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DISCRETIZATION OF CONVECTION-DIFFUSION EQUATIONS WITH FINITE-
DIFFERENCE SCHEME DERIVED FROM SIMPLIFIED ANALYTICAL SOLUTIONS

Viadimir Kriventsev*

ABSTRACT

Most of thermal hydraulic processes in nuclear engineering can be described by general
convection-diffusion equations that are often can be simulated numerically with finite-difference
method (FDM). An effective scheme for finite-difference discretization of such equations is
presented in this report. The derivation of this scheme is based on analytical solutions of a
simplified one-dimensional equation written for every control volume of the finite-difference mesh.
These analytical solutions are constructed using linearized representations of both diffusion
coefficient and source term. As a result, the Efficient Finite-Differencing (EFD) scheme makes it
possible to significantly improve the accuracy of numerical method even using mesh systems with
fewer grid nodes that, in turn, allows to speed-up numerical simulation.

EFD has been carefully verified on the series of sample problems for which either analytical
or very precise numerical solutions can be found. EFD has been compared with other popular FDM
schemes including novel, accurate (as well as sophisticated) methods. Among the methods
compared were well-known central difference scheme, upwind scheme, exponential differencing
and hybrid schemes of Spalding. Also, newly developed finite-difference schemes, such as the
quadratic upstream (QUICK) scheme of Leonard, the locally analytic differencing (I.LOAD) scheme
of Wong and Raithby, the flux-spline scheme proposed by Varejago and Patankar as well as the
latest LENS discretization of Sakai have been compared. Detailed results of this comparison are
given in this report. These tests have shown a high efficiency of the EFD scheme. For most of
sample problems considered EFD has demonstrated the numerical error that appeared to be in
orders of magnitude lower than that of other discretization methods. Or, in other words, EFD has
predicted numerical solution with the same given numerical error but using much fewer grid nodes.

In this report, the detailed description of EFD is given. It includes basic assumptions, the
detailed derivation, the verification procedure, as well verification and comparisons. Conclusion
summarizes results and highlights the problems to be solved.

*) INC International Fellow

Thermal Hydraulics Group, System Engineering Technology Division, O-arai Engineering Center,
JNC, Japan
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surface of the control volume
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flux of transported quantity
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T
\’4
turbulent Prandt] number, ﬁcj‘}-——-

physicé.l source term in transport equation

aggregate source term contributed by term from other directions

an extra source term in finite-difference discretization

temperature

velocity vector and its components in regular Cartesian coordinate system

dynamic velocity, /¢ /8
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velocity components in rotated coordinate system
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i. INTRODUCTION

Most transfer processes including fluid flow and heat transfer can be described by general
convection-diffusion conservation equation:

%{’z_fhdw(paf) =div(TVf S, 0

where f is a scalar value that is convected by a flow moving with velocity # and density p and
diffuses with diffusion coefficient I". S'is the volumetric rate of f-generation.

Frequently, for many engineering problems, equation (1) should be solved numerically in
three dimensions in order to predict velocity and temperature distribution correctly. Advanced
turbulence models, such as Large Eddy Simulation (LES), also demands transient simulation in
three-dimensions. Whereas this kind of analysis requires a lot of CPU time, the great attention
should be paid to the numerical method and discretization technique.

In many situations, Finite-Difference Method (FDM) is a choice. Numerical procedure of
FDM consists of the following main steps:

i)  Dividing of calculation area in elementary control volumes [1] using orthogonal or non-
orthogonal mesh system

ii}  Discretization of Eq. (1) on control volumes that results in a linear equation for every
control volume

iii)  Solving of the system of these linear equation

In this report, we will concentrate on discretization of Eq. (1) over orthogonal mesh systems.
Along with extensively used conventional discretization procedures for solving Eq. (1), such as a
central difference scheme, an upwind scheme, exponential differencing and hybrid schemes of
Spalding and a power-law scheme of Patankar [1], a number of new formulations have been
developed in recent years. Above all else, mention should be made of the quadratic upstream
(QUICK) scheme of Leonard [2], the locally analytic differencing (LOAD) scheme of Wong and
Raithby [3], the flux-spline scheme proposed by Varejago in conjunction with the multigrid solution
method [4], as well as the latest LENS discretization of Sakai [5]. Above mentioned new
formulations enable more accurate solution using a mesh system with fewer grid nodes. Most of
them use one-dimensional locally “exact” analytical solution in discretization, which helps to
increase the precision dramatically. However, at the same time, they require more computational
efforts and sometimes may result in oscillatory and even divergent solutions. Further improvement
of locally analytical approach while taking into account spatial distribution of diffusion coefficient
I" was proposed [7,8]. This work reports the improved efficient finite-differencing (EFD) scheme
with extension on transient convection-diffusion problems of fluid flow and heat transfer. The
detailed EFD formulation is also given.
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2. THE EFFICIENT FINITE-DIFFERENCE (EFD) SCHEME DERIVATION

Common EFD procedure is based on the standard control-volume method [1]. In general, in
order to obtain a finite-difference form of the differential equation, we integrate Eq. (1) over the
control volume according to Patankar [1]. This integration gives the following

J jjj ofdv

4 j (piif V7 JiF = jj [sav. @)

The finite-difference discretization consists of replacmg the integrands in Eq. (2) by their
estimated values. In the following, we further consider an application of the EFD numerical
scheme that was proposed for one- and two-dimensional steady-state and transient convection-
diffusion problems in Cartesian coordinate system.

