functions for vapor properties

2.2.1. Vapor-pressure curve

The saturated liquid vapor pressure, p;" .is defined as a function of liquid temperature, T.:

+ + b T+

Prm =€Xp| by + by T +_U+_'M‘ +bm l“( = ) . &)
TLm TCn.M

The constants, by, u, b, biam and by, in Eq. (5) cen be fit or taken directly from the

available data. The inverted saturated-vapor pressure curve is also used to calculate the

saturation temperature, 75, gn,as a function of vapor pressure, Pg,. Ti:z expression is

1

2 3>
A5y m T Gs0m 1N P + asn (10 P )™ + Ggye w(In P,y )

TSal.Gm =

(6)

where A, p,. Bsarms Bsaz e and g,y o are the fitting constants.  Equation (6) is fitted to the

values calculated by Eq. (5) from the liquidus temperature to the critical temperature using the
least-squares method.

2.2.2. Modified Redlich-Kwong equations

A modified Redlich-Kwong (MRK) equation (Fischer, 1992) is used for the vapor phase.
The function form of the MRK equation is

Pom = RyTg o a(T;) o
o VUom ~961m  Von(Vom +dG3m)’
where
a(Tg) =agm (Ti.) , Ts < Teum»and (8a)
CM
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a(T;) = an.M[l + ac4.M(‘fTi‘ - 1)] , Ts 2 Toqm- (8b)

Cn,M

The EOS parameters, dg,m, 9am» 9sm» N Eq. (7) are determined from the critical constants
and the fact that the critical isotherm on a pressure-volume p — v diagram has an infl=ction point
at the critical point. Consequently, the first and secord derivatives of the pressure with
respect to specific volume are zero. The .nethod to determine 4, \ is material dependent. It
can be used to fit the slope of the vapor-pressure curve at the critical temperature, the Riedel
factor (Riedel, 1954), or to obtain as best fit as possible to the vapor density. Equation (7)
reduces to the van der Waals equation if @, = 0 and a = const., and to the original Redlich-

Kwong equation (Redlich and Kwong, 1949) if ag,q = Ggym and dgen =—1/2.

The MRK equation is practically simple similar to the well-known van der Waals equation,
but it can be made reasonably accurate especially at high temperatures and reproduces the
evaluated oxide fuel vapor data rather well (Fischer, 1992). It was found, however, that the
MRK equation poorly reproduces the evaluated data of the iricrnal energy and the heat capacity
of sodium vapor. To solve this problem, it is newly proposed to extend the MRK equation to
a reacting system (see Appendix A), which describes the dimerization of sodium vapor, and
thereby satisfactory agreement is obtained (see Section 4.2). The proposed function form is

RT; a(Ty)

Pom = - —. 9
¢ 1+ Y.6m)V6m —%1m)  Vom (Von +acam) ®

In Eq. (9), Yscn is the dimer fraction expressed by

_ 1+2xg, —1[1 +8Xgm

= ) (10)
yB.Gm 2(xGm _ 1)
where
k, o R
Ko = OB (1)
V6m ~ %1m
and K, g, is the equilibrium constant given by
dG?. M
k2.Gm = CXp| dGl.M + r'v‘ ’ (12)
ig

where dg,y and dg, \ are the fitting constants.

ame
ama

The location where ( ) changes from negative to positive is called the limit of
TO

intrinsic stability or the spinodal limit (Carey, 1992). The spinodal curve is the locus of

_5...
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spinodal limit points in the vapor dome and satisfies the following condition:

C;me ) 0
Pon | _. 13
(avﬁm Te ( )

Here, the vapor specific volume on the spinodal curve, or spinodal volume, Vs, ., is defined

as a function of vapor temperature. The proposed function form is
Uspn.om = Vcam [l + form =g )" + Joam Q= Tgom) + fosm (=Tl ) + foana(1— Noam )s],

(14)

where foim, Jfoams Jasm and [, are the fitting constants and Tlgn = T <
Cn,M
The equation for the specific internal energy of vapor, €, is derived from the MRK

equation for pressure to satisfy the following thermodynamic relation:

dey dp
m _— T Gm - . 1 5
(avom )TG G( aI‘G )“c- me ( )
This gives
aoT,)-T, 9% 1+‘:3#
€om = Com + $ 1n - Gm 1.~ (16)
Ag3m 14 -53M

Vg

m

where eg, and v, are reference values. The specific internal energy of vapor mixture is

given by a mass-weighted average of the vapor material internal energies as

Z p 6m€Gm
m

i 17)
eG Zme '

Using the specific volume and specific internal energy of infinitely dilute vapor as the reference

values, the specific internal energy of vapor is given as a function of T; and Vg, :

Qo (1 =Gy ne) a
€om = Cyon T — Tiqm) + €Ligom — a1~ Gaom )V h{l 4 —S2M ) (18)
Agm Vg
with
T AGaM -
W:(T G ) N TG < TCI‘!.M’ and (193)
Cn,M
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v =1, Ts 2 Teum. (19b)

where e,‘_’iqc_wl is the specific internal energy of infinitely dilute vapor at the liquidus 'temperature

and €,y is the heat capacity at constant volume. For a reacting system, we apply the

following equation derived from Eqs. (9) and (15):

- — D
€am = Cyom(To — Trigm) + €Ligom

+ Ye.onRrlc (1 _ Ao m ) _ Qg m(1—agy )Y ln(l + 4G3.m ) (20)

1+ Y5 Gm T aGim Ugm

In the equation for the specific internal energy of vapor, remaining unknown parameters are
C,gm and eEqG_M. The specific internal energy of saturated vapor, €\, at the liquidus

temperature is determined from the Clapeyron equation:

dp

hlg = (ma.Sat - ULm.Sal )TSnl (Tdi‘—) ’ (21)
Sat

where the heat of vaporization, h,, is given by
hlg = th,Sal - hLm.Sal = (eGm.Sat + pSalma.Sm) - (eLm.Sal + p vaLm.Sat) . (22)
Using the fact Upigm >> Vpigm, €Ligem 1S given by

dp
LM = €rigm t ULigom [TLiq.M (Tﬁ) N = Prigm]. (23)
Liq.

The value of equ.M is then calculated from Eq. (18) or (20) using the evaluated éj;g -

Generally, the value of eLDqu_M is almost equal to e,y at the liquidus temperature. The

method to determine ¢,y is material dependent.

The vapor heat capacity at constant volume, C,g v, is calculated from Eq. (18):

cv.Gm = (a;r&)
G Jug,

=CqoM ™~ an'M(l —%oum )V’ i ln(I + Torm ), (24)
' g3 m Ugm
where
Vs agam =1
* — _‘191‘_”_ _7:(1_) , T; < Teym, and (25a)
Team \TCn.M
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wE=0, Ty > Ty (25b)

For a reacting system, we obtain the following equation from Eq. (20):

_Ggm(—ag, )y * 1 n(l + Qg3m )

Vg

Cv.Gm = ch.M

gz m m

R _ 2
+ }’B_Gm M 1+ 1 by B.Gm (1 _ dGZ’..M ) . (26)
1+ YB.6m 14+3Y5 G T,

The vapor heat capacity at constant pressure, €, gy, is expressed by the known thermodynamic

relationships:
2
T (&)Gm ]
G
dT,

Coom = Cvom — ( 3p_ — (27)
Gm
)Tc

a‘qu

2.2.3. Saturated vapor

For the specific volume of saturated vapor, or vaporization volume, Vy,,cq, We select the

following polynomial functional form originally used for water (Saul and Wanger, 1987):

Uyap.om = Ucam explbg m (1 — Mgy 6m )P+ bz m (! = Mgy 6m )7+ b (1= 5oy 6m )2

+064m (1~ Msam )+ bgsm( = M5y Gm Y7+ b (1 = Nsaom )",

Tou6n < Team, (28)
. — TSal.Gm

where bGl.M’ bGZ_M: bo3_m, bG.g.M, bGS.M and bG6.M are the flttlng constants and nSal.Gm = T
Cn,M

This must be made thermodynamically consistent with the standard vapor-pressure curve and
the MRK equations described in the previous section. Therefore, Eq. (5) and the MRK
equation are first equated and numerically solved for the vapor specific volume.

The specific internal energy of s.turated vapor, or the vaporization energy, €y, gm. is
defined by the function:

2 3
vap.om = €Ligom T Caim (Tsuom — Tiiom) +Caam (Tsaom — TLiq.M) + €3 m Tsagm — TLiq.M) »

Tiam < Tsugm S Coamlcam, and (29a)

)lIZ

2
eVnp.Gm = eCrt.M[1 + CGS.M (TCN.M - 7:'s'al.Gm + CGﬁ.M(TCn.M - Y}al.Gm) ] ’

._.8.__



JNC TN9400 2000 — 005

Coamleam < Tsuom £ Toams (29b)

where Cgm, Cozm» Cosm» Coams Casm and Cgey are the fitting constants.  The value of ¢g,
can be interpreted as a low-temperature heat capacity with Cg,  and €g; v as correction terms.

The vaporization energy is calculated from the specific internal energy of vapor with the
vaporization volume obtained above.

2.3. EOS functions for liquid properties

2.3.1. Saturated liquid

The function for the specific volume of saturated liquid, or condensate volume, Vg, Gu., 1S

given by
vCon,Gm = vLiq.M [1 + bSntI.M (TSnt.Gm - 7'Liq.M)

+bSatZ.M (Tsm.om - TLiq.M )2 + bsm.M (T‘Sal.Gm- - TLiq.M )3 ]_l s
Tiam < Tsugm < bsuamTcam, and (30a)
Veonom = Vol + Bsasm Team — Tsagm )2 + bsus (Team = Tsaom YT,
bouamTcam < TLiq.M < Teams (30b)
where Dgums Pssoms Dsasms Dsaams Dsasm and g6 are the fitting constants.

