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(Research Report)
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Abstract

Since thermal striping is a coupled thermohydraulic and thermomechanical phenomenon,
sodium mock-up tests were usually required to confirm structural integrity. CEA and JNC
have developed evaluation procedures of thermal striping to establish design-by-analysis
methodology for this phenomenon. Atienuation of temperature and stress amplitude was
one of the most' important factors in the integrity assessment. Since this attenuation
depends on frequencies of temperature fluctuation, benchmark problems based on
frequency control tests were planned to confirm above procedures. One of benchmarks
provided by CEA is temperature and fatigue evaluation of tubes and plates due to channel
flows. Another problem from JNC is the same evaluation of plates subjected to vertical
jets. This report explains details of both experiments and defines the benchmark

problems.
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1

INTRODUCTION

At an incomplete mixing area of high and low temperature fluids near the structural
surface, temperature fluctuation of fluid gives thermal fatigue damage on the wall
structures. This coupled thermohydraulic and thermomechanical phenomenon is called
thermal striping, which has so complex mechanism and sometimes causes crack
initiation on the structural surfaces that sodium mock-up tests are usually required to
confirm structural integrity of components.

In order to establish design-by-analysis methodology for thermal striping, CEA and JNC
have developed evaluation procedures of this phenomenon. Under EJCC framework,
intercomparison of both procedures is planned through application to the same
benchmark problems. The background of benchmarks are as followings.

Thermal hydraulics and structural analysis has been conducted concerning a tee
junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the
IAEA coordinated research program on Harmonization and validation of Fast Reactor
thermomechanical and thermohydraulic codes and relations using experimental data [1]
[2]. Through investigation of mechanism of thermal striping phenomenon and sensitive
factors of structural integrity at a Tee junction of LMFR piping system, author paid
attention to a sensitivity of induced stress amplitude to frequency of temperature
fluctuation. High frequency components of fluctuation are attenuated in the boundary
layer and are partially transferred to structures. Low frequency components of
fluctuation can be transferred to structures, however they induce small amplitude of
stress, since average temperature of wall thickness fluctuates. In the intermediate
regime, there is the most damageable frequency, such as ~0.1 Hz in the case of the
Phenix mixing tee. As the resuli, induced siress histories are not proportional to time
series of temperature fluctuation of fluid. It means that attenuation factors of stress
amplitude can be rationally evaluated with considering frequency of temperature
fluctuation.

Attenuation mechanism of temperature fluctuation was investigaied through sodium
experiments and their analysis [3] {4]. From above work, attenuation mechanism was
understood to be (1) turbulent mixing, (2) molecular diffusion, (3) non-stationary heat
transfer, and {4) thermal homogenization.

Since this atienuation depends on frequencies of temperature fluctuation, CEA and

"~ JNC planned two kinds of complementary benchmark problems based on frequency

control tests.

One of benchmarks provided by CEA is temperature and fatigue evaluation of tubes
and plates due to channel flows. Another problem from JNC is the same evaluation of
plates subjected to vertical jets. This report explains the details of both experiments and
defines the benchmark problems.
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The objective of the benchmark is comparison of temperature and thermal fatigue
evaluation methods with relation to frequency of fluid temperature fluctuations.
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2.

FAENA EXPERIMENT

2.1.

FAENA SODIUM LOOP

FAENA is a sodium loop mainly devoted to fast thermal shock experiments. The
principle of the tests is very simple : hot and cold sodium jets are injected
aliernatively with electromagnetic pumps inside the channel of the specimen,
which produce cracks at the surface. Possibilities of the sodium rig are as follows :
- heating power : 22 kW o
- mean flow rate is between 0-1600 Ifh (~700 I/h was used for FAENA
experiments)

- domain of frequencies : 0.07 Hz - 0.3 Hz

- fiuid temperature variations from 0 to ~300 °C

A classical air cooler was sufficient to ensure the sodium cold temperature. A
schema of the loop is given in Fig.2.1, as well as of the sodium injection system in
Fig.2.2. An overview of the FAENA compleied programs is given thereafter
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Fig.2.1 FAENA sodium loop.Total power available 22.5 KW, maximum flow rate for P1
and P2 electromagnetic pumps 1.6 m®/h; nominal flow condition 0.7 m*/h
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2.2,