2.1 One-Dimensional Steady-State Case: EFD Formulation

The convection-diffusion process in a one-dimensional steady-state formulation can be
described by the following conservation equation:

Hpu /) _J I , .
P &(r(x) ax}r S(x), : (3)

where O is substance density, #, is flow velocity in x direction, I'(x)} and S(x)} are diffusion

coefficient and source term both dependent on the X coordinate. Let us consider the control volume
shown in Fig. 1. Integrating Eq. (3) over the given control volume gives the following

Xpraxfz
J(x,+Ax[2) ~ I (x, - 8x/2) = [S(x)dx, 4)
x-axf2
where flux of f is definedas J=pu f—-T = ZA .
x
Xi.] X7 X; e i+ i+

Ax

Figure 1. Typical one-dimensional control volume with uniform grid

Conventional upwind approximation of the interface fluxes in Eq. (4) for the left-hand side
of control volume is as follows:

) = o) £ Ty i e |
T =I6D=pule) f, - T Eta, )
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| — Y >
where _7(;[.i = X, ié’f_’ "= i—1, u(x[ )= 0
2 ia u(xl_) < 0

For positive 1 values, it leads to the following discretization of Eq. (3):

pu £ = pur . —[rf RS/ A R
AX AX y.

(6)

where superscript indices <> and <—> denote the value at the corresponding X;, points. S is
average value of S over the control volume.

It is well known that this upwind scheme discretization is most simple and it cannot predict
an accurate solution for all range of Reynolds or Peclet numbers. The main problem is a “false™ or
numerical diffusion and a lot of improvements were proposed to suppress it. The exponential
differencing (ED) scheme [1] takes into account local analytical solution of Eq. (3) derived for zero
value of the source term between two adjacent control volumes. It results in the following
expressions of interface fluxes:

- - f; - f;_l 1 + + j;+l —Ji
=pu | f ——2 Ld J = pu . ——
Jo=p { “ exp(Pe) -1 J pui /. exp(Pe )1 ) (7)

pu;ax
T

I

where the grid Peclet number is defined as Pef =

Recently, several other discretization schemes based on locally exact solutions have been
proposed. Among them the LOAD scheme [3] takes into account the source term in Eq. (3) when
an analytical solution is derived for the local control volume. It is assumed that this source term is
constant over each control volume. The flux-spline discretization [4,9] is based on the assumption
that within the control volume total flux in a given direction varies linearly along the coordinate.
For example, the flux in the x-direction for the control volume around the grid point X; (see Fig. 1)
is given by

+ -
J(x)=pu_f ~ rd .- +-J——i—(x—x;). )
ox Ax
It means that the source term in Eq. (3) is considered as a constant within the control volume and, in
fact, both, LOAD and flux-spline schemes, use the same basic assumption. The difference between
them is way of their further treatment. Thus, the flux-spline scheme uses an iterative procedure to
correct J and J * fluxes, while LOAD does not. Anyway, numerical results of both methods are
the same in principle. Both schemes produce three-point linear equations for each node as
following

a,fi+bfioy+eifin+4d, =0, 9

which allows to implement boundary conditions easily and to use standard matrix inversion
algorithms like TDMA (Tree Diagonal Matrix Algorithm) or one-dimensional sweeping.

Another recently proposed scheme LENS [5] deals with the convection-diffusion equation with
absorption term and takes into consideration parabolic source term distribution:

S(x) =ay +a1x+a2x2. (10)

_3—.-
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This interpolation allows to obtain very accurate solution even on coarse grids however it
should be mentioned that use of the interpolation scheme by Eq. (10) leads to four-point linear
equations for each control volume that demands a specific solution procedure. Standard Gauss-
Seidel iterations are also acceptable but efficiency of this algorithm is too poor to satisfy conditions
of two- and three-dimensional problems commonly used in nuclear reactors analysis.

When deriving a locally analytical solution, all three discretizations in previous studies
assume that diffusion coefficient I" is a constant within a control volume: i.e., it does not depend on
the coordinate. This assumption is incorrect in case of turbulent flows because turbulent viscosity
and conductivity vary highly between adjacent grid nodes especially near the wall.

To overcome these limitations, EFD was proposed [7,8]. The development of the EFD
scheme was presented at NURETH-8 conference [10] and later, the newest detailed description of
EFD was published {11]. In this report, we discuss the improved implementation of EFD for
calculation of turbulent flows with complex source terms and boundary conditions. At first, we will
derive improved EFD formulation in a common case. In doing so, for one-dimensional steady-state
problem we consider the following implementation of Eq. (3) to the local region w1thm X;_;and x;
shown in Fig. 1:

Apuf) _ 8(@- - x)r}_hs + (e=x7)s, (1)

73 o

r-r_, - S-S5
where 1_‘.'— ,S,.=S'——‘—'!.
Ax Ax
Linear interpolation of the source term S(x) and diffusion coefficient I'(x) is used here.

With appropriate boundary conditions, namely values of fat i and i~/ points:

F )= fims f)= 1, | (12)

we obtain the problem to be solved for the local £ distribution. What we finally need to derive is the

value of the flux J "~ at the interface between adjacent / and i~/ control volumes at the point x;. as
follows:

_ JJ
J = pu f-Tx)= :
:( Yy . (13)

]

Integration of Eq. (11) gives the following:

puf=+e-x )L + (x—x;)S;+(112x—f_)iS,.’+J“. (14)
ox

Commeon solution of Eq. (14) can be written as

f(x)zC(F' (x x; )l"')p Ty Ju—;u—li_ﬁ-i-al(x—xf)-f-az(x—x;)z (15)
where a; = £+—2£ and a5 = 5 =5 .
pux =T 2[.Pe,-_ IPLTRIISY
I~y

....4_
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Constants of integration C and J~ should be found from boundary conditions (12). For the left-side
interface flux, it gives

J-zpu;ﬁ_,-ffl“‘ﬁi& +85, (16)
Ax
_ =
Pe r
- T BRI
where K =Pe; || —t— -11 ,
I
i—1
/

and D=
Pe — I i—1

It is easy to see that Eq. (16) differs from simple upwind discretization given by Eq. (5) in a
corrected diffusion coefficient K and a new source term S depending on the source distribution
near the grid node. While K depends only on the mesh Peclet and diffusion coefficient
distribution, S depends also on spatial source term distribution. It should be noted here that, in
some special cases, including of standard constant diffusion coefficient I' distribution, Eq. (16)

gives “zero division” numerical errors when applied directly in a computer code and thus the limit
should be taken.