The expressions of the condensate energy, €c,,n, defined as the specific internal energy of

saturated liquid, are
2 3
€conGm = CLigm T Csaum Tsaom — TLiq.M) + Csaom Tsuom — TLiq.M) + ot Tsaom — TLiq.M) ,

Tiom < Tougm < Csuamlcam, and (31a)

€concm = €camll — Csusm Team — Tsagm )2 - Csusm Team — Tsaom )1,
CsaamTeam < Tsuom < Teams (31b)

where Cgum, CsaaMs Csusms> Csaams Csusy and Cs.ep are the fitting constants.  The specific
internal energy of saturated liquid is calculated from the Clapeyron equation, Eq. (21):
dp

eLm.Snt = eGm.Sal - (ma.Sal - vLm.Sat)[TSal (ET—)S - PSM]- ) (32)

where the saturatior pressure and its derivative are calculated from Eq. (5). The specific
volume and specific internal energy of saturated vapor are calculated as described in the

previous section.
— 9 —_
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2.3.2. Compressed liquid

To assist in compressing each liquid to the cell pressure and to optimize the numerical
algorithm for the pressure iteration, the independent EOS variables selected for the real liquid

are pressure, p, and the component specific internal energy, e,,.. We assume that temperature,
T, and specific volume, v, can be defined by adding deviations from the saturation

properties. The expressions for the liquid temperature and specific volume are

+ [ 9T +
Lm=Tn+ (—8&) (P— Pin), and (33)
P /..
+ av m +
Vi =Yt (‘5;_1“ (P—pia), (34)

where p/  is the saturation pressure corresponding to the liquid temperature, T;:» and is given
by Eq. (5).

The saturated liquid temperature, T;> , and specific volume, u:m , are defined as a function of

specific internal energy, e,,,. The function for the saturated liquid temperature is expressed
by

T = tgml +ay U, —D+a, y(u, - D*+ ay s (U, — 1’1
ligm < €1 S GLqMCLigm, and (35a)

T =Teaull—a, (- Eim ) - aen(1- Eim 1,

A amCliom < € S Ccams (35b)
. eLm
where @iy, Qom, Gsms Guems Gism and @) are the fitting constants, and Upn = e
Liq.M
eLm . . .
and Sim = For the liquid specific volume,
€cnm
Vi = Upamll+dy (U, =D +dy, (0, — 1) + Ay (U — 1],
CLigm < € S diamerigm. and (36a)
Ul = Vgl + s (1= 6,0 + g0 (1= EL,)]
Ay apmCrion < € < €cums (36b)

where di,m, diam, dism, duam. dusw and digy are the fitting constants.
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2.3.3. Pressure derivatives

daT,
The pressure derivative of liquid temperature, ( a;"‘) , in Eq. (33) is expressed by
oT, ot \
—=2 | =maxy|—="1 » , e < €cams 37
( ap )em {( ap " f(éun) Lm Crt.M ( )
where

f)= (9%;&) exple, m(1- Eim) Heam(- Eim Y

+ean(1- éLm )+ Can(l— glm)3] ’ (38)
and €M, Ciam» Ciam and Cp,y are the fitting constants. In Eq. (37), the constant lower

4]
limit, (—ﬂ‘—) , is used to be consistent with a pressure derivative for solid.

p )y

v
The pressure derivative of liquid specific volume, ( a;'“ ) , in Eq. (34) is expressed by

gy—ﬂ = min (a‘l)!_m ,max[g(gl,m)'fLG.M] s e < €cams (39
p ). op

M

where
g6n)=fum explfon(l- gl.m)-llz + fam(— En) + fam(l- Eim ) + Jism- éLm)4]'
(40)

and fim» fam» Jiams fiam and fisy are the fitting constants. In Eq. (39), the constant

higher limit, (agm) , is also used to be consistent with the solid value.
P Jm

a7, av, . .
The partial derivatives, ( a;'“) and (—5;9‘-) , at constant internal energy in Egs. (33)

and (39) are related to commonly used derivatives as follows:

r \ -1
. (o
T p "“"‘(av...,. l
(__LL) _] _ T | and (41)
™ Y, T

dp 0T /. ap —p
L Lm a7, o
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3 -1
ap
{2 -
(év—] ﬂ(iJ _( ap) LY 42)
fLm Nim U,

aTl.m cv.Lm

where

S de, .
v.Lm aTLm ’ (43)

Ul

is the heat capacity at constant volume of a liquid. With the following thermodynamic
relationships:

(deLm e

ap (ﬂ‘ v,.Lm

T —_p = Sat , d 44

Lm(aTLm )vu, P dem ) a ( )
dT Sat

b, 45)

v,

( . )Tm _ (E%)S.._(ﬂ_fm)

which hold on the saturation line, Eqs. (41) and (42) can be expressed by ¢,,,, and the

de
derivatives along the saturation line. A derivative, ( d;,“‘) ,» on the right hand side of Eq.
Sat

(44) is derived from the Clapeyron equation as follows:

den ) _ (e _ d_P) - (dvc...) _(dvm)
( dT )Snt —( dT )Sm [T;al(dT Sat psal][ dT Sat dT Sal]

d’p
_TSal (ma.Sal - vLm.Sal )(-&_T_z)sm » (46)

eGm

) , can be obtained from the following thermodynamic relations:
Sat

de, ) deg,, de,,, (dvGm ) 4
—um = | —2n —m —um, 7
( dT Sat ( aTG )"c +(av0m Ta dT Sal' and ( )

where a derivative, (
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oy () %)
( ar )Sa‘ ( ‘-’PA ]

“Go 48)

In Eqgs. (47) and (48), partial derivatives of vapor pressure and specific internal energy can be
calculated from the MRK EOS.

Aremaining unknown variable is ¢, for the calculation of Eqs. (41) and (42). From a

well-known thermodynamic relationship, we can write

cv.Lm = _BS‘ACP_Lm ’ : (49)
ﬁT.Lm
where
. (ahm ) (50)
p.Lm aTLm pv
is the heat capacity at constant pressure of a liquid,
1 (9dv,,
= | D] 51

ﬁS,Lm vun ( ap )SL- ( )

is the adiabatic compressibility of a liquid, and

_.___1_ avLm
ABT.Lm - vLm( ap )TL_, (52)

is the isothermal compressibility of a liquid. Chawla et al. (1981) have used the following
equation by Rowlinson and Swinton (1982) for the calculation of the isothermal
compressibility:

dr

, (53)
d d
Csalm — vLmTLm(EPf)S [Ogim + Bs 1 (-d%)s ]

dp
Bs L wCsarm + Vil Lo sat L [Ogpim + Bsim (—)s 1

ﬁT. Lm —

where Cg, a is the heat capacity along the saturation curve and is defined as

d q,
CSm.Lm = (_’}—dTU“—)S . - vLm (—d-i;:)sag ’ (54)

and O, is the volumetric thermal expansion coefficient along the saturation curve and is

defined as
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Sat,.Lm ) dT st .

Lm

Equation (54) is rewritten by the relation, h=e+ pv, as follows:

de,, ) (dem )
=} — + —
cSa(.Lm ( dT s p dT St . (56)

The value of B, ., is calculated from the speed of sound using the relation

k)]
Bsim =—25, (57)

VS.Lm

where Vg, is the speed of sound in the liquid state. The liquid heat capacity at constant

pressure, €, ., is expressed by a well-known thermodynamic relationship:

dp
Corm = Csatm T vLmTLmap.Lm (E)s;n’ (58)
where
1 (avL ]
Lt = (59)
P-Lm »
Vi \Mim J,

is the volumetric thermal expansion coefficient of a liquid. The value of &, is calculated

from the following equation (Chawla et al., 1981):

dp
ap,Lm = CzSal,Lm + ﬁT.Lm (d_T-)s;n . (60)

a7, .
In Eq. (38), a value of (TL'"‘) for the critical point is obtained from the MRK equations as

€cam

follows:

_a_r_) (e )’ 6
op cem a7, ’

Yeam

In Eq. (39), the lower limiting value, fiem. is numerically required and is obtained from the

de,
MRK EOS using the vapor heat capacity, ( a;'" } , calculated at the critical point instead of
G /veam
C.v,Lm :
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fLG.M = (ame ) Ucn.M L (62)

As mentioned above, the pressure derivatives for solid, (aai"‘—) and (ag"'“ ) , are assumed
/4 P

M M
to be constant independent of specific internal energy. These can be approximated by
(aTLm ) — ﬁT.Sm , and (63)
ap M ap.Sm
ov,, )
(‘a—mJ = Vs Bs s> (64)
\ 9P )u

or the values at the melting point calculated from the fitted equations (38) and (40), where

1 (dvg
Qpsmn =~ 5 65
pam vSm (anm )p’ ( )
is the volumetric thermal expansion coefficient of a solid,
1 (9dv,,
ﬁ T.Sm — vsm ( ap JTS‘“ » (66)
is the isothermal compressibility of a solid, and
1 (dvug
= ——Sm 67
ﬁS.Sm vsm ( ap )Ssm ’ ( )

is the adiabatic compressibility of a solid.
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Chapter 3. EOS treatment in pressure iteration

The EOS modeling is also a very important concern in designing the algorithm for pressure
iteration to obtain consistency between end-of-time-step pressures and other sensitive variables.
The pressure iteration in SIMMER-II (Bohl and Luck, 1990) attempted to obtain consistent
velocities and pressures that reduced the error to near zero in the overall liquid continuity
equation (for single-phase cells) or the overall vapor continuity equation (for two-phase cells)
assuming that derivatives in densities with respect to pressure were constant.  This approach
resulted in inaccuracies in some situations such as generating spurious pressure spikes at two-
phase/single-phase boundaries. In AFDM (Bohl et al., 1990), an inner EOS iteration was
implemented to obtain mechanical equilibrium to compress each liquid to a state that is
consistent with an identical pressure, and thereby to define the vapor volume fraction. In this
algorithm, an EOS pressure, pgos, is determined by the thermodynamic state of the cell

components alone, and is expressed by
Peds = F(Poms T Prms Tims &), for a two-phase cell, and (68)
Peos = J (Prms> Tim» @), for a single-phase cell, (69)

where g is the overall structure volume fraction, and p,,, is the macroscopic density of a

liquid component.  This treatment, together with time-consuming table search and
interpolation, significantly deteriorated the computing efficiency of AFDM. In SIMMER-III a
new method is introduced to eliminate the inner EOS iteration by relating the cell pressure,

PceL, to the amount of liquid compression. That is, two-phase pressure, pPg, and single-

phase pressure, p,,, are given by
Po = f(Pom> To» Prm» €Lm» Ofs Pegrr.), and (70)

Dy = J(Pims €Lms Oss Pegrs)- (1)

With this method, the mechanical equilibrium among liquid components with the cell pressure
is automatically guaranteed when the pressure iteration is converged. The objective of the
SIMMER-III pressure iteration is to adjust the macroscopic densities, the cell-edge velocities,
the vapor temperature, and the cell pressure such that the following six sensitive quantities are
reduced to negligible values. These include the difference between the cell pressure and the
EOS pressure, the errors in the mass conservation equations, and the error in the vapor

temperature. This selection was based on the experience and lessons learned in AFDM.