FAENA EXPERIMENTAL RESULTS (COMPLETED PROGRAM)

2.2.1 GENERAL PURPOSE

In Sodium FAENA fatigue tests were performed during period 1988-1997. Data
were acquired in several conditions. For each configuration described below, a
thermal specrmen was used with type K thermocouples placed in sodium and at
different depth in the specimen wall, and for the thermomechanrcal tests we
performed metallographic and Scanning Electron Mrcros__cope examinations with a
view to determine the level of the last crack corresponding to our initiation criteria.

The table below roughly describes the conditions of the different tests including
thermal specimens : S

Geometry Steel Number of  Frequency Inlet Sodium Maximum
Tests .. ] Temperature Variation] Number of cycles
(Hz) (C)
Tube 9Cr1Mo mod 3 007 281 215000
Tube 316L 9 0.07/03 - ~ 281 { 200 18000 f 10°
Tube 316L 3 0.07/03 " 2817200 12000/ 2 10°
Welded Plates 316L 5 0.125 285 210000

Note that for the Welded Plates configuration, we studied influence of ageing and
ground flush on fatigue life. Additionnally, some temperature measurements were
performed at frequencies 0.25, 0.166, 0.125, 0.1, 0.07, 0.05 Hz and are available
for determination - of convectron heat exchange coeffrcrent (for statement of
damaging frequenmes purpose) o

For the benchmark between CEAJJNC we decrded to choose Welded plates
results for the thermal benchmark the reason was ‘Ihat more measurements were
available for that confrgurat:on But due to the complex fatigue analysis of this
geometry which includes weldments, we prefered to study the tubuiar 316L
specimens for the fatigue benchmark.

Both of them are described in the following.
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2.3.

DEFINITION OF THERMAL BENCHMARK ON 316L WELDED PLATES (FOURTH

SERIES)

2.3.1 OBJECTIVE OF THE BENCHMARK

23.2

The aim of this benchmark is to validate theoritical diagrams of temperature
attenuation from fiuid to structure surface, by the mean of experimental data. The
problem is that convection heat exchange coefficient is well defined in permanent
flow but only a few validation is available for transient flows. Data needed are
surface temperature variations, fluid temperature variations, geometry of the
specimens, frequency of cycles, material data. We need also heat exchange
coefficient determination.

DESCRIPTION OF EXPERIMENTAL DATA

Five Experiments were carried out during 1996-1997. The geometry was an
assembly of a plate with a holder (see Fig.2.3 and Fig.2.4 ). The aim was to study
influence of ageing and ground flush on weld fatigue life. A specimen was
instrumented with 40 ¢ 0.5mm type K thermocouples at several positions in
sodium flow and in plate depth (see Figs 2.5 to 2.7 describing thermocouple
locations). The table below displays the thermocouple location inside plates,
comparing theoritical and measured after test positions (d distance means
distance from tip of thermocouple to the surface of the plate).

n" TC measured theoritical remarks
distance d distance d
(mm) {mm)
8,910 0.925;2.125;3.35 1,2,3 TC9,10 partial contact
18,19,20 1.075;4.675;3 1,2,3
28,29,30 1.45;1.95:2.95 1.2.3 TC 19 insufficiant depth
38,39,40 1.075;1.95;2.975 1,2,3
3.4 2.088:1 21 TC13,33 measurements
13,14 f;1.08 21 not valids
23,24 2.45:1 21
33,34 11.075 2.1
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Temperature measurements were performed at frequencies 0.25, 0.166, 0.125,
0.1, 0.07, 0.05 Hz (Fig 2.8 shows an example of temperature measurement) and
are available for determination of convection heat exchange coefficient (for

statement of damaging frequencies purpose). More details are given in the
following table :

flow rate frequencies inlet temperature variation | time acquisition
in sodium (peak to peak)
(i/h) (Hz) (C) (s)
730 0.25, 0.166, 0.125, ~ 255, ~255, ~285 10, 10, 13,
0.1, 0.07, 0.05 ~ 205~ 295, ~305 13, 22,25