Final EFD formulation consists of substitution of Eq. (16), derived for both left- and right
sides of control volume, to the balance Eq. (4). Then, the integral in the right-hand-side of Eq. (4)
should be approximated also. Commonly we use a three-point parabolic interpolation that yields the
following:

X+axf2 _
IS(x)dx = Sax + S =25, 5, AX . (17)
X;-Axf2 24

As a result of substitution of Eq. (17), Eq. (16) and corresponding equation written for the
right-side of the control volume into the Eq. (4), we obtain a standard three-point linear equation for
the given grid point as following:

aifia +bfi +¢ifis +d; =0, - as)

where d; could be written as d; = 4,5, + B;S; +C,;S,,;.
Equation (18), when written for each internal grid node with appropriate boundary
conditions, gives a system of linear equation to be solved.

_5_'
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3. ONE-DIMENSIONAL SAMPLE PROBLEMS

3.1 Linear Distribution of Source Term

To examine the accuracy of the scheme described so far when dealing with nonuniform source
term, use is made of a sample problem in one-dimension defined by Eq. (3), where

So -!-—x OSxS—B—
2 4 |
S(x)=14S,(x—1) %stl . (19)
0, 1<x<oo

LY

with the boundary conditions 7(0)=7(2)=0. Similar problem was originally considered by

Leonard [2] and Prakash [6] to examine efficiency of QUICK and LOAD schemes. Figure 2 shows
a comparison of numerical results of the relevant schemes with an exact analytical solution.
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0.002

1) |

Pe=02
6 grid nodes

0.000

-0.002
'0.004 T T
0.0 0.4 0.8 1.2 1.6 X 2.0
0.20
fx) Pe =100
- 6 grid nodes
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0.00 -
-0.10 | T T T 7
0.0 0.4 0.8 1.2 1.6 X 2.0

Figure 2.  Comparison of numerical results calculated by upwind, exponential, LOAD, QUICK
and EFD for one-dimensional steady-state problem using 6-nodes mesh;
Pe =10.2(a); Pe = 100 (b)

With all methods numerical S(;Iutions can be calculated for all Peclet numbers from 0.2 to
1000 except for the QUICK scheme. Our realization of QUICK was found to become unstable for
the small mesh Peclet numbers. All schemes also predict solutions close to the exact selution with

large grid point numbers. For example, when calculated for Pe=/000, to achieve the same
accuracy of £= 1 07, where the accuracy index £ is defined by

N .
1 points . exact
£ = 2 f ( X; )numerwal _ f (xi) , (20)
N points =l

upwind and exponential schemes require about 800 grid points; LOAD and QUICK ~30 grid points;
and EFD uses 6 points only. This result does not surprise because EFD should produce an exact

Y
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solution if at least one grid node is placed to each point linking the adjacent region of the source
term defined by Eq. (19) for this kind of the source term distribution, namely linear functions. For

the source term defined by Eq. (19), corresponding points are x = (0, 0.75, 1.0 and 2.0.

3.2 Adding Absorption Term

The sample problem considered in above section is easy to be solved by the EFD because the
source term distribution given by Eq. (19) is linear. It correlates exactly with the main assumption
of the EFD scheme that the source term varies linearly between adjacent grid nodes. To highlight
advantages of EFD, while running under complex conditions, another problem has been chosen to
solve one-dimensional steady-state convection-diffusion equation with more complex source term
and with additional absorption term given by the following

2
Pei%—+Pf=‘9_ f+Q(x), 1)
ok ox’
with boundary conditions {f{0)=1, f{1)=0}. This problem was originally considered by Sakai [5]
to check the LENS scheme especially developed to manage absorption and source terms. The
finite-difference discretization of Eq. (21) by the EFD scheme for the given control volume / is
written in the following

T —J7 +Pfisc = [O(c)dx, 22)
Ax

where J; and J; are defined by Eq. (16) and the right-hand-side integral of the source term Qis
approximated by Eq. (17). It should be mentioned that when we calculate the interface fluxes given

by Eq. (16) compound source term .S is used as follows
S;=Pfy +0;. 23)

Whereas values of S; used at three points 7, i+, i~/ depend on function f,-v spatial
distribution, we should use an iterative procedure to correct source term S at these grid nodes.

Thereby, the superscript V in Eq. (23) refers to the previous value of f. It has been shown that two
or three iterations are enough to reach the accuracy of 0.1% for problem under the test.

Figure 3 shows the distribution of f in the x-direction in case of large absorption term

P=1000 and source term given by Ox)=(x-0.5) for Peclet number Pe=500. This sample was
considered by Sakai [5] (see p.65, Fig. 8) and results calculated by the QUICK and LENS schemes
have been taken from that figure. The 16-nodes grid was used by Sakai [5] but the EFD has been
tested on 16- and 6-nodes meshes. A comparison shows that EFD has already reached good
agreement with the exact solution using 6 grid points and numerical solution is practically coincides
with analytical one for 16-points grid. In this particular case, solution calculated with EFD is better
than that predicted by LENS.
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1E-1

1E-2

1E-3

1E-4

1E-§

1E-6

Figure 3. Comparison of numerical solutions of Eq. (21) with exact analytical solution; Results
calculated with EFD are shown on 16- and 6-nodes grids; others for 16-nodes grid

We would like to note here that the LENS scheme was especially developed to handle
equations with large absorption [5]. The application of EFD is more universal, namely, it works
with all types of convection-diffusion transport equations. While LENS takes into consideration
locally exact analytical solution of Eq. (21) with the absorption term separated from others, EFD
simply treats that term as an extra source. Nevertheless, EFD predicts a more accurate solution even
in this special case. ‘

3.3 Transient Problems: Initial Step Propagation

To apply the EFD scheme to transient transport problems, we consider the transient term as
an extra source and follow the procedure similar to that used to describe the absorption term
behavior in the steady-state problem considered above. Namely, in order to obtain a discretization
of the following one-dimensional transient convection-diffusion equation

a(pf) + o (puxf) =_‘2{1‘*(x)g:_)+ O(x), 24)
) .

or o o

we integrate it over the control volume (shown in Figure 1.) and use Eq. (16) for the interface heat
fluxes on the left and the right side. Using a full-implicit form of a transient term, we obtained the
following finite-difference discretization of Eq. (24):

P(ffk —fk'l)%JrJf—Jf = IQ(x)dx, (25)
Ax

where A7 is the time increment; and indices & and -/ refer to values on current and previous time

| steps, 7, and 7Tj.; respectively. We also use Eq. (17) to represent the integral at the right-hand-side
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of Egs. (25) and (16) to derive J f and.J; interface fluxes. In doing so, we define the source term S;
in Eq. (25) as

’ k=1
S:':Qi"‘pff / : (26)
A1

This value should be corrected by iterations and superscript index V refers to the latest
iteration step. It has been found that two or three iterations are enough to achieve a good
convergence. Of course, it depends on a problem to be solved, but for all problems considered this
algorithm has shown a good convergence.