The EOS pressure must account for both the single-phase and two-phase situations, and is

modeled as follows. First, the liquid-field volume fraction, «,, and vapor-field volume

fraction, O, are calculated using v, computed by Egs. (4) and (34):
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o =Y e, (72)
where

O = PLmULn» and (73)
o =(1-0a5)-a,, (74)

where ¢, is fixed during a pressure iteration. To avoid a numerical problem, two-phase to
single-phase transition is assumed to occur at a small, non-zero vapor volume fraction, «,.
The formalism adopted assumes that vapor exists in every cell with an effective vapor-volume
fraction, &,. This is defined such that conversion of structure into a liquid field component

would not change the pressure. Thus an effective vapor-volume fraction and vapor
microscopic densities are calculated as

a,, = max[a,(1-ay), o5 + ., 1, and (75)
Pon =Fem. (76)

ge

The vapor-component partial pressures, Pgn,, are then determined from the MRK equation,

with the total vapor-field pressure being assumed to obey Dalton’s law:

P =Y Pon. 7

If a cell is overfilled with liquid such that &; < 0, Pcg; must be increased to compress the
liquid volume. This is accomplished by expanding &g with Pcgy as

aq,

O + (Pw — Pcer) =0. (78)

a CELL

Equation (78) is solved to obtain a single-phase pressure by

-1
Ja
Py = Pcerr — ac( . ) . (79)

aPc:au.

Then, for all cells in any stage of iteration

Peos = Max(pg, Pyy). (80)
The values of vapor volume fraction corresponding to  Pgos is

&g gos = O, if Peos = P, and (81)

g eos = -107, if Peos = Py (82)
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Acell is two phase if Qg gos > 0, or single phase if Qggos = — 10°°.  Itis possible to have
Og <0and pg > py,or &;>0and p; < Py, however, this condition should be corrected
by the reduction of the difference between the pcm, and Ppgos to zero resulting in

contraction/expansion of the liquids. Once convergence is obtained, a two-phase cell should

have @ 2 0. Asingle-phase cell should have @ < 0, which can be reasonably set to — 1072°,
Once Pgos is defined and Ol g is set to define the cell two-phase or single-phase condition,

Egs. (75) and (76) are used to obtain new vapor microscopic densities (specific volumes).
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Chapter 4. Properties of reactor materials

In this chapter, thermodynamic properties of the basic reactor-core materials such as oxide
fuel, stainless steel, and sodium are newly evaluated using compilation of the most up-to-date
and reliable sources available at present. ~ As described previously, the vapor properties can be
determined by the p—v—T relationships based on the MRK equation. The liquid-side EOS
data along the saturation ‘curve also can be evaluated consistently with the thermodynamic
relations using the MRK equation on the vapor side and the Clapeyron equation. The
previously published and compiled thermodynamic data of oxide fuel, stainless steel, and

sodium, which are used as the basis of EOS data developed in this study, are summarized as
follows.

An important task has been completed at Forschungszentrum Karlsruhe (FZK) to provide the
new EOS data of oxide fuel (Fischer, 1987, 1989). Acomplete new evaluation of the EOS of
uranium oxide was carried out between the melting point and the critical point. In the FZK
study the Significant Structure Theory (SST) was applied, extended to the case of non-
stoichiometric urania and good agreement of the evaluated EOS with the recent experimental
data (R. Limon et al., 1981; Ohse et al., 1985; Bober and Singer, 1987; Breitung and Reil,
1989, 1990) was obtained. This is additional evidence for the reliability and consistency of
the recent data. Analytic data fits for the important state variables were also proposed for
convenient use in the fast reactor accident analysis codes (Fischer, 19_92). In this study, the
EOS data of uranium dioxide and mixed oxide on liquid and vapor sides are reproduced based
on the new evaluation. On thermodynamic properties of solid fuel such as enthalpy and
density, we adopt the previously compiled data by the Argonne National Laboratory (ANL)
group (Fink and Petri, 1997) for uranium dioxide, and by Harding et al. (1989) and the ANL
group (private communication with Fink, J.K.) for mixed oxide.

For stainless steel, due to insufficient experimental data, some of the properties have been
either obtained by extrapolating actual cxpcrimemal data from a low temperature range or
estimated with thermodynamic theory and empirical relations (Kim, 1975; Chawla et al., 1981).
The only available data for vapor-pressure values were the curves of type 304 and type 316
stainless steels theoretically evaluated by Kim (1975) on the basis of Raoult’s low, until Bober
and Singer (1985) have experimentally determined the vapor-pressure curve of type 1.4970
stainless steel in the temperature range between 2800-3900 K. Kim also obtained the
properties in a solid state by extrapolating available experimental data to the melting point,
while he used empirical rules to estimate the properties in a liquid state. In the latter
calculations, corresponding properties of individual steel components needed to be extrapolated
from temperatures around the melting point up to several thousand Kelvin. It seems, however,
that relatively few studies have been made thus far on the properties of stainless steel from the
viewpoint of reactor safety analysis. Accordingly, little reliable sources are available for use
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in the LMFR safety analysis due to lack of the experimental data of stainless steel as well as
steel components in a high temperature region. On the other hand, the new thermodynamic
data for American Iron and Steel Institute (AISI) type 316 stainless steel are proposed in this
study, based on a new compilation of properties of transition metals (Thurnay. K., Unpublished

report, Kernforschungszentrum Karlsruhe, July 1991). Major thermodynamic properties of
stainless steel such as the vapor-pressure curve, the enthalpy in the solid state, the density in the

solid and liquid states are evaluated, assuming the ideal mixture and using the appropriate
empirical relations. The extrapolation of the evaluated data to a critical temperature is carried

out so as to obtain thermodynamically consistent liquid EOS data using the MRK equation on
a vapor side.

For sodium, thermodynamic properties assessed by the ANL group (Fink and Leibowitz,
1995; 1996), are adopted as a data basis: the vapor-pressure curve, the critical parameters, the
liquid density, and the adiabatic compressibility of the liquid. The ANL group has been
performed a consistent assessment of sodium properties to include new information since their
previous review (Fink and Leibowitz, 1982). They obtained consistent equations for the
thermodynamic properties of saturated sodium, which have physically proper behavior from the
melting point to the critical point. For the vapor-side EOS, the MRK equation extended to a
reacting system, as described in Section 2.2, is used to complete the data necessary for the EOS
functions.

4.1. Solid properties

A. Fuel
The melting point of stoichiometric, unirradiated UO,, has been taken as 312030 K, as

recommended in an IAEA assessment by Rand et al. (1978). We apply this value to the
solidus and liquidus temperatures of UO,:

TSoI.M = TLiq_M =3120 K.

The ANL group recommended the following equations to represent the enthalpy of solid
UO, relative to the enthalpy at 298.15 K:

el el

E E
2 _ 2 J— -_— 298.15 - " »
+C,(T° —298.15%) + Qk[Texp( kBT) CXP( 298.15k, ]:l

273K <T<2670K,and (83a)

h, =167.04T — 218342 273K <T<3120K, (83b)
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where 4 =516.12K, C, =78.215J mo K, C, =3.8609 X 103 I mol™! K72, C; =3.4250
X 10* Jmol™" eV, E, = 1.9105¢€V, k, = 8.6144X107° &V K" is the Boltzmann constant, T

isinK, and A, isinJ mol'. Equation (83b) gives the specific internal energy at the solidus
temperature:

esam = 1.12157X 10° T kg™'.

From the heat of fusion value, h, =74.83 kJ mol™*, for UO, by the ANL group, we obtain the

specific internal energy at the liquidus temperature:

€M = 1.39871 X 10° I kg™,

For the density of solid UO,, the ANL group recommended to use the following equation as
a function of temperature:

3
L(273)) ’ (84)

ps(T)=ps(273)( T

where the density at 273 K, p,(273), is equal to 10963 kg m™>; L(273) and L(T) are the

lengths at 273 K and at temperature T (K), respectively.  They recommended the following
fit by Martin (1988) for the linear thermal expansion of solid UO,:

L(T) = L(273)(9.9734 x 107 +9.802 X 10™°T - 2.705x 107°T* + 4.391x10™°T?),
273K <T<923K, and (85a)
L(T) = L(273)(9.9672 x 10 +1.179 x 10T - 2.429 X 10~°T* +1.219x107*T°),

923 K < T<3120K. (85b)

Equation (84) yields the specific volume at the solidus temperature:

Vg = 1.04656 X 107 m’* kg™

From the Drotning’s data (Drotning, 1982) for the liquid density of UO, at the melting point,
p, = 8860+ 120 kg m™, we obtain the specific volume at the liquidus temperature:

Upem = 1.12867X 107 m’ kg™'.

Adamson et al. (1985) gave the solidus and liquidus curves of stoichiometric UO,~PuQ,
solutions represented by the following polynomial expressions, incorporating the IAEA-

recommended melting point of UO, and adopting the melting point of PuO, as 2701+ 35 K:

T,, =3120.0 - 655.3y +336.4y* - 99.9y*, and (86a)
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T,y =3120.0 - 388.1y - 30.4)7, (86b)

where y is the mole fraction of PuO,. For the mixed oxide with 20 % mole fraction of PuQ,,
Eqgs. (86) give

T‘SOLM = 3002 K and TLiq.M = 3041 K.