In fact, surface temperatures were 'measured with  thermocouples
5,6,7,15,16,17,25,26,27,35,36,37 (Fig.2.5 and Fig.2.6). Here, the section at
Z=43mm (Fig.2.6) was chosen because of iess scatters in the measurements, in
addition distance of the section from the inlet is sufficient to avoid inlet
perturbations.

Tables thereafter give the ratio of surface temperature to fluid temperature
variations ;

f(Hz) FAENA-4th (L=15mm,d=5mm)
0.050 0.817
0.070 0.793
0.100 0.754
0.125 0.727
0.166 0.667
0.250 0.554
f(Hz) FAENA-4th{L=15mm,d=2mm)
0.050 0.942
0.070 0.939
0.100 0.915
0.125 0.889
0.166 0.872
0.250 0.838

L is the thickness of the plate
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2.4. DEFINITION OF FATIGUE BENCHMARK ON 316L(N) CYLINDRICAL TEST PIECE
(FAENA THIRD SERIES))

2.4.1 OBJECTIVE OF THE BENCHMARK

The objective is to compare French and Japanese thermal fatigue analysis. The
following experimental data are necessary for FAENA fatigue analysis :

- thermal loading inside specimen channei (fluid temperature variation versus z
coordinate, time history of fluid temperature vatiation, sodium velocity)

- material data including expansion coefficient, Young’s modulus, stress strain
cyclic curves, and fatigue curves. These data are not shown in this paper since
they are available in the RCC-MR design code. We only have to take care that
mean fatigue curves have to be used for a best fit analysis.

- position of the last crack corresponding to initiation in the internal channe! is
required to determine precisely the level of strain variation in this location

2.4.2 DESCRIPTION OF EXPERIMENTAL DATA

(1) Thermal foading .

The test piece was made of 316L(N) steel, with the geometry described on Fig.
2.9. Figs 2.10 and 2.11 show the thermocouple locations for the thermal specimen.
Thermocouples were K type, 0.5 mm diameter, insulated and in hole brazed
(thermocouple diameter was 1 mm for fluid measurements).

Temperature measurements were performed for the following conditions :

flow rate frequency inlet temperature outlet temperature time
variation in sodium | variation in sodium acquisition
(ifh) (Hz) {peak to peak) (C) | (peak to peak) (C) (s)
712 0.3 200 100 10
727 0.07 289 202 32

An example of temperature measurement is given on the Fig.2.12. For the
precise definition of fluid thermal loadings, basic functions have been determined :

AT(2) = (z + 152592.6) | (z + 627) (zinmm, frequency 0.07Hz)
ATdz) = (z + 45398.7) | (z + 227.4) { Zin mm , frequency 0.3Hz)

Time history functions can be defined for each frequency. For f = 0.07Hz :
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t (s) 0 1.29 2245 [3.946 [6.806 |7.918 |8.98 10.748 (1442 |15.23
LEC) 0 0669 (0.786 [(0.903 |1. 0. -0.619 |-0.826 |-1. -0.
Forf=0.3Hz:
t(s) |oO 0.63 1.41 1.61 2.21 2.70 3.31 3.56 4.
F(t) 0 0.5 1. 1. Q.. -0.4375 | -1. -1. 0.
Finally, in sodium temperature can be evaluated by T; (z,t) =AT; (2) F(t)
(2) Crack initiation
Principle of interpretation of FAENA tests is rather complex due to axial gradients
of loading. The highest position of crack must be determined by several
techniques (dye penetrant inspection, Scanning Electron Microscope examination,
and finally Optical Microscope observation of metallographic cuts in order to verify
that the last crack depth is less than initiation depth criteria (200 um))
Two mechanical tests were performed in that configuration :
fiow rate | frequency | inlet temperature outlet temperature CLA axial position number of
variation in sodium | variation in sodium { (m) (z in mm) for | appiied cycles
{i/h) (Hz) (peak to peak) (C) | (peak to peak) () the last crack
712 0.3 200 100 0.1-0.3 60 2.110°
727 0.07 289 202 01-03 no crack 121060