To check EFD and compare the accuracy, we take a sample problem where an initial sudden
step of transported quantity is propagated by the flow in one dimension. It is described by the
governing equation (24) where the source term Q(x)=0 with following initial and boundary
conditions

f(x,0)=0, 7)
f(0,2)=1,
f(L,7)=0.

It is well known that for this kind of convection-diffusion problems, when one analyzes
using ordinary methods such as upwind or the exponential schemes, it is difficult to obtain the
accurate numerical solution due to the numerical diffusion. Figure 4 shows a calculated distribution

of f{x, 7) in x-direction for ¥p =0.005 and 7/p =0.00005, and for the Peclet numbers 100 and

14
10000 respectively. Here, Peclet number Pe is defined as pr )



JNC TN9400 2000-094

Pe =100
15 grid nodes

0.75

0.50

0.00 w‘%—qp

e

1.00 —4

7] )*\4; i Pe = 10000
0.75 \\ 4 40 grid nodes

| a:;-\\\
0.50 A

T N

¢
0.0 0.2 0.4 M 0.

Figure 4. Propagation of the sudden initial step in one-dimension, Standard EFD and LOAD
implementation

As shown in Fig. 4 the upwind and the exponential schemes generate a large numerical
diffusion while EFD and LOAD do not. However, both EFD and LOAD tend to produce
unphysical oscillations for large Peclet numbers. When calculating by the LOAD scheme,

numerical solutions start to oscillate visibly for Pe=100, and, for Pe=10,000, cannot be trusted.

3.4 Transient Problems: Eliminating of Unphysical Oscillations

EFD also generates visible oscillations for Pe=10,000. However, it shows good
agreement with the exact solution and produces the smallest average numerical error among the
schemes tested, whereas error was defined by Eq. (20). It should be noted that both EFD and
LOAD remain to be stable and converge in a few iteration steps. We have found the reason for
those oscillations as following. When deriving an approximation of the interface fluxes according
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to Eq. (16), we have assumed first, that the source term distribution is defined by Eg. (26) and,
second, it should be calculated by iterations. Neither EFD, applying the linear source term
distribution, nor LOAD, assuming the source term as a constant within the control volume, cannot
describe correctly a distribution of the time-derivative term in Eq. (24) on a coarse mesh when a
function of a transported quantity behaves as a sudden sharp step. It leads to a strong domination of

the correction term S in Eq. (16) over the others. This term depends on the function distribution
according to the Eq. (26) and should be corrected by iterations. It is easy to expect that, in some
cases, this algorithm could involve incorrect negative or positive false sources into the finite-
difference discretization of the governing equation (24). In generally, when a linear interpolation
cannot describe the source term distribution correctly, EFD may generate an unphysical solution.
Nevertheless, this solution is close to exact one and the numerical error is the smallest among all
others finite-difference schemes tested in this report.

However, it is important to prevent any unphysical behavior of the transported guantity and
one could apply a number of appropriate techniques to eliminate or, at least, to reduce these effects.
For example, it is a common practice to use the upwind scheme for grid points where oscillations
occur or other symptoms indicate an unphysical numerical solution. It should be noted, when real
problems are calculated, it is difficult to separate numerical oscillations from physical and
meaningful fluctuations of the transported quantity. Thereby, a different algorithm has been applied
in this report. If a mesh and a sharp shape of the quantity do not allow us to interpolate the source
term distribution correctly, we could apply a restriction that suppresses an undesirable domination

of . In short, the main point is to find the grid nodes where the correction term S dominates on
the main term in formula (16), which is defined as pu; f,_, — KI- —f-‘% and set S equal to

this value. It was found that this simple algorithm, being applied to a problem of initial step
propagation, eliminates the oscillations for both LOAD and EFD scheme. Furthermore, an average
numerical error generated by EFD does not grow much. Results calculated by adjusted EFD and
LOAD scheme are shown in Fig. 5.
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Figure 5. Propagation of the sudden initial step in one-dimension; Extra source terms in EFD
and LOAD are limited

Neither EFD nor LOAD methods, corrected by simple algorithm above, generate unphysical
oscillations, although an average numerical error of the EFD scheme has slowly increased for

calculation with Pe = /00. WNevertheless, EFD produces the best numerical solution of all
schemes tested in a range of all Peclet numbers considered. In our opinion, this sample
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demonstrares the ability of the EFD scheme to give an accurate numerical solution for problems
which may be considered as a "hard" to check a numerical technique.