Harding et al. (1989) presented a mole-averaging scheme to obtain the enthalpy of solid
mixed oxide by a suitable interpolation between UQ, and PuO, data:

h(U,_,Pu 0,) =y h (Pu0,) +(1- y)h(UO,). (87

They obtained the following expressions for the enthalpy relative to the solid at 298 K:

(ES 2-)225:28 +2012967 + 1388847 + 5498.67° — 3297587* +3228377° +186.37”",

r <0.856, and (88a)
h, = 5211597 — 220041, r >0.856. (88b)
(PuO2)
h, = —32481+ 2286567 +433467> — 112707 +987.727* +1970.77° + 744217,

r <0.856, and (89a)
h, = 3525447 —109876, r >0.856. (89b)

In the above equations, ¢ is the reduced temperature, 7/T,,, where T, is the melting

temperature of the solid, and 4, is inJ mol”'. Harding et al. assumed that the melting points

of the mixed oxide fuels may be obtained by linear interpolation. Note that Eqs. (88) for the
solid UO, data are consistent with the results by the ANL group, Egs. (83). From Eq. (87)
we obtain the specific internal energy at the solidus temperature for the mixed oxide with y =
0.2:

esum = 1.05162%10° T kg™

Harding et al. also gave the following expression to obtain the heat of fusion value in J mol™
for the mixed oxide as a function of mole fraction of PuO,:

h, =76537.9 +3581.5y . (90)

Equation (90), however, is inconsistent with the value for UO, obtained by the ANL group.
They calculated the heat of fusion value for UO,—PuO, compositions from the relationship
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h.(UO,)

B (MOX) = o)
m 2

T, (MOX), (91)

where T, is the melting temperature, which is taken as the solidus temperature for the mixed
oxide (MOX) compositions. The above equation yields A, = 72.00 kJ mol™' for the mixed

oxide with 20 % mole fraction of PuO, and hence the specific internal energy at the liquidus
temperature is given by

€qm = 131829 10° T kg™

The density for (U,,, Pu )O,, compositions is not only dependent on Pu content, but also

oxygen-to-metal ratio (O/M). For the density of solid (Ug,, Puy,)0, ., the ANL group
recommended the following cubic equation:

p. =11006 x (1.0055~1.2498 x 10T —1.9530 x 107°T? +4.2334 x107°T?). (92)

whereisin Tis inK, and p, isin Jmol”'. The above equation yields the specific volume at

the solidus temperature:

Vg = 1.00230 X 107 m® kg™

From P, = 9.19%X 107 kg m™ for (U, Pu,,)0, o, at the liquidus temperature recommended

by the ANL group, we obtain the specific volume at the liquidus temperature:

Vpiqm = 1.08814 X107 m’ kg™

B. Stainless steel

Type 316 stainless steel is an alloy of Fe, Cr, Ni, Mo and a small amount of C. On the
average it contains 69% Fe, 17% Cr, 12% Ni and 2% Mo by weight. According to this
composition, type 316 stainless steel has an average molecular weight of

W,, = 55.9354 X107 kg mol ™.

The following liquidus and solidus temperatures are recommended, which were experimentally
obtained for a stainless steel with a similar composition to type 316 stainless steel by Kurz and
Lux (1969):

Tyum = 1713 K and  Tyom = 1753K.

Based on the enthalpy in the solid region and the heat of fusion estimated by the additivity rule
assuming the ideal mixture (Belton and Fruehan, 1970), the following specific internal energies
are recommended for type 316 stainless steel at its liquidus and solidus points:

esum = 9.12379%10° Tkg™ and  €yqp = 1.25158X10° Jkg™.

- 23 —



JNC TN9400 2000 — 005

where the specific internal energy is based on the enthalpy relative to the solid at 298.15 K.
The theoretical densities of type 316 stainless steel in the solid and liquid states were evaluated
on the basis of a formula which gives the specific volume of an ideal mixture as a mass-
weighted average of the specific volumes of constituent elements (Hull, 1969). The resulting
specific volumes at the liquidus and solidus points are

Vgum = 1.36168 X 107 m’ kg™ and Uy = 1.41420X10° m’ kg™
4.2. Vapor Properties

4.2.1. Vapor-pressure curve and critical data

A. Fuel

Analytical fits were proposed for the vapor-pressure curve of stoichiometric UO, (Fischer,
1989). The total pressure is composed of the pressure of the urania-bearing species and the
partial pressure of oxygen. The total pressure (including oxygen) is expressed by

36269

log p,,, = 47.287— +0.3615x 10T — 4.8665 In(T), (93)

and for the pressure of the urania-bearing species (saturation pressure)

34715

log ps,, =39.187— +0.1921x 1077 - 3.8571 In(T), %94)

where p is in MPa and 7 is in K. While the total pressure is the true physical pressure, only
the saturation pressure is consistent with thermodynamic relationships, e.g. the Clapeyron
equation. Up to about 7000 K the contribution of oxygen to the total pressure is not so large
and lies within the uncertainty band over the range where experimental data exist. Beside, it
was recommended to use the vapor-pressure curve of UO, in accident analysis for mixed-oxide
fueled fast reactors because no noteworthy differences were detected between the vapor
pressure of UO, and mixed oxide in the experiments by Breitung and Reil (1989). We use,
therefore, the saturation pressure curve, Eq. (94), for both UO, and mixed oxide. The
following critical point data of stoichiometric UO, were predicted (Fischer, 1989):

Teom = 10600 K and  Peum = 1560 kg m™.

Using the predicted critical temperature, the fitting constants in Eq. (5) are taken directly from
Eq. (94), and then we obtain the critical pressure as

Peam = 157.873 MPa.

Although the value of P,y as 158 MPa was recommended by Fischer (1989), the above value
is adopted hereafter for numerical consistency. Equation (94) yields a boiling point of 3811
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K.

B. Stainless steel

Based on the theoretical vapor pressure calculated by Raoult's law, the following analytic fit
is proposed for the vapor-pressure curve:

log p,,, =23.47496 — _22._0_%?_61 +67.2678 x1075T —1.4359 In(T"), (95)

where p is in MPaand T is in K.  Using the critical temperature of iron estimated by Fortov et
al. (1975), the following critical data of stainless steel are estimated assuming that the law of
rectilinear diameter holds approximately:

TCn.M = 9600 K and an.M = 1143 kg m—s.

The fitting constants in Eq. (5) are taken directly from Eq. (95), and then we obtain the critical
pressure as

Peam = 456.760 MPa.

Using the above estimated critical constants, we obtain the critical compressibility of 0.280,
defined by Eq. (A3) in Appendix A, which is reasonable as a liquid metal. The vapor-
pressure curve calculated by Eq. (95) are shown in Fig. 1, compared with the experimental
curve of type 1.4970 stainless steel determined by Bober and Singer (1985) and the theoretical
curve of type 316 stainless steel evaluated by Kim (1975). Although Eq. (95) predicts about
30 % lower pressure at 4000 K than the experimental data, the difference is within the
experimental uncertainty. Equation (95) yields a boiling point of 3085 K which is in good
agreement with the theoretical value by Kim (1975). 'The heat of vaporization derived from
the Clapeyron equation is 349 kJ mol™' at the boiling point, which is slightly lower than the
experimental value by Bober and Singer (1985).

C. Sodium
The ANL group recommended the following vapor-pressure curve, which was determined
by Browing and Potter (1985) from 864 — 2499 K.

Inp, = 11.9463—12—6%323—0.4672 InT, (96)

where P, isin MPa, Tisin K. They also recommended the following critical parameters:
TCn.M =2503.7K and Pcam = 219 kg m_3.

Using the recommended critical temperature, the fitting constants in Eq. (5) are taken directly
from Eq. (96), and then we obtain the critical pressure as

an.M = 25. 6406 MPa.
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Although the ANL group recommended the value of pc,y as 25.64 MPa, the above value is
adopted hereafter for numerical consistency. Equation (96) yields a boiling point of 1155 K.

4.2.2. Modified Redlich-Kwong equations

A. Fuel
The specific gas constant, R,,, is defined from the molecular weight, W,, (=270X 107 kg

mol™), as R, =30.7945 T kg™ K™'. The exponent, dg,, in Eq. (7) is taken from the value

so as to obtain the best fit of the specific volume of saturated vapor with the theoretical data
(Fischer, 1992).

Using Eq. (19) we obtain the following values:

€Liom = 3.04328 % 10° J kg™ and €D, = 3.04329X 10° T kg™ for UO,, and
€L = 2.98033X 10° T kg™ and  elg, = 2.98034X 10° I kg™ for MOX.

The values of ¢,gy can be calculated such that Eq. (16) satisfies the following critical internal
energy by Fischer (1992):

€cam = 4.9929 % 10° T kg™
As the result, we obtain the following values:
Com=301.247Jkg' K" for UO, and ¢,y =306.427Jkg' K for MOX.

B. Stainless steel

The specific gas constant, R,,, is defined from the molecular weight, W,, (= 55.9354 X 10"
kg mol™), as R, =148.646 Jkg™' K™'. The exponent, ag,y, in Eq. (7) is determined from

the slope of the vapor-pressure curve, Eq. (95), at the critical temperature.

Using Eq. (19), we obtain the following values:
euom = 7.73961%10° J kg™ and el =7-73961X10°J kg™
The value of ¢,y is taken from the heat capacity at constant volume of monatomic gas:
Com=1.5R, =222969 J kg K™'.

As the result, the critical internal energy, €c,m, is obtained by substituting the critical

temperature and density into Eq. (16):

€cum = 8.20580X 10° T kg™,
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The curve of ¢,gy calculated by Eq. (22) along the saturation line represents that €.y
gradually declines as the critical point is approached and is smaller than the monatomic gas

value, 1.5R,,. Although the contribution of the second term in Eq. (16) is quite small, this is
an unphysical behavior brought by dg, < 0. The value of a4y should be smaller than or

equal to zero to fulfill the condition, ¢,y = 1.5R,. Inaddition, the MRK equation cannot
describe the contribution of electronic excitation to the steel vapor energy. Assuming that steel
vapor is an ideal solution of its constituents, and that vapors of these constituents behave like
monatomic gas, the total energy consists of the energy of translation and of electronic excitation
(Chawla et al., 1981). The translational contribution to the vapor heat capacity can be
described by the monatomic gas value. Chawla et al. (1981) suggested that the electronic
excitation contribution, though small at low temperature, becomes significant in a high
temperature range. However, we cannot help allowing simplification assumed in the MRK

equation in order to maintain the thermodynamic consistency between state variables.