The crack pattern obtained at 0.3Hz is shown on Fig.2.13. Note that no crack was

found in 0.07Hz test after application of 12100 cycles. CLA means Cenier Line

Average which is equivalent to the mean surface roughness R..
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Fig.2.13 -Cylindrical test piece made of 316L(N) steel, example of cracks observed after
test at frequency 0.3Hz
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3.

TIFFSS EXPERIMENT

3.1.

TIFFSS SODIUM EXPERIMENTAL FACILITY

The TIFFSS test facility has a hot sodium line with an electric heater and a cold
sodium line with an air-cooler (Fig.3.1). Sodium is driven by an electromagnetic
pump and its flow rate can be regulated with control valves and electromagnetic
flow meters. Cold trap loop is for purification of sodium. Fig.3.2 is a detail of the
test section. Photographs of inner devices and an external appearance are shown
in Fig.3.3 and Fig.3.4.

Hot and cold sodium is alternatively fed into a single nozzle with 6 mm of inner
diameter and is projected to a specimen as a vertical jet in a sodium pool. Valves
that change flow pass of hot and cold sedium control frequencies of temperature
fluctuations. |

This test section has such special devices as bypass lines and small chambers in
the mixing tee to keep flow rate and peak temperature of sodium in the single
nozzle. Frequency controller and temperature regulators are shown in Fig.3.5.

In order to change heat transfer coefficient from outlet sodium to a specimen,
distance between outlet of the nozzle and upper surface of specimen is
controliable.

During experiments, 13 channels of temperature are measured by thermocouples
and analog units detect switch signals of valves. These data are digitized and
recorded by data equation system (Fig.3.6).

— 22 -
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Fig.3.1 Schematic diagram of a TIFFSS sodium loop
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Fig.3.2 Details of TIFFSS test section
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Fig.3.6 Data acquisition system
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3.2

321

TIFFSS-3 TEMPERATURE TEST
TIFFSS-3 TEMPERATURE TEST

A specimen is a plaie (50mm X 50mm X 10' mm) made of 316FR (Fig.3.7,
Fig.3.8). Material properties of 316FR are provided in ANNEXE.

Hot and cold sodium is alternatively projected to the center of a specimen
through a single nozzle. Distance between bottom of the nozzle and surface of the
specimen is 5.5 mm.

Thermocouples are attached at the position of 1.5mm and 0.1mm from the
surface of specimen, and on the surface and the back surface. Furthermore,
thermocouples are inserted into the wall at 0.5mm. 1.3mm, 2.3mm, 3.3mm, 5.3mm
and 8.3mm from the upper surface (Fig.3.9). Distances of all thermocouples are 5
mm from the center of the specimen in plane. These thermocouples are K-type
with 0.5mm diameter, 90% response time of which is 0.05sec. In order to avoid

disturbance of vertical heat flow in structures, thermocouples are inserted from the
side of specimen.

- 27 -
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ch-No. | TC-No. POSITION REMARK]
i a FLUID(1.3mm freim upper surtace)
2 b FLUID(D. L mm fron upper surfuce)
3 c On the upper surface
4 d STRUCTURE({.5mm from upper surface)
f - = SRR B S mmrfonrorrersudae failure
e [3 £ STRUCTURE(2 3mm frum upper surfaie)
o 7 g STRUC TURE(3. 3mm from upper surface)
o 8 h STRUCTURE(S 3inm from upper surfes)
9 i STRUCTURE(S.3inm trom upper surface)
10 j On the lover surface
11 TCI Hot SODIUM
12 TC7 NOZZLE
14 TC4 Cold SODITUM
L5 - Valve signal
—3 UPPER o UPPER veeer 910 [, 50
o (13
@ {3707
SODIUM LEVEL
NOZZLE = F———
o =
4 -
2
UPPER SURFACE
S— X
—_—
%
X m| =
g _' w| w0
o '
= l L SPECIMEN
| lh. E—
&10
¢ ..
i
- e UNIT ; mm
LOWER SURFACE 1