It should be mentioned that we did not compare CPU time for one-dimensional samples
calculated by different methods. First, it is difficult to compare methods which use the different
algorithms to invert the matrices. For the upwind, the exponential, the LOAD and the EFD schemes
we used direct methods while for QUICK a simple iterative procedure was implemented. Data for
comparison with LENS. were captured directly from the paper of Sakai [5]. Second, and more
important reason is the following. In fact, it is not very valuable to compare the computational
efforts for one-dimensional problems because the real problems are two- and three-dimensional. In
these cases, extra iterations increasing CPU time should be applied for locally analytical schemes
such as LOAD, LENS and EFD.
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4. TWO-DIMENSIONAL PROBLEMS

4.1 Application of the EFD Scheme in Two- and Three-Dimensions

The one-dimensional EFD scheme can be easily extended to two- and three-dimensional
problems. In doing so, we consider a change of flux in one direction as a source term in other
directions. This is very similar to the procedure we applied on transient term manipulation. An
interface flux expression (16) resulting from the EFD scheme formulation contains a specific term

S that appears due to the assumption of a linear variation of a total source term in one-dimension
within a control volume. The additional source term involves differences of fluxes at adjacent faces

of the control volume. That the fluxes in a given directions at two faces of the control volume (J*

and J7) are different indicate the presence of physical sources of the transported quantity and/or
multidimensionality. Expression such as Eq. (16) can also be derived for interface fluxes in the
other coordinate directions. For example, the discretization of Eq. (2) over the control volume
surrounding grid point 7,7 in two-dimension Cartesian system could be written as -

P(fu fi7 l)ﬂ?‘ (Jf,H Jx_)ﬁy+(Jf+ Jy")ﬁx HQ(x Y)dedy, (28

where J Ix; vl ,xj_ ) ;v j 7 N ; are the total fluxes of transported quantity f'in x- and y- direction at

corresponding surfaces of the control volume as shown in Fig. 6. These fluxes are defined as

Jf;.':puxf(xﬁ%,yj)—rg o
xf.+7,yf
I =puflo-2 )L
X2y,

i 29)

a

2
7= sy T e
XY+
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Jy _puyf(xi’yj_ézz)_.rg}_ e
) J' 2
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Figure 6. Typical two-dimensional control volume in the Cartesian coordinate system

Since Eq. (16) defines the finite-difference approximation of the interface fluxes, it can be
written for all surfaces of the control volume. Substituting these expressions into Eq. (29), the
following full implicit discretization equation is derived:

k k-1 x— rk x+ rk y— ok y+ rk _
a,;,-f,-,j+b,-jﬁ,j +a; ff,Lj+aij f1-+1,j+a,-j fi,j_l-i-a,j f,-,jﬂ—i-czqu, (30)

where &k and k-1 refer to Tand 7-AT time steps; a's represent the ordinary coefficients, which can

be easily derived from Eq. (16); b;; represents the time-dependence coefficient; and ¢;; is a sum of a
physical source term and additional contribution from the EFD formulation, given by

¢y = Oyaxty+ (S =57 W+ 87 -5 I a1

Whereas every S term depends on the spatial interface flux distribution, which also depends
on the transported quantity distribution, an iteration algorithm should be applied to resolve the

system of equations (30) written for each grid points i,j. We start with the initial values of fluxes

and solve for the transported quantity distribution f{,)) at all the grid nodes. Then, the new values
of interface fluxes are computed. Thus, the system of linear equation should be solved on every
iteration. For the two-dimensional case we come up with a 5-node finite-difference scheme. This

system can be solved by conventional methods such as the two-dimensional line-by-line sweeping -
based on the Three-Diagonal Matrix Algorithm (TDMA).

A computer program that implements a common discretization of three-points locally
analytical schemes has been developed. This algorithm allows using those methods only which
produce three-point discretization in one dimension to make it possible to apply standard line-by-
line TDMA. This limitation does not allow to incorporate those schemes which use four and more
grid nodes in one dimension for discretization. Therefore, we implemented the upwind, the
exponential, the LOAD and the EFD schemes and did not implement QUICK and LENS because
TDMA was used as a basic matrix procedure in line-by-line sweeping.

The computer program is written in C++ in the portable form with user interface running on
PCs under the Windows NT operation system. An Object-Oriented Programming technique [12] is
used to calculate a general convection diffusion problem. First, we define a single base class which
describes all the properties of standard finite-difference methods including grid generation, matrix
operations, input/output, etc.. Second, we derive from that base class a few child ones which
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implement corresponding formula for interface flux discretization according to the numerical
schemes to be implemented. Thereby, the child classes inherit all the properties of the base class
with possibility to calculate whole the problem but differ in a single function (method) only which
defines the formula for discretization coefficients. For example, Eq. (5) is used for the upwind
scheme; Eq. (7) for exponential and Eq. (16) for EFD. It allows correct comparison of CPU time
and other parameters of the several numerical schemes in the same code.

4.2 Fully-Developed Turbulent Flow in Plane Channel: Heat Transfer

As a sample, we consider a heat transfer problem in a plane channel of turbulent flow with
the corresponding boundary conditions for a two-dimensional area.

In order to check an efficiency of EFD for two-dimensional convection-diffusion problems
and to compare numerical results with an exact analytical solution, we use the Cartesian coordinate

system (x,X>) rotated at an angle of 45° relative to the regular (X,y) system as shown in Fig. 7.
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Figure 7. Calculation of the turbulent flow in a plane channel in the Cartesian coordinate system
rotated at an angle of 45°

A steady-state fully-developed energy conservation problem has been chosen as a sample
because it is easy to derive an analytical solution when the boundary condition is the fixed heat flux

on the wall. The temperature distribution for this problem 7(X,)) may be written as
t(y) + const x x. In fact, it is an one-dimensional profile varying linearly in x-direction. The
temperature profile () can be easily found for fully-developed flow and heat transfer.

The energy conservation equation in the transformed coordinate system can be written as
d(pec,wT) d(pc,w,I) é’T) J arl
N =2 A+ A7) |+ 2+ 7 ) (32)
&, o, o, ( o, ) ok, ( o, |

L)
i Y . RS
where W, (x[,xz)——zuu(y) : Wz(xpxz)“‘“g—”(ﬁ ; u(y) is the velocity distribution in

turbulent flow; and A () is the turbulent thermal conductivity that, as we assume for simplicity,
corresponds directly to the turbulent viscosity v T( y) . This assuraption states that turbulent Prandtl

number Pr’ = pec pVT /A7 =1. The distribution of the turbulent viscosity can be derived from



JNC TN9400 2000-094

the axial velocity distribution. In this report, a simple three-layer universal velocity profile is used
as follows:

ulu.=y", y" <5
u/u.=5Iny" -3.05, 5<y7 <30 ,
ulu,=2.5Iny"+55, y*=30

where 2, =./¢ /8 is the dynamic velocity; { is the friction factor; ¥ = yu./v is the non-

dimenstonal distance to the wall. Under these conditions, the governing equation (32), when
written in the original one-dimensional form, can be easily integrated numerically with sufficiently
many points of integration. Due to the one-dimensional integration, we can use as many points as
necessary to ensure the numerical solution is very precise and close to the analytical one. In theb
following, we will refer to it as an “exact” solution.