C. Sodium
For the equilibrium constant, the following equation recommended by Golden and Tokar
(1967) is used:

logk, = —4.3249 + 72(;4'2 , (97)

where k, is in atm™ and 7 is in Rankins. This gives the EOS parameters, dg,y and dg, ,
in Eq. (12). The specific gas constant, R, is defined from the molecular weight, Wy (=
22.9898 % 107 kg mol™"), as R,, =361.661 J kg™ K™'. 'The exponent, dg,\, in Eq. (9) is

determined from the slope of the vapor-pressure curve, Eq. (96), at the critical temperature.
From Eq. (10) we obtain the dimer fraction at the critical point as 0.540 and then the critical

* compressibility defined by Eq. (A26) in Appendix A becomes 0.199. This is still low, but is
much closer to the usual range than the ANL value (Appendix A).

Using Eq. (19), we obtain the following values:
€Liom = 4.57699 X 10° T kg™! and equ_M =4.57844x10° J kg™'.

From the ANL recommendation for the saturated liquid enthalpy (see Egs. (101)), the
following enthalpy is obtained at the critical temperature:

B = 4.29400 X 10° T kg™,

Using the critical constants determined, the critical internal energy becomes

ecam = 4.17692% 10° T kg™

The values of €,g\ can be calculated such that Eq. (18) satisfies the above critical internal
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energy:

Com = 460.613 T kg K.

In the present study, we adopted the critical constants, Tcqm, Peam and Ag, . evaluated by
the ANL group.  The critical temperature was from the experimental critical pressure and Eq.
(96) fitted by the experimental vapor-pressure data from 864 — 2499 K, and the critical density
was determined using the critical temperature in the fits to the experimental density data from
the melting point to 2200 K. The critical enthalpy is not an experimental value, but is the
result of the extrapolation of the average of the liquid and vapor enthalpies using the law of
rectilinear diameters. On the other hand, we can evaluate the critical internal energy from the
MRK equation, Eq. (18), assuming that the heat capacity at constant volume for the dilute gas
is the monatomic gas value. The resulting value, 4.35154 X 10° J kg™', of critical internal

energy is larger than a value deduced by the ANL group. Near the critical temperature,
however, the uncertainty of the liquid enthalpy recommended by the ANL group was estimated
as 12 %. In view of these facts, the adopted value of critical internal energy seems to be
sufficiently within the limit of the uncertainty range.

Figure 2 ndicates the curves of ¢, g, and ¢, g, along the saturation line as a function of

temnperature.  In this figure, the curves of ¢, g, and ¢, g, are calculated by Eqs. (24) and (25),

respectively, and circles and triangles indicate the ANL data. The curves and the ANL data are
compatible over most of the liquid temperature range. The only significant difference with the
ANL data is near the critical point, where the extended MRK equation gives the finite value of
C,om- Figure 3 shows the specific enthalpies of the liquid and vapor states along the

saturation, evaluated using the relation, h=e+ pv, as a function of temperature in comparison
with the ANL data. As shown in Fig. 3, however, the vapor enthalpy, which is an integral
quantity, agrees satisfactorily with the ANL data. It is clear that the MRK equation for a
reacting system provides an improved description of the thermodynamic state of sodium vapor,
which cannot be obtained by a single-component EOS.

4.3. Liquid properties

4.3.1. Saturated liquid

A. Fuel
The following analytical fit for the saturation temperature of UO, was evaluated as a function
of the liquid density (Fischer, 1992):

1

T. =3120 4 ————
Sat 0.916x107

(8.86 - p,)—1.7(8.86 - p,)’,
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254 < p,<8.86 gem™ (T, < Ty, <9951.66 K), and (98a)
T, = 10600 — 427.13(p, — 1.56)* - 1120(p, — 1.56)°
+1242.5(p, —1.56)* —365.1(p, —1.56)°,
Pca < P1<2.54 gem™ (9951.66 K < Ty, < To,), (98b)

where T is in K and p, is in g cm™. For mixed oxide, to represent the difference of the

melting point and density from UQ,, the temperature and density of UO, in the above equations
are simply related to those of mixed oxide as follows:

T, (MOX) =T, (MOX) - T, (UO,) + T, (UO,), and (99a)
_ p.(MOX)
p,(MOX) = _pm o)) p,(UO,). (99b)

B. Stainless steel

The theoretical density of type 316 stainless steel was calculated from its compositions and
the densities of its constituent elements (Hull, 1969). The calculated liquid density was
approximately a linear function of temperature up to 3500 K and the following equation

representing a good fit to evaluated data is proposed:

p,=7071.4~0.64483(T - Ty,,). (100)

where p,is in g kg and T is in K. This linear function is used to extrapolate the liquid
density up to 8000 K.

C. Sodium
The ANL group recommended the following melting point of sodium:

TLiq.M = 371 K.

They calculated the enthalpy of the saturated liquid sodium relative to the solid at 298.15 K by

the following equations:
h, =-365.77+1.6582T —4.2395 x 107'T? +1.4847x107'T> +2992.6T ",

371 K< T <2000K, and (101a)

2000 K £ T<2503.7K, (101b)

1g?

1
h=E+FT-_h

where A, is in kJ kg™', E = 2128.4, F = 0.86496, and h, is the enthalpy of vaporization.

From Eq. (101a), we obtain the specific internal energy at the melting point:
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eugm = 2.06717X 10° T kg™*.

For the density of saturated liquid sodium, they recommended

h
NPRVAEAN S |

Crt TCn

for 371 K < T < 2503.7 K, where p, is in kg m™, f = 275.32, g = 511.58, and h = 0.5.
Equation (102) yields the specific volume at the melting point:

Vyom = 1.08029% 107 m® kg™

As shown in Fig. 3, although the difference of enthalpies of saturated liquid and vapor
between our result and the ANL data becomes large as the critical point is approached, the

enthalpies evaluated using the extended MRK equation indicate the satisfactory agreement with
the ANL data.

4 .3.2. Pressure derivatives

A. Fuel

The following equations were recommended by Fischer (1992) as a function of density for
the heat capacity at constant volume of the saturated UQ, liquid:

c,, = 0.2925 + 0.018959(8.86 — p,) — 0.0038921(8.86 — p,)*
+0.5834 x107(8.86 - p,)’,
2.54< p, <886 gem™ (T, < T, <9951.66 K), and (103a)
c,, = 0.2597+0.001945(p, —1.56) + 0.010868(p, —1.56)°,
Pea < P <254 gem™ (9951.66 K < T, < Tgy), (103b)

where ¢,;, is in J g’ K and p, is in g cm™. Note that the original equations were
discontinuous at the connecting point. We, therefore, modified the coefficients in the original
equation to those appearing in Eq. (103b) so as to satisfy the continuous conditions at the
connecting point. The above equations are used for ¢, ,, over the whole temperature range to
calculate the pressure derivatives from Egs. (39) and (40) for both UO, and mixed oxide. The
data for mixed oxide below the melting temperature of UO, are obtained by extrapolating Eq.
(103a). :

Figures 4 and 5 indicate the ¢, by Eq. (57) and B: L. by Eq. (50) of fuel as a function of
temperature, respectively. The experimental data measured by Breitung and Reil (1990) are

also shown for comparison. Excellent agreement is obtained between the present evaluation
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and the Breitung and Reil’s data for both @, and B: L. within the uncertainty bounds.

B. Stainless steel
Using the speed of sound measured by Kurz and Lux (1969), Eq. (55) gives a value of
Bs.a as 8.60843 X 107'2 Pa' at the liquidus temperature. From this value and Eq. (51), we

obtain a value of Bri. as 1.12435Xx.10™" Pa'. Use of these values at the liquidus
temperature yields ¢, ., as 782.362 J kg™ K™' from Eq. (56). The substitution of the values
of ﬂs_,_m, .BT,L,,,, and c,,, into Eq. (47) gives a value of €, ., at the liquidus temperature:
Cotm = 599.003 T kg™ K.

We assume that C,,,, is constant since this changes only little with temperature, and use the

above value to calculate Egs. (39) and (40) over the whole liquid temperature range.

C. Sodium
The ANL group calculated the adiabatic compressibility of liquid sodium in MPa™' from

gy 1
=B |1+2 | —, | 104
ﬂS.l ﬁs.m( b)l_e ( )
where the adiabatic compressibility at the melting point, B, is equal to 1.717 X 10 MPa™!,
_ T-T,
the dimensionless constant b is 3.2682, and the parameter ¢ is defined by 0= T _T -
Cn m

Equation (104) is used to evaluate €, over the whole temperature range from Eq. (47), and

then the pressure derivatives are calculated from Eqgs. (39) and (40).

av
In Eq. (32), the partial derivative, (——51—)"1‘-) , is negative and hence the specific volume can

become negative at high pressure, especially for the internal energy near the critical point. We

define the bulk modulus of compressibility, B im:

1 (dy,
- m| 105
ﬁ e.lm vLm ( ap )em ( )

Assuming the reciprocal of B.Ln, the bulk modulus of expansion, is a linear function of

pressure

1
= +6p, (106)
ﬁe.Lm l

where c, and c, are the constants independent of pressure, and solving Eq. (105), we obtain
the more general equation for liquid specific volume:
— 31—
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_BM
. 1 v,
- _ n _pt , 107
vLm vLm {1 ﬁMv:m ( ap J‘Lm (p me )} ( )

where B, is an EOS parameter and f3,, = -1 leads to Eq. (32). This approach used to derive
Eq. (107) 1s similar to that adopted in the VENUS-II code (Jackson and Nicholson, 1972).
For the case of sodium, we use a value of f,, =0.15.

4.4. EOS parameters

The method of determining the EOS parameters in thermodynamic functions is summarized
as follows. The solid properties such as specific volume and internal energy were based on
the available sources for oxide fuels and the new evaluation for type 316 stainless steel. The
solid EOS functions were then fitted to these data by means of the least-squares method. The
saturated vapor properties such as specific volume and internal energy were evaluated by the
thermodynamic relationships based on the MRK equations for vapor pressure and specific
internal energy and the vapor-pressure curve. The liquid-side EOS data were also evaluated
consistently with the thermodynamic relations using the MRK equation on the vapor side and
the Clapeyron equation. The EOS functions for the liquid and vapor states were then fitted to
these evaluated data using the least-squares method. The newly evaluated EOS data of type
316 stainless steel are shown in Figs. 6 and 7 for density and specific enthalpy, respectively.
Acomplete set of EOS parameters for uranium dioxide, mixed-oxide fuel, stainless steel, and
sodium 1s presented in Tables 1-4. The EOS functions and parameters defined in the analytic
EOS model are described in the previous chapters.