Fig.3.7 Configuration of TIFFSS-3 temperature test specimen with thermocouples
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Fig.3.8 Photograph of TIFFS5-3 temperature test specimen
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Fig.3.9 Details of thermocouples
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3.2.2 THERMAL LOADING AND MEASURED TMEPERATURE

Flow rate at the exit nozzle is constant as 1.2 |/min {(approximately 0.7m/s) in the
nozzle). This value was adjusted to achieve the maximum temperature amplitude
since flow rates are limited by capacity of a cooler and small flow rates are
affected by heat capacity of the nozzle. Temperature amplitude at the nozzle
keeps the constant value such as 240°C (470°C - 230°C). Frequencies of
temperature fluctuation are 0.2Hz, 0.1Hz, 0.04Hz, 0.02Hz and 0.01Hz. Sodium is
purificated oxygen ratio of which is within 1.0 ppm. Measured temperature
histories of sodium at the exit nozzle (TC7) are described in Figs. 3.10(a)-3.10(e).

500.000 |

\
450.000 - 3 |
L4 )\ X 4? Py

400.000 ¢

350.000

Temperature (°C)

300.000

250.000

200.000 = : |
0 10 20 30 40 50 60

Time (sec)

Fig.3.10 (a) Temperature history of sodium at the exit of nozzle (0.2Hz)
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Fig.3.10 (b) Temperature history of sodium at the exit of nozzle (0.1Hz)
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Fig.3.10 (c) Temperature history of sodium at the exit of nozzle (0.04Hz)
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Fig.3.10 (d) Temperature history of sodium at the exit of nozzle (0.02Hz)
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Fig.3.10 (e) Temperature history of sodium at the exit of nozzle (0.01Hz)
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Measured temperature amplitudes of all thermocouples at each frequency are
summarized in Table 3.1. Fig.3.11 shows measured temperature profiles across

wall thickness at the time when temperature on the inner surface is the maximum
and the minimum.

Table 3.1 Summary of TIFFSS-3 temperature test resulis

Frequency]  ch-No(TC-No) chila) ch(b) chlc) chéld) chlf) ch¥{g) chéilh) chg{l} chi0{) | chlI(TCN | chiZ(TC | ch14(TC4)

{Hz) Positio{mm} | highi5 high 0.5 sinfaceD | depth05 | depth 23 | dopth 3.3 | depth 53 | depth 83 | depth 10 Hot Na Nazzie Cald Na
Max. TempfAve) | 424.82 42539 | 42170 1 38668 | 376.39 | 36358 j 35201 | 348.11 | 34891 | 497.75 | 471.87 | 20367

0.2 Min. Temp{Ave) { 260.61 26294 | 26694 | 20826 | 306.29 | 317.20 | 33230 | 34262 | 34539 | 49330 | 23150 | 201.19
Difference(AT) | 16421 16245 | 15476 8842 7010 46.29 9. 549 352 436 | 240.37 249

Max. Temp(Ave) | 43448 43566 | 43312 | 40504 | 394.71 | 380.88 | 364,34 | 35335 | 35134 | 49451 | 47365 | 20743

0.1 Min. Temp{Ave.) | 25220 25399 | 25785 | 285.16 | 20321 | 30441 | 32186 | 33650 | 34054 | 48768 | 231.80 | 20248
Difference( AT){ 182.28 18167 | 17527 | 119.88 | 101.50 76.47 4238 1685 10.80 683 | 241.85 495

| Max. Temp.(Ave) | 446.51 447.78 | 44837 | 42723 | 41922 | 407.73 | 39078 | 371.25 {| 364.58 | 48247 | 472.15 | 22250
0.04 Min. Temp.{Ave) | 24741 24882 | 25168 §{ 271.76 | 27803 | 286,63 | 303.10 | 323.07 | 33091 | 46930 | 232.20 | 214.18
Difference(AT) | 199.10 19895 { 19469 | 15547 | 141.19 | 121.09 8768 | 4817 33.66 13.16 | 239.85 8.32