Boundary conditions for the two-dimensional sample problem are given by the exact one-
dimensional solution above. Governing equation (32) is discretitazed by the upwind, exponential,
QUICK, LOAD and EFD schemes. The corresponding systems of linear equations were solved
using the line-by-line TDMA. The same computer code was used for all the methods tested.
Iterations are stopped when the maximum relative difference between cwrrent value and the one
from latest iteration reaches the predefined error value:

last

T

IS T(xfrxi')

Npoint.s'

Esop > MAX

i=1, f=|

o (34)

T(x]f,x{) ‘

In most ordinary cases, when the total number of grid points is below 70x70, Estop can be

chosen as 1.0E-3. However, for bigger numbers of grid points, &,, should be smaller to assure that
the slow convergence rate does not affect the final solution. This is especially important for precise
schemes, such as QUICK, LOAD and EFD. It has been found, that for huge numbers of grid points
(bigger than 70x70), when these schemes reach relative accuracy about 1.0E-4, additional

increasing of grid nodes does not improve the accuracy. In these cases, the value of Estop sShould be
decreased and decreased significantly. Whereas the calculations included grids with sizes up to

150x150, stop value &, was given as low as 1.0E-8.

In addition, as the QUICK method demands an extra grid point upstream, a special treatment
of the upstream boundary should be used. The boundary value itself is given directly by the exact
solution. For simplicity, the second node value could be also given by the exact solution at the
corresponding node. However, in this case, the comparison of methods considered would not be
correct because the exact information about the second node values is not used by other methods. In
fact, it has been found, that simplification decreases (improves) an average error of the QUICK
scheme by 20-50%. To make it sure the comparison is correct, more complicated but proper
upstream boundary condition proposed in the original work of Leonard [2], is used. For the QUICK
computation, the gradient is also needed at the upstream end of the computational region. This
upstream boundary gradient is chosen to be consistent with quadratic interpolation between the

given boundary value T and the first two interior node values T and 7, as follows:

™ 24,

tbound {

where Ax; is the step value of the uniform grid in the x; direction.



JNC TN9400 2000-094

In addition, the line-by-line TDMA algorithm is slightly changed for QUICK scheme. The
contribution of the extra point is transferred to the source term along with terms from other
directions. It has been found that it does not increase the total number of iterations to reach
convergence. Total CPU time is slightly increased but not significantly.

Figure 8 shows a comparison of calculated results in terms of relative errors compared with
the exact analytical solution, where an average relative numerical error £ is defined as

. ; . exact
| Npoin” T}‘jmrmenca!. _ T(JC]’ , xé )
&= N S exact | (36)
points i=l,j=| ‘T(x,’ , xé )
Relative
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Figure 8. Two-dimensional test problem: variation of average relative error with number of grid
points in x- and y-directions

The results shown in Fig. 8 were calculated for the fully-developed turbulent flow of liquid
metal in a plane channel for Peclet number Pe=100.

The upwind and exponential schemes perform very poor. The false numerical diffusion
seems to be an obvious reason. QUICK is significantly (about an order of magnitude) better but still
not comparable with EFD. EFD demonstrates much better resuits than LOAD and QUICK for the
turbulent flows. This is considered to be due to the fact that the EFD scheme takes into account the
distribution of both the source term and the diffusion coefficient within every control volume.
LOAD treats a source term as a constant within the control volume but assumes the diffusion
coefficient is also a constant between two adjacent grid nodes.

It should be noted again that in this problem the “source term” does not fepresent any
physical source term but the sum of partial derivatives from another direction.

In fact, the difference (in terms of numerical error) between constant and linear source term
distributions is not very big. It can be compared with numerical integration using either rectangular
formula (zero-order approximation) or trapezoid rule (first-order approximation). While the later is
supposed to be more accurate, the difference is often insignificant. Even more, sometimes
rectangular formula integrates even more accurate. Ouly the second-order Simpson method
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improves numerical integration significantly. It is interesting to note here, that the Simpson method
can be considered similar to QUICK.

However, the winning benefit of EFD is the linear interpolation of diffusion coefficient
inside the control volume (along with considering the source term distribution as well). That is why
EFD performs better for turbulent flows. Regular methods such as upwind and exponential
schemes demand very fine mesh system close to the walls because both the transported guantity
(velocity and/or temperature) and turbulent diffusivity profiles vary sharply near the wall region.

Figure 9 shows a comparison of the CPU time vs. numerical error. It is easy to see that with
EFD the numerical error is a few orders of magnitude smaller than that of other schemes considered.
Alternatively, in order to attain the same level of specified numerical error, EFD requires less CPU
time by several orders of magnitude.

CPU Time, sec
1000.000

9\ ! Pe =100
100.000 —- .
10.000 \\ AN ’

N
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Figure 9. CPU time vs. numerical error (Pe=]00)

Numerical values of two-dimensional sample calculations are summarized in Table 1. One
can see that LOAD and EFD schemes demand about twice iterations compared with the regular
upwind and exponential, as well as the QUICK schemes. In addition, in the case of EFD, the CPU
time per grid node is three times longer. LOAD takes even five times longer (per node) due to
many exponential calculations in this scheme. As a result, when locally-analytical methods are
compared with regular ones, the total CPU time is longer as much as five times in the case of EFD
and about eight times for the LOAD scheme.

Nevertheless, those additional computational efforts are well compensated by higher, a few
orders of magnitude, accuracy. In terms of CPU time per given numerical error, the EFD scheme
shows the best performance for this sample problem.