. 32__
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Chapter 5. Conclusions

The analytic EOS model for the multi-phase, multi-component SIMMER-III code has been
developed. Using flexible thermodynamic functions, that is, polynomial equations for the
liquid and solid phases and the MRK equation for the vapor phase, the present EOS model has
adequate accuracy at high temperature and high pressure and consistently satisfies basic
thermodynamic relationships over a wide temperature range without deterioration of the
computing efficiency. It was also proposed to extend the MRK equation to a reacting system,
which describes the dimerization of sodium vapor. This was done by developing a partition
function for a vapor mixture, where the vapor components obey a MRK equation. With this
extended formalism, the properties of sodium can be described satisfactorily. The new
scheme for pressure iteration has been also introduced into the SIMMER-III fluid-dynamics
algorithm, which is fully coupled with the present EOS model. With this method, the inner
EOS iteration to obtain mechanical equilibrium is eliminated by relating the cell pressure to the
amount of liquid compression, and thereby the computing efficiency should be improved.
The approach with a consistent overall framework developed in this study can be generally

applicable to other computer codes that treat multi-phase, multi-component thermal-hydraulic
phenomena.

Based on the new compilation of the most up-to-date and reliable sources available at present,
the thermodynamic properties up to the critical point have been evaluated for the basic reactor-
core materials: uranium dioxide, mixed-oxide fuel, stainless steel, and sodium. These EOS
data completely satisfy the basic thermodynamic relationships among the EOS variables over
the entire temperature ranges. It was also clarified that a few physical characteristics of
properties cannot be fully described due to the simplification assumed in the analytic EOS
model. However, the comparison of several properties with the available sources showed that
the evaluated EOS data are thermodynamically accurate and consistent and hence appropriate
for use in the analytic EOS model of SIMMER-III. It is believed that the thermodynamic
properties and equations of state for the basic reactor-core materials developed in this study can
be utilized as a standard data basis for the fast reactor safety analysis.
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Appendix A. MRK equation for sodium vapor EOS

A.l. MRK equation of state

From Egs. (7) and (8), the MRK pressure-volume-temperature (p—V-T) relationzhip is given
by

poRal __aD
V-b V(V+b) (A1)

where V is the molar volume,

a(T)=ac(I-] , T< T, and
e\ -
da
T)=a +—(T-T.), T> T,
a(T)=a, dT( )

and the subscript c refers to conditions at the critical point. The MRK equation is a 4-

parameter EOS and we introduce the following dimensionless parameters:

b, = bV, (A2a)
b, = byV., and (A2b)
a=a,V.R,T.. (A2¢)

At the critical point, Eq. (Al) can be rearranged to give an expression for the critical
compressibility, z., or
pY. __ Y. _a@)V,

z c

* RJT. V.-b V.+b '

(A3)

A.2. Some properties of sodium vapor

As discussed e.g. in an early evaluation of sodium properties by Golden and Tokar (1967),
there is a dimerization reaction in sodium vapor

2Na ¢ (Na),. (A%)

In addition, Golden and Tokar assume the existence of a tetramer, which is formed by the
reaction

4Na <> (Na),. (AS)

They could fit experimental data better if they included the tetramer. There was, however, no
experimental evidence for its existence. Neither is there any mention of a tetramer in a
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Handbook article (Vargaftik and Voljak, 1985), in which sodium vapor data at temperatures up
to about 1500 K are presented. The species considered in this article are the atom, the
diatomic molecule, and the atomic ion plus electron. Thus, as there is a dimerization reaction
in sodium vapor, one cannot expect the MRK equation, which was derived for a single-
component substance, to provide a good description of the data of a mixture, which varies in
composition as a function of 7 and V. Furthermore, the critical compressibility of sodium,
defined by Eq. (A3), is unusually low; the values quoted are 0.129 by Fink and Leibowitz
(1996), and 0.123 by Thurnay (1982). For single component materials, 2. is usually in the
range 0.25 to 0.35. The molecular weight for the monomer was used in both evaluations.
In reality the gas phase near the critical point is a mixture of the monomer, the dimer, and
possibly also the tetramer.  The average molecular weight is therefore larger, bringing the true
value of z. closer to the range where most substances are. In the following section the MRK
equation will be modified to include the effect of dimerization. However, neither ions nor a

hypothetical tetramer will be included. This helps to keep the equations simple and hence they
can be used in accident analysis codes.

A.3. EOS for areacting system of gases

A.3.1. Helmholtz free energy for a gas of a given composition

For an ideal gas, the partition function for one mole, Z, can be written in terms of the

partition function for a single molecule, fg:

N

Z==t, (A6)
N!

where fg is the product of the translation, rotation, and vibration partition function, and N is

Avogadro’s number.  Using Stirling’s approximation, which states that InN! = N(InN —1)

for N >> 1, the function is given by

N
Z= (E) . (A7)
N

The function f, can be written as a function f,; of temperature times the molar volume:
fi=1V. (A8)
The statistical analogue for the Helmholtz free energy, which is defined by F= E-TS, is
F(T,V)=-kTInZ. (A9)

The Helmholtz free energy for a dilute gas is then
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F(T,V)= —NkBT(ln% + 1). (A10)

The above expression can be extended to the case of a real gas which obeys the MRK equation
(Al) using thermodynamic relationships:

V-b
F(T,V)=—Nk,T lnéﬁ——')+1 —iln(l+ﬁz—). (All)
N b, |4
To extend Eq. (All) to a mixture of gases, let the mixture contain n, moles of the component i,
in total

m=3m (A12)

moles. The mole fractions are then y, =n,/n.. For the coefficients of the MRK equation,
assume the following simple mixing rules:

b =) yby, | (Al3a)

b, = Zyibzi, (A13b)

a= EZM%, , (A13c)
i ]

where @; = a;. The Helmholtz free energy for the mixture is then expressed by

R Y f;O(V_bl) ___nT_a ( _b;) A14
F(T,V,n,--)= Rmrzi;ni[111---—---—-1\,),i +1] b, In 1+V . (A14)

From this equation, one finds easily that the pressure for the mixture is

oF RT a
_(F) _RT ___a Al5
P (av)m Vb Vb)) ™ (AL3)

The chemical potentials can also be derived from Eq. (A14)

b= Pl g g|-mbel=b), b ]
l on, T.V.n; " Ny, V-b,

2 .a.
abzi ; i

b22 B b2

b ab,.
In 1+—2~)————2'—. (A16)
( V) b(V+b,)
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A.3.2. Extension to a gas with a dimerization reaction

Let the mixture consist of monomer, labeled A, and dimer, B. The Helmholtz free energy
is again given by Eq. (A14) and then the equilibrium condition is

21, = Uy, (A17)

where the p ’s are given by Eq. (A16). This condition reads

R T':——ln onzyn(V —-b) + 2b,, - bm]
" /N V-b,

22 ¥i(2a,;~ ay)

+ a2b, —by) 5 ln(l +22__)_ a(2b,, — by) =0. (A18)
b’ b, vV b,(V +b,)

This equation is rather complex, and in general it can be solved only numerically for y, and y,.
To arrive at an equation that can be fitted to known critical parameters, and can be handled in a

simple way for use in hydrodynamics codes, the following simplifying assumptions will be
made, which are not based on physics arguments:

by =2b,, (Al19a)
b, =2b,,, and (A19b)
Ay =2a,, =2a,, =4a,,. (A19c)

Then, the equilibrium condition (A18) reduces to the first term, which means that it is a

quadratic equation for y, and y,:

onzyB(V_bl) =1

3 A20)
NfaoYa (

We introduce the average molecular weight W = W, (1+y,) and the specific volume » by the

relation V=Wwv. Furthermore, we introduce the parameters b, b, which have the

dimension of a specific volume
b, = (1+ y,)b,, =W, (1+y,)b:, and (A21a)
b, =(1+ yg)b,, =W, (1+ y,)ba. (A21b)
In addition we have a parameter
a=(1+y,)a,, =W, (1+y,)’a. (A21c)

Equation (A15) for the pressure can then be written
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po BT G
W,(1+y,)(v=b1) v(v+b3)

(A22)

At the critical point, there is an inflection point in the p- » curve, so that the first and the

second derivatives must be zero. To evaluate p at the critical point we introduce the

dimensionless parameters a,, by, and b,

bi=b,,. . (A23a)
b2=b,v_, and (A23b)
a_ aochmT:: (A23 )
=% c
W, (1+Y,.)

where U, is the specific volume at the critical point and yg . is the mole fraction of the dimer at

the critical point. We then obtain

p=——ral: o— (A24)
W.(d+ys Ju \1-b, 1+by
The gas constant per unit mass of the mixture at the critical point is

R

Rye=—"—0r. (A25
RETACES ‘
Thus, one has the critical compressibility

pcvc 1 aO
_ . A26
* Ry T. 1-b, 1+b, (A26)

The parameters can then be determined from the known critical data of sodium as described in
Section 4.2.

A.4. Equilibrium constant

In the literature one usually finds the equilibrium constant for the dimerization reaction
(Golden and Tokar, 1967; Vargaftik and Voljak, 1985) at low pressure (ideal gas regime),
which is defined as

Ye

_ A27
TR (A2D)

k,

where £, is in atm™ and p, is the pressure in atm. The equilibrium constant is either

calculated from basic molecular parameters, or obtained from experiment.  One finds from the
equilibrium condition, Eq. (A20), the following relation
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Yo _ JaoN
(1-¥)  fi'Wall+y)(0 - El) ’ (A28)

This equation is, according to its derivation, valid for any temperature and specific volume, and
can be used to extrapolate the monomer/dimer equilibrium to the critical point. We note that
according to Eq. (A8) the ratio fy,N/f,,? is a function of temperature only. To express this
ratio by the equilibrium constant, we have to specialize Eq. (A28) to the case where the ideal
gas law holds. Then, the left hand side of Eq. (A28) is equal to the product of k, and the
pressure pP,. Making use of this equality and applying the ideal gas law, one finds

N
Sl kR, (A29)
AD
where the gas constant R, is in atm m™ mol™' K™' because &, is in atm™. Assuming the

MRK equation with the simplification by Eqgs. (A19) is valid for any pressure, the equilibrium
condition Eq. (A28) becomes as follows in terms of k,:

Ye(l+ys) __GRT
(l_yB)2 WA(D—BI). (A30)

The above equation is a quadratic function of y, with a solution

1+2x—+/1+8x
Vg = , (A31)
2(x-1)

where x is the right side of Eq. (A30).
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Appendix B. Simplified analytic EOS model

B.1. Assumptions used in simplified analytic EOS model

On the stage of the assessment study of the code, the thermodynamic properties of
experimental materials such as water, nitrogen and organic compounds are often required for
experimental analyses. ~ Since temperature change is not large, in most of cases, the properties
only over a narrow temperature range are sufficient for calculating the problems. Further,
when insufficient property data are available for a material, it is difficult to prepare a complete
set of the EOS parameters in the standard EOS model. Therefore, we prepare a simplified
analytic EOS (SAEOS) model, which is similar to that adopted in AFDM (Henneges and
Kleinheins, 1994), but is slightly improved on thermodynamic consistency.