Max, Temp.(Ave) | 45128 45269 | 45142 | 43476 | 42756 { 417.17 | 401,03 | 37854 | 36985 | 47849 | 47165 | 243.13

0.02 Min. Temp{Ave) | 246.88 24755 | 25068 | 26944 | 276.06 | 28348 | 298.11 | 319.36 | 33005 | 44869 | 23135 | 21831
Difference{AT) | 20440 205,13 | 20074 | 165.33 | 151.50 | 133.69 | 10292 59.18 39.80 29.80 | 24030 24.82

Max, Temp(Ave.) | 453.70 45560 | 45443 | 43851 | 43160 | 42135 | 40485 | 38203 | 37206 | 47580 | 470.80 | 27470

001 Min. Temp(Ave} | 245.74 24656 | 24956 | 26864 | 275.44 | 282.75 | 288.09 | 32037 | 33136 | 40515 ; 23192 | 22237
Difference{AT)| 207.97 209.05 | 20487 | 169,87 § 156.16 | 138.60 | 106.86 61.66 4160 | 70.64 | 239.68 5232

figh: distance from the upper surface (n filid) , depth; depth from the upper surface (in structure)
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Fig.3.11 Measured temperature profiles at the time when temperature on the inner
surface is the maximum and the minimum
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3.3 TIFFSS-4 THERMAL FATIGUE TEST

'3.3.1 FLEXIBLE PLATE TEST

A specimen is a plane plate (50mm * 50mm * 10t mm) made of 316FR. This
specimen was attached to the TIFFSS facility without constraint as in Fig.3.12.

Thermal loads are temperature fluctuation with fixed frequency and amplitude.
Such loading conditions as fluid temperature amplitude at the outlet of the nozzle,
a flow rate and a distance between a specimen and a nozzle are the same as
TIFFSS-3. Temperature fluctuation frequencies were planned as 0.04Hz, 0.1Hz
and 0.2Hz.

After 90000cycles of temperature fluctuations with 0.1Hz, the surface of the
specimen was inspected. No crack was observed as in Fig.3.13. Considering this
result, test cases of 0.04Hz and 0.2Hz were suspended.

Fig.3.12 Flexible plate specimen for TIFFSS—4 fatigue test
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“Fig.3.13 Photograph of Flexible plate specimen after thermal loading
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3.3.2 CONSTRAINT PLATE TEST

A specimen is a plate (50mm * 50mm * 10t mm) made of 316FR with a thermal
insulator. Its insulator is a ceramic plaie made of Si3N4 with a 15mm diameter
hole. A specimen is submitted to temperature fluctuations inside this hole and a
surrounded portion keeps almost constant temperature.  Configuration of
specimen with a thermal insulator is shown as in Fig.3.14.

Fig.3.15 is a photograph of the specimen with thermocouples. A cover plate
attached the thermal insulator to the specimen (See Fig.3.16). The constructed
specimen was installed to the facility without mechanical constraint as in Fig.3.17.

In order to evaluate thermal boundary conditions, a temperature test was made
with a specimen where eighteen thermocouples were attached. Fig.3.14 and
Table 3.2 explain positions of thermocouples.  Thermocouples for fluid
temperature were attached at the location of 1.5mm and 0.1mm from the surface
of specimen. Nine thermocouples locate on the surface, distances of which from
the center are Omm, 2.5mm. Smm, 7.5mm 8.5mm, 10mm, 12.5mm, 15mm and
20mm. Furthermore, seven thermocouples measured temperature distribution in
wall thickness with measurement points at 0.5mm, 1.3mm, 2.3mm, 3.3mm, 5.3mm
and 8.3mm in depth and the back surface. Distances of all thermocouples in the
specimen are 5 mm from the center of the specimen. These thermocouples are K-
type with 0.5mm diameter, 90% response time of which is 0.05sec. In order to
avoid disturbance of vertical heat flow in structures, thermocouples are inserted
from the side of the specimen.