These results are not very surprising because it is observed many times that the “false”
numerical diffusion plays very significant role especially in these mesh nodes where grid lines do
not coincide with the flow direction. However, as it was mentioned above, in these cases, EFD can
predict an accurate numerical solution.
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Table 1  Accuracy &, number of iterations I'T, and CPU time, sec.
(Pentium [I-400Mhz, Borland C++ v.4.0 compiler)

grid Upwind | Exp. | QUICK { LOAD EFD
£ 0.2658 | 0.2339 | 0.1149 | 0.0226 | 0.0053
6x6 |iT 6 3 18 17 18
CPU <0.001 | <0.001 | <0:001 | 0.006 0.006
£ 0.2702 | 0.2202 | 0.1014 | 0.0162 | 0.0019
9x9 |IT 9 4 19 20 20
CPU <0.001 | <0.001 | <0.001 | 0.018 0.009
£ 0.1217 | 0.0567 | 0.0179 | 0.0018 | 6.0E-5
28x28 |[IT 34 24 23 49 49
CPU 0.05 0.04 0.05 0.56 0.28
£ 0.0601 | 0.0118 | 0.0026 | 2.6E-4 | 4.6E-6
63x63 |IT 127 105 105 213 213
CPU 1.16 0.96 1.12 13.1 6.4
£ 0.0413 | 0.0053 | 9.6E-4 | 1.1E-4 | 1.6E-6
94x94 {IT 258 226 226 453 453
cPU 5.5 5.0 5.8 46.4 30.8
£ 0.0279 | 0.0024 | 3.3E-4 | 5.3E-5 | 6.0E-7
141x141|IT 539 492 492 975 975
CPU 29.3 25.9 30.7 211.5 146.0

4.3  Fully-Developed Turbulent Flow in Plane Channel: Flow Simulation

In the preceding section we considered a sample heat transfer problem in a plane channel
with a fully-developed turbulent flow and heat transfer. A steady-state energy equation has been
solved in two dimensions. Detailed description of this sample calculation can be found also in the
latest publication [11]. Here, let us consider similar sample problem that is related to the
calculation of pressure and velocity distribution for the turbulent flow. Again, we consider the
fully-developed turbulent flow in a plane channel shown in Fig. 10. In fact, this is one-dimensional
problem and exact solution can be easily obtained by integration of the following governing
equation for fully-developed flow as follows

I CLANSY:
@)((V'!'erb) > oo (37)

where W is the axial component of the velocity vector; p is the pressure; p is the density; V and

Viurp are the viscosity and the turbulent viscosity correspondingly. For the later, experimental
dependence of Nijsing and Eifler [13] is used in this report:

=|1-exp —0.407—y+— exp —e L , (38)

+

Vturb
*

+

uy Y Y

where ¥ is the distance to the wall,
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Figure 10. Calculation of the turbulent flow in a plane channel in the Cartesian coordinate
system rotated at an angle of 45°

Since the fully-developed flow is considered, the pressure gradient -a-}l is a constant at any
X

point of the channel and therefore, the exact solution of Eq. (37) can be found by integration over
the region {0, Vnat. Because of complexity of relation for turbulent viscosity (38), we use
numerical integration with 5000 points to obtain a very precise solution for axial velocity profile
W{(y). Therefore, we will refer this velocity distribution as an “exact” solution to be used for
comparison with numerical predictions.

Numerical calculations have been performed for the same two-dimension area shown in
Fig. 10 that was used in preceding section. This is a plain square area rotated at the 45° relative to
the regular (x,y) Cartesian coordinate system. The following governing equation are used:

1) Momentum Equations for two velocity components

GO LU _ 1d 3 J [ U
V——-—=———+— V+v,, ) ) ¥+ Vs )2 1
@61 o,  pok &xl[ tb‘%cl) é’xz\ rbaxzj
(39)
¥ W 1d I J (
g—4+V -— == 3y — ( +Vv » ) W (V+Vtur ) )
&Cl &62 P &2 0-551( furt axl ) &2 ’ axz /

1))  and Continuity Equation:
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where Ufx;,x;) and V (x;X,) are the components of velocity vectors in X; and x; directions
which are related to the axial velocity profile as follows:

Ulx,,xy )= cos[%)W(y) and V(x,,x,)= sin(Z—}W(y).

Using the exact solution for axial velocity profile W()) boundary conditions are given as the
first type boundary conditions in inlet boundaries )

U(O,x2)=cos[%}’l/(y} V(O,xz)zgin[%})y(yl
U(xl,O):cos(%}V@l V(x1,0)=sin[ %}W o) @1)

and the second type boundary conditions in the outlet of the region:

Ula, xz)_cos(4]aa__0’), Viax 2)_3111(4]3%’),

=0, (40)

%) ox, @)
U(xl,a)—cos[ ]aW()z) V(x},a)—sm( ]BW(y)
a Xq 4 ax2

where ¢ is the size of square calculation region as shown in Fig. 10.

The system of equations (39), (40) with boundary conditions (41), (42) is solved numerically
using the Upwind, LOAD and EFD discretization schemes. Calculations were performed for the
uniform mesh systems with 10x10, 20x20, 40x40, 60x60, 100x100 and 150x150 grid nodes in each
direction. The calculated numerical velocity and pressure distributions were compared with exact

axial velocity profile W{(y) and constant pressure gradient 52
X

First, let us compare numetical error in numerically predicted velocity distribution. The
results of maximum relative numerical error in velocity defined as

\w(y) Voo Y v (1Y)

E‘w (43)
- ‘ w(y) 1 |

where U xf ,x{ ) and V(xf ,xg ) are numerically predicted velocity vectors are shown in Fig. 11.

One can see that the EFD scheme predicts the best solution (i.e. the minimum numerical error) for
the almost every mesh size except the case of 10x10 grid nodes. Surprisingly, for the low number
of grid nodes numerical error in the upwind and LOAD schemes grows with the number of nodes.
However, if one considers that it is a maximum relative error given by Eq. (43) those results can be
explained by the fact that worst numerical prediction in velocity often occurs near the wall.
Therefore, the bigger number of grid points for uniform mesh system is provided, the first point is
close to the wall and the bigger numerical error can be expected for this point. Nevertheless, the
decline in maximum relative error in velocity distribution is monotonous in case of the EFD
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scheme. It should be noted here, that all methods considered could predict quite accurate numerical
solution of velocity distributions and numerical error averaged over the calculation area is lower
than 1% for the all cases. This result is expectable because boundary conditions are given for
velocity values by the exact solution and velocity distribution has no enough room to develop inside
the calculation area.