The SAEOS model assumes simple EOS relationships: ideal gas equation, temperature-
independent particle and liquid compressibilities, temperature-independent solid and liquid
densities, and constant solid and liquid heat capacities. The following assumptions are used:
(1) The densities of structure, particle on the sublimation curve, and saturated liquid are input
constants; (2) their internal energies are assumed to depend only on temperature with constant
heat capacities; (3) for solid components, the heat of fusion is given by the difference between
the solidus and liquidus energies, which are the input constants; (4) for particles and liquids,
the compressibilities are assumed, which are determined by constant speeds of sound; (5)
vapor-pressure relationship is based on integrating the Clausius-Clapeyron equation; (6) the
vapor heat capacities are constants; and (7) material dependent gas constants are used to relate
partial pressures, densities, and a mixture vapor temperature. There are two differences from
the AFDM-SAEOS model. First, particle and liquid densities are independent on their
temperatures, but pressure-dependent compression resulting from higher cell pressure is
assumed. Second, an inconsistent density dependence in the vapor internal energy is removed
even if we independently assign the values to the specific gas constant and the heat capacities

for vapor and liquid. This means that temperature-dependent heat of vaporization is allowed.

B.2. Simplified analytic EOS functions for solid propeities
The specific internal energy of structure is given by
€sm = Cusmlsms (B1)
and hence the solidus energy is defined by
Esoim = Cus.mTsol M (B2)
where €,y is the constant heat capacity of solid. The structure temperature as a function of

specific internal energy is

— 41 —
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€,
Tom =2, (B3)

CVS.M
The structure microscopic density is assumed to be constant, or

Vg, = CONSL. (B4)

For particles, we neglect the temperature dependence of the particle compressibility, and

approximate the compressibility of the specific volume using the constant speed of sound in the
liquid state:

T, =Ty, and (BS)
v (LY

Uy =V + (—5PL—)MP, (B6)

where

° 2

(M) - _(_%n_) , (B7)
P Ju \Vstm

The right hand side of Eq. (B6) is also used for the liquid compressibility.

B.3. Simplified analytic EOS functions for vapor properties

B.3.1. Vapor pressure
The vapor obeys the ideal gas law:

—_ RMTG
(D

me (B 8)

To obtain an expression for the vapor-pressure curve, we start with the Clapeyron equation,
(21). By making the Clausius approximations of assuming the vapor obeys the ideal gas law
and neglecting the liquid volume, Eq. (21) becomes the Clausius-Clapeyron equation

(ﬂ)_) — hlgpSnl (B9)
dl Jsa RyT, 2

Sat

Assuming constant heat capacities, the heat of vaporization is given by

Tsu
hlg = hlg.ref + -[T . (cv.Gm + RM - Cp.Lm )dT

= hlg.ref + (Cv.Gm + RM - cp,Lm )(TSat - Tmf) ’ (B 10)

where T is a suitably chosen reference temperature. Equation (B10) shows the heat of
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vaporization has a linear temperature dependence. Equation. (B9) may be rearranged and
integrated as

m(&) = A(_l_ .__1_)_;. Bh{z‘ial), (B11)
p ref Tref TSal Tref

where
1 N

A= 'R_‘[hlg,rcf - (Cv.Gm + RM - Cp_Lm )7:»31'], and (Blz)
M
1

B= E_(Cv.cm +Ry— cp.Lm). (B13)
M

Equation (B11) is the three-parameter vapor-pressure expression. ~Assuming the constant heat

of vaporization, A, or
Coom T Ry = Cpra =0, (B14)

Eq. (B11) is approximated by the two-parameter equation:

Inpg, =—-—%5—+Inp,, (B15)

where In P;A is the constant of integration. Eq. (B15) can be written as

Psu = Pu GXP(— —M) (B16)
Tsu
where Ty = III‘;'M . Although Eq. (B14) does not represent the fact that €, g, and €, ., canbe
M

significantly different for the material of interest, such as water at its boiling point, the error by
Eq. (B15) instead of Eq. (B11) is small, if the Eq. (B15) is used only in a small temperature
range and the reference temperature is chosen in the range of interest.

In the SAEOS, from Eq. (B16), the liquid vapor pressure is expressed by

. T,
p:m = PM exp[— TT ) (B17)
Lm

To obtain an expression for the saturation temperature, the saturation temperature is determined
from Eq. (B16),

T .
Towom =~ 70—
m( Pen ] B18)
Pm

— 43 —
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B.3.2. Vapor internal energy

To find the equation for the specific internal energy of vapor, €,, we note that the

thermodynamic relation, Eq. (15), implies that eg, for an ideal gas is independent of vapor

density. As the result, we obtain the following equation:
€om = €Ligam T CuomT = Tiigm)s (B19)

where €,y is the specific internal energy of vapor at the liquidus temperature.  Eq. (B19) is
the thermodynamically consistent definition of vapor internal energy. Note that the vapor
internal energy in AFDM (Henneges and Kleinheins, 1994) is given by the deviation from

saturation condition and leads an inconsistent density dependence in the vapor internal energy

unless Eq. (B14) is satisfied. Applying Eq. (B19)to T; = Ty;m, We obtain
€Ligom = CLigm T hlg.Liq - pLiq.M(vLqu.M ~ Upigm ), (B20)

where h,,;, is the heat of vaporization at the liquidus temperature. Neglecting the liquid
volume and using the ideal gas law, Eq. (B8), Eq. (B20) becomes

€iqom = CLigm + hlg.Liq - RMTLiq,M . (B21)
Therefore, the equation for the specific internal energy of vapor is expressed by

€om = Crigm T Mg ria ~ RuTiigm + Cuom (To = Trigm)- (B22)

B.3.3. Saturated vapor

The vapor obeys the ideal gas law and hence the specific volume of saturated vapor, or

vaporization volume, satisfies the following equation:
me vVap,Gm = RMT‘SM.Gm . (B23)

Substituting Eq. (B18) to Eq. (B23), we obtain Uy, as a function of temperature:

Pm T

Sat,Gm

R,T. y
Vygpom = a0 exr{ L ) (B24)

For the specific internal energy of saturated vapor, or, vaporization energy, Eq. (B22) holds on

the saturated vapor:

€yap.Gm = CLigm T+ h\g.Liq - RMTLiq.M + €6 Tsaom — TLiq.M)- (B25)
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B 4. Simplified analytic EOS functions for liquid properties

B4.1. Saturated liquid

The microscopic density of saturated liquid is assumed to be constant, or
Ucon.Gm = CONSL. (B26)
The condensate energy, defined as the specific internal energy of saturated liquid, is given by
€conGm = €Ligm T CiLm (Tsaom — Tiigm) - (B27)

where ¢,y is the constant heat capacity of solid and the liquidus energy is defined by

€ligm = €sam Tt P

=Cy mlsorm + e (B28)

B.4.2. Compressed liquid

We neglect the effect of compressibility on the temperature, similarly to particle:

+ a7, +
Io=Tnt (_éﬁ) (P— PLw)- (B29)
P ..

The saturated liquid temperature, 7;* , as a function of specific internal energy is expressed by

€L — €L

len = TLiq.M +L'—L'Sﬁ- (B30)
CVL.M

For the liquid specific volume, the constant liquid compressibility is assumed and the

compressibility of the specific volume is approximated by the speed of sound in the liquid state:

+ [oV .
Vi =Vpn + (—5;—'“-)% (P—Pim). (B31)
where
v! = const., and (B32)
Win | oy B, =—|—bieM |, (B33)
P ). ' VsiLm
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Appendix C. Nomenclature

Csa heat capacity along a saturation curve (J kg™ K™')
C,, €, heat capacities at constant pressure, constant volume (J kg™ K™)
E molar internal energy (J mol™")
e specific internal energy (J kg™)
F molar Helmholtz free energy (J mol™)
e partition function for a single molecule
h specific enthalpy (J kg™")

h, heat of fusion (J kg™')

hy, heat of vaporization (J kg™')

k, equilibrium constant (Pa™' or atm™)

kg Boltzmann’s constant (J K™')
N Avogadro’s number

n number of moles
D pressure (Pa)

Pa pressure (atm)
R gas constant (J kg™' K™')

R, gas constant (J mol™' K™')

R, gas constant (atm m™ mol™' K™")

T temperature (K)

S specific entropy (J kg™)

%4 molar volume (m® mol™)

W molecular weight (kg mol™)
y mole fraction

Ve dimer fraction

z, critical compressibility
Z molar partition function

Greek letters

a, volumetric thermal expansion coefficient (K™)
Bs adiabatic compressibility (Pa™)

B isothermal compressibility (Pa™")

Vg speed of sound (ms™)

0 density (kg m™)

p macroscopic density (kg m™)

v specific volume (m’ kg™')

U chemical potential (J mol™")
Subscripts

A atomic sodium (monomer)

B sodium vapor molecule (dimer)

Con  saturated liquid

Crt, ¢ critical point

G vapor mixture

Gm material component m in vapor field
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1] labels of components in a mixture
1 liquid state

Liq liquidus point

LigG  vapor at liquidus point

Lm energy component m in liquid field
M material number

m melting point

s solid state

Sat saturation

Sm energy component m in structure field
Sol solidus point

T total

Vap saturated vapor

Superscripts

D dilute vapor

+ lack of pressure dependence
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Table 1. EOS parameters for UO,.