Thermal loads are temperature fluctuation with fixed frequency and amplitude.
Such loading conditions as fluid temperature amplitude at the outlet of the nozzle,
a flow rate and a distance between a specimen and a nozzle are the same as
TIFFSS-3.

Temperature tests were made under frequency conditions of OHz, 0.04Hz, 0.1Hz
and 0.2Hz. An objective of OHz test is evaluation of a heat transfer coefficient and
‘temperatures were measured under a steady condition after sufficient time for
stabilization. Both results of high and low temperature injections are summarized
in Table 3.3.

Measured temperature under other frequencies will be provided separately.
Thermal fatigue strength tests were planned for 5000cycles/0.04Hz,
10000cycles/0.1Hz and 20000cycles/0.2Hz.

- 37 —
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Fig.3.14 Configuration of a constraint plate specimen with thermal insulator
for TIFFSS—4 fatigue test

L0 s oy T

Fig.3.15 Photograph of a constraint plate specimen with thermocouples
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Fig.3.16 Thermal insulator made of Si;N, and support cover

Fig.3.17 Specimen with thermal insulator mounted on TIFFSS facility
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L IHEERGROABL S

Fig.3.18 Location of thermocouples in the constraint plate specimen

Table 3.2 (a) Thermocouples in fluid and in the specimen

TC No. Vertical distance from the surface of the specimen
TC7 —5.5mm(Nozzle)

a =1.5mm {In fluid)

b =-0.5mm (In fluid)

c(See Table (b))|0mm (On the surface specimen)

d 0.5mm (In specimen)

e 1.3mm {In specimen)

f 2.3mm (In specimen)

g 3.3mm (In specimen)

h 5.3mm {In specimen)

I 8.3mm (In specimen)

il 10mm (On the back surface of specimen)

— 40 -
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Table 3.2 (b) Thermocouples on the surface of the specimen

TC No. Horizontal distance from the center of the specimen

cl Omm (Center)

c2 2.5mm

c3 S5mm

cd 1.5mm

c5 8.5mm

cb 10mm

c 12.5mm

c8 15mm

c9 20mm

Table 3.3 Measured temperature of 0 Hz test
High temperature injection |Low temperature injection

TC dlmm)  |Temp(°C) Temp{°C)
TG7{Nozzle) -5.5 479.27 208.3
a -15 473.56 211.95
b -0.5 468.05 2158
c3 0 467.3 2185
d 0.5 439.74 252.64
e 1.3 448.97 243.31
f 2.3 438.77 253.53
g 3.3 428.74 27332
h 5.3 407.39 296.4
I 8.3 385.02 318.88
j 10 368.66 329.21
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3.4. DEFINITION OF BENCHMARK ON TIFFSS EXPERIMENT

The benchmark problem consists in the evaluation of temperature distribution in
the specimen and induced thermal stresses on the surface.

Both European and Japanese participants are expected to make a report with
following items for Tiffss sodium experiment. '

1. Evaluation procedures of temperature, stress and fatigue damage

2. Temperature attenuation from fluids to structures defined by gains of
temperature amplitude from fluids to structural surfaces for each frequency of the
TIFFSS-3 experiment

3. Predicted thermal stresses on the surface of the TIFFSS-4 specimen

4. Fatigue damages and number of cycles for crack initiation of the TIFFSS-4
specimen

Test cases of Tiffss expetiments are summarized as following tables.