10.0%
#= - Upwind Scheme
2‘ 4 -LOAD + +
S g% A -EFD )
3 +
o -+
§=
B
S 50% Ad * -
3 & *
£ 3 A
=
2 x A A
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=
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[ t | ! |
10x10 20x20 40x40 60x60 100x100 150150
Mesh Size

Figure 11. Maximum relative numerical error in velocity distribution vs. number of grid nodes;
Re = 10000

Now, let us have a look for more interesting (as well as more important) results of numerical
prediction of pressure gradient. As it has been mentioned, results for velocity distribution are
within a narrow margin of numerical error because of the nature of boundary conditions. From the
other hand, the pressure gradient is not given by boundary conditions directly and it is calculated
numerically by solving momentum equations (39) and continuity equation (40). Taking in account
that an exact pressure gradient is a constant inside the calculation area, we define an average relative
numerical error in pressure distribution as follows: ‘

| _pled.xt)pld™, 5" )
_ 1 ox exact \/Axlz + Ax%
Ep = 2 a ’ (44)
N points i, j _p
ox exact

where Npofm 1s the total number of evaluated grid nodes and p(xf , x{ ) 1s the calculated value of

pressure at the given grid node. Results of calculation of the average relative error in pressure
gradient are shown in Fig. 12.
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Figure 12. Average relative numerical error in pressure gradient vs. number of grid nodes;
Re = 10000 :

One can see that numerical error in the pressure gradient calculated with the wpwind and
LOAD schemes 1s very high even for very fine mesh system with 150x150=22500 grid nodes in
total. However, the use of EFD scheme makes it possible to reach a satisfactory agreement with
exact pressure gradient even for rough meshes. The huge error in pressure gradient for upwind and
LOAD scheme can be explained by using uniform grid that does not allow fine meshing near the
wall. It is well known that for turbulent flow calculations it is necessary to place at least a few grid
nodes at the boundary layer region, otherwise an accurate numerical solution cannot be guaranteed.
In our case the boundary conditions are given by velocity and pressure distribution is calculated by
flow development. That is why the error in pressure gradient is very high even the velocity values
are calculated with good accuracy. From the other hand, if pressure gradient is given as a boundary
conditton, one can expect good numerical results in pressure but velocity distribution.

Let us consider why the EFD scheme performs much better (in orders of magnitude of
numerical error in pressure) that the regular upwind and even advanced LOAD schemes. From our
point of view the reason is that EFD takes into account the distribution of diffusivity coefficient
{turbulent viscosity in this case) within the control volume. Following from the definition of the
EFD scheme, it allows a better prediction of interface fluxes (shear stresses in this case) between
control volumes. Finally, it results in high accuracy of numerical method.

It should be noted that for laminar flow calculations the difference between LOAD and EFD
ig not so significant but also notable.
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5. CONCLUSIONS

In this report, the EFD (Efficient Finite Differencing) scheme has been developed originally
to solve convection-diffusion transport phenomena for nuclear reactor problems. These phenomena
are pertaining-to the fluid flow and heat transfer in nuclear reactor fuel assemblies, steam
generators, heat exchangers, containments, ..., etc. Frequently, transient problems must be solved
in three-dimensions in order to predict the flow and temperature distribution correctly.
Consequently, one cannot use a two-dimensional approximation because characteristics of the
transport phenomena are essentially three-dimensional. As a result, the 3D transient analysis of
nuclear reactor thermal hydraulics requires a lot of computer memory and CPU time and therefore
any increase in efficiency is desirable and urgent to reduce the cost of calculations. Moreover, real-
time simulators require that computations per each time step must be completed in given time and
accuracy of the simulation depends on the order of a numerical error in a velocity and a temperature
distribution.

The main benefit of EFD is the ability to predict more accurate numerical solution on the
coarse grid. The discretization with EFD are performed by using one-dimensional locally “exact”
analytical solutions for each interface between control volumes with two main assumptions:

« The distribution of the diffusion coefficient between two nodes can be approx1mated by
linear interpolation

e  The source term, which is a sum of the physical source term and partial derivatives from
the other directions including the time-derivative term, is also linear between two grid
nodes

Using these assumptions, the EFD discretization has been derived. When applied to the
convection-diffusion transport equation, it results in a linear equation with standard three-point links
in each direction. Therefore, in two dimensions, it generates a regular five-point discretization
while a seven-point equation is produced in three dimensions.

As a disadvantage, the necessity of iteration procedure to correct an extra-source term should
be mentioned. Another inconvenience is the complicated discretization formula that takes about
three times more CPU time per node than the standard upwind scheme.

However, the numerical accuracy with EFD is a few orders of magnitude better than that
with standard schemes on the same grid. On the other hand, in order to attain the same given
accuracy, the number of grid nodes is significantly smaller. This means the CPU time demanded to
meet that accuracy reduces sharply in the case of EFD.

The EFD scheme has been compared with the exponential differencing scheme of Spalding,
the LOAD scheme of Wong and Raithby, the QUICK scheme of Leonard and the LENS scheme of
Sakai. Benchmark calculations have been carried out including one-dimensional steady-state and
transient flows as well as simplified two-dimensional problems of turbulent fluid flow and heat
transfer in a plane channel. For the fixed number of grid points, EFD has shown significantly better
accuracy than the other finite-difference methods investigated.

We believe also, that an additional research would be useful to prove the stability of the EFD
scheme with different numerical experiments by applying this scheme to more realistic and practical
problems. We expect that EFD will show good performance for most turbulent flow simulations.
Nevertheless, stability and convergence of this scheme should be proven for fluid flow calculations.
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