€sq = 1.12157x10° T, = 3.12000%x10° |VUsqy = 1.03620x10°*
i = 1.39871x10° [Ty = 3.12000x10°® |V, = 1.12867x10°°
€ca = 4.99290x10° Teo = 1.06000%10° |Pcx = 1.56000%10°
Pca = 1.57873x10° i = 3.04328x10° el = 3.04329x10°
€ = 3.01247x10? R = 3.07945x10 W = 2.70000x107
a;, = 4.44390x107 |45, = 4.89576x107' |Gy =-2.83438x1072
b, =-1.00628x10" |by; =-7.86430x10% |by = 5.84342x107
a, = 8.81083x107 a, =-2.04486x107% |4, = 1.86174x107
a, = 3.47820 as = 2.95237x10 4, =-1.69116x102
b, = 2.17296x10 b, = 4.42327x10" |bs =-7.99342x10*
b, =-8.88130
€ =-3.51500x10 €, = 6.72600x10 €3 =-4.70436X10
c, = 8.08263
d, = 3.93703x10" |4, =-1.81812x10" |[(d; = 1.74487x107
d, = 2.89613 d, =-1.54733 ds = 2.07800
fu =-3.61402x107? |fi, =-4.22202x102 |fi5 =-1.68215x10
fie = 3.17194x10 fis  =-2.92392x10 fise =-1.42655x107"
(%} = 5.52486x107 (g-;;pﬂ) =-5.46331x107*

» ). = 1.91288x10
s, = 1.41301x107* s, = 2.94299x10° |4 = 2.85846x107*
as, = 2.00000x107
bs, = 3.90118x107 b, = 2.64047 by = 1.79946
b = 9.17799 bss = 2.31365x10 bss = 6.07538x10
€ = 2.97266x10° €z = 2.35586x107* |Cg =-8.26332x1077
Cea = 9.69434x107% |Cgs = 4.22861x10™* |[Cg =-8.11911x107°
dGl = —mm e dGz = T 0=
foo = 5.57168x107" |fa = 2.78675 fas = 1.69876x107
fea =-1.76528x107°
s,y = 4.50854x107* Gy, =-1.57919x107° |G, = 1.69876X%107
Qs =-1.76528x107°
be, =-1.03384x10"" |bsg =-1.48030x107"" |bss =-3.78342x107'
bys = 8.01887x107 |bgs = 2.53025x1072 |bss = 7.62684%107°
€y = 5.14152x102 Csz = 5.84459x107" |Csnis  =-8.30648x1077
Csus = 9.81132x107° Csus = 1.91882x107° [Csg = 2.59729x107°
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Table 2. EOS parameters for MOX.
€sq = 1.05162x10° Ty, = 3.00200x10° Vg = 1.00230x107°
ey = 1.31829x10° T, = 3.04100x10° V; = 1.08814x10™"
€. = 4.99290%x10° T, = 1.06000x10° Pce = 1.56000x10°
Pca = 1.57873x10° € = 2.98033x10° el = 2-98034x10°
¢ = 3.06427x10? R = 3.07945%10 %4 = 2.70000x107"
a, = 4.68166x107" a;;, = 5.24030x107 a;  =-9.59833x107?
b, =-6.48590%x107 b, =-1.62062x107" by = 7.27906x107?
a, = 8.41923x107 a, =-1.69174x107? a, = 1.47156x107?
a, = 3.68955 as = 2.89670%x10 as =-1.66741x107
b, = 2.17296x10 b, = 4.42327x107" b, =-7.99342x10*
b, =-8.88130
c, =-4.16525x10 . = 9.47848x10 €3  =-7.88238x10
€., = 1.97832x10
d, = 3.72680x10™ d, =-1.67343x10" d; = 1.44446x10"
d, = 3.06379 ds =-1.55974 ds = 2.09893
fu =-1.32899%x10™ |fi;, = 1.90472x107 fis  =-1.42352x10
fiu = 2.15440x10 fis  =-1.93115x10 fis =-1.42655x107"!
(aTL ) = 5.85547x107° (%) =-5.46331x107"¢
op dp
%) :
ap = 1.91288x10
fcn
a;;, = 1.41301x107* g, = 2.94299x102 dg; = 2.85846x107
ag, = 2.00000x107*
bs, = 3.90118x107" [bsm = 2.64047 by = 1.79946
bss = 9.17799 bss = 2.31365x10 bse = 6.07538x10
s = 3.02512x10° Cc = 2.41081x10°° Cez =-8.14218x107
Ces = 9.69623x107" Cgs = 4.17946x107" Ces =-8.32298x107°
dm = m——— dcz = ——————=
for = 5.57168x107%  |fea = 2.78675 fos = 1.85168
fea = 1.07188x10
a5, = 4.50854x10 ag,, =-1.57919x107 G, = 1.69876x107
Ogye =-1.76528%10"°
by =-1.03373x107" be, =-1.47509x107° |bgs =-4.25199x107'
by. = 9.43396x107 |bgs = 2.30701x107%  |bsue = 1.25429x107
Csn = 5.20115x10° €z = 4.38079x107° Csaz  =—7.99968x10”
Csws = 9.81132x107" Cous = 1.93566X107° Csus = 2.74910%x107°
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Table 3. EOS parameters for stainless steel.

2 9.12379x10° T, = 1.71300%10° Uy = 1.36168x107"

€liq 1.25158x10° I, = 1.75300x10° Uy, = 1.41420%x107*

€cn 8.20580x10° T.. = 9.60000x10° Pca = 1.14300x10°

Pca 4.56760%x10° € = 7.73961x10° e = 7-73961x10°

Cc = 2.22969x10°2 R = 1.48646x10? W = 5.59354x107

a4, = 8.56796x107! a, =-3.28896x107 a, = 2.92311x10°

b, -9.08374x102 |by, = 4.23217x107% |by =-1.96932x107?

a, 1.02425 a, =-6.82077x1072 a, = 6.60477x107°

a., 6.00388 a5 = 5.95140 as = 0.00000

b, 2.37361x10 b, = 1.54890x107* b, =-5.07204x10*

b, -3.30628

L -9.23249 €. =-1.74176x10 s = 3.84477x10

e =-1.89791x10

d, 1.81594x107" d, =-6.22683x10" d, = 8.98282x107°
| dy, 5.17704 d; =-1.62972 ds = 2.71165

Ju -2.58082x10™" |fi, = 1.01637 fs  =-1.55026x10

Js 4.54114x%10 fis  =-4.07002x10 fis =-1.01686x107"?

(aaT;m) = 1.92381x107° (%’“—) =-6.58746x107'¢

(% -e

> ). = 6.06817x10

ag, 1.51243x107* ag, = 2.02244x10° ;s = 6.50753x107*

gy 2.57346x10™

bg, -1.19877x10™ b, = 4.83281 bsy =-1.04117

bg, 1.28107x10 bss = 9.77240 bes = 6.14938x10

e 2.15388x107 Ce = 9.04415x107° Cg3 =-2.83239x10°°

Coa 8.33333x107 €es = 2.19035x107° Ces =-8.43355x10"°

dGI ——————— dcz = mmm =

fa = 3.48245x10™ foo = 4.39524 fos  =-7.32274x107

foo = 1.43431x10

Qg = 5.77921x107* ag,, =-2.08089x107° Ogy =-1.61242x107°

ds,y =-6.56103x107"

b,y =-9.11919x107° begs = 0.00000 |bsws = 0.00000

bgw = 8.33333x107! bes = 4.03621x10%  |bse = 1.86344x10°°

Csi = 6.80662x10° Coe = 3.91671x107% {€sn  =-2.32314x10°¢

Csas = 8.33333x107! Csus = 4.14974x107° Csue = 1.79897x107°
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Table 4. EOS parameters for sodium.
€50l = —————== Tsm = mm————= Usq1 = ———————
€iq = 2.06717x10° T, = 3.71000%x10? UV, = 1.08029x107
€cn = 4.17692x10° Tee = 2.50370x10° Pecn = 2.19000x102
Pca = 2.56406x107 uc = 4.57699x10° hac = 4.57844x10°
¢ = 4.60613x10? R = 3.61661x10? W = 2.29898x107?
sy, = —————— As; = ——————= Agy = —————
bsn = —===—— bsz = TTmmm— b53 = Temm
a, = 5.76094x107 a, =-2.33486x107? a, = 4.72888x107"
a, = 1.99989x10 as =-1.08409x10? 4 = 8.96169x103
b, = 2.21057x10 b, = 0.00000 b; =-1.26337x10*
b, =-4.67200x10"
Cy  =—-2.42195x10 €, = 2.99496x10 €3 =-3.39662
s =-8.16499
d, = 6.276650x10% |d, =-2.217050x103 |d; = 2.277400x10™*
d, = 1.707250%10 ds =-1.267217 ds = 2.598375
fu =-3.09510x107"* |f,, = 5.59746x10* |fis =-4.64421
fuu = 4.33770 fis =-3.36198 fis  =-1.46413x107°
(%%"—) = 9.51892x107® (%‘;—p'-&) =-1.85485x10"
aT;,
( P L = 2.11232x107°
as, = 2.93447x107* a4, = 1.23634x10° Gg; = 1.96134x1072
g, = 4.92937x107
bs; = 2.42590x107* b, = 7.33754 bsy =-3.20191
bsy = 1.88331x10 bss = 3.94583 bes = 7.19859x10
Cei = 3.35053%x10? €z =-4.36960x107! €cs = 1.83657x107*
Cea = 6.98966x107 Css = 6.74084x1073 €ee =-1.09662x107"7
d;, =-2.14845x10 de; = 9.21571x10°
for = 9.50847x107 |fe = 6.26498 fos = 9.88924
fea = 2.19575x10
ag,, = 1.80128x107 G52 =—-8.05016x107° Osy = 4.82697x107°
Agyy =-8.53040%107°
by =-2.57567%x10"" |bg, = 3.02115x10° |bsy =-2.75445x107
b = 9.18640%x107 bsys = 5.35439x107? bsus = 4.88971x10°°
Csmi = 9.98522x102 Csan = 1.14342x107 Csas = 1.40119x107
Csas = 9.98522x107 Csws = 2.76460x107° Csus = 1.18490x107°
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Fig. 1. Vapor pressure of stainless steel.
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Fig. 2. Heat capacity of saturated sodium vapor.
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Fig. 3. Specific enthalpy of saturated sodium.
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. 6. Density of type 316 stainless steel on saturation curve.
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Fig. 7. Specific enthalpy of type 316 stainless steel on saturation curve.