Table 3.4 Case of TIFFSS—3 temperature tests

Specimen_ Material Frequency (Hz) ::ﬁ:et:;nr?:;;t:r(ﬁc) Flow rate (L/h)
Plane plate 316FR 0.01 240 12
Plane plate 316FR 0.02 240 72
Plane plate 316FR 0.04 244 72
Plane plate 316FR 0.1 240 72
Plane plate 316FR 0.2 240 72

Table 3.5 Case of TIFFSS-4 fatigue tests

Specimen Material Frequency {Hz) Zﬁﬁet:?::;:r:?@ Flow rate (L/h) (N3yc[e numbers
Plane plate 316FR 0.04 240 72
Plane plate 316FR 0.1 240 72 9 x 10*
Plane plate 316FR 0.2 240 72
Plate with insulator|  316FR 0.04 240 72 5x10°
Plate with insulator | 316FR 0.1 240 72 1x10*
Plate with insulator| 316FR 02 240 72 2x10*

— 42 —
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Following material properties of Japanese 316FR are provided in ANNEXE.
+ Heat conductivity

* Heat capacity

+ Density

« - Fatigue Curve

+ Monotonic Stress-sirain Curve

- Stress Range-Strain Range Relationship

— 43 -~
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ANNEXE : Material properties of 316FR

Table A1 Thermal properties of 316FR

Temperature Heat conductivity Heat capacity Density
(°C) {(keal/mm=sec*"C) (kcal/kg*°C) (kg/mm’)
20 3.48x10°° 0.108 7.97%107°
50 3.53 0.112 7.96
100 3.73 0.118 7.94
150 3.89 0.122 1.92
200 4.05 0.125 1.89
250 4.21 0.128 1.87
300 4.37 0.129 7.85
350 4.53 0.131 7.83
400 470 0.132 7.80
450 486 0.133 7.78
500 5.02 0.134 7.76
550 5.18 0.136 1.74
600 5.34 0.138 1.2
650 5.51 0.140 1.69
700 5.67 0.142 7.67
750 583 0.145 7.65
800 5.98 0.147 7.63
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Table A2 Average fatigue strength of 316FR

log,o(N,) I = 4, + 4-log,, Ag, + 4, (log, Ag,)! + 4y (log,, Ag,)*

Unit

T : Temperature ()

‘_;; : StrainRate(mm/mm/sec)

A g, : Total Strain Range { mm/mm )

N, : Number of Cycles to Failure

4, 1.621827 —0.4567850 x107 xT?*x R

4 1.131346 + 0.86.65061 x10* xT?

4, 0.3439663

4, - 0.1374387 x 10 "' + 0.4910723 x 10 * xR

Where R =log, ¢
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Table A3 Stress range — strain range relationship of 316FR

e Ag/2> o,
log (Ao ~20,) = 4, + 4/ log,,(Ag, — Ao/ E)
e Ao/2< g,

Ao =E-Ag,

Unit

T :Temperature (°C)  425< T <650
A¢, Toral Strain Range (mm/mm )
E: Elastic Modulus (kg/mm? )

o, : Proportiol Limt(kg / mm? )

Ac :Stress Range (kg/mm? )

A, 4.139556 - 0.4434273x 107 x T+ 0.1354228x 10~ x T2 +0.1593061x 107 x T*

A, 2.171727-0.7045263x 102 x T +0.7832692x 10~ x T2 ~ 0.2083600x 10~ x T

E 2.10236 x10* -9.71895 x7T

26.8073-5.04547x10* x T +8.03901x 10> x T2 —5.11282x 10 x T3
~(40.0909-9.69990x 107 x T') x (0.007)"3262¢5+6.13276x107 w7
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Table A4 Monotonic stress — strain relationship of 316FR

(Do=<o,
o
g(.' = —
E
£,=0
(2o >0,

£ =

@

=) Q

c-o, %
£ =)

< Unit >
¢, (mm/mm), & (mm/mm), o(kg/mm®)

< Limit of total strain >
Maximum Total Strain (¢, + &, )max < 0.03(mm/mm)

Temperature (°C

315 T <650
Parameter

3I15€T <400 E=2.040x10* —8.0007T

E(kg | mm?
(kg fmm”) 400<T<650 E=2.126x10* ~10.125T

o, (kg /mm*) o, — K(0.002)"

26.8073-5.04547x102 7 +8.03901x107°7?
-5.11282x107%7°

O'}_(kg/mmz)

K(kg/mm*) 40 .0909 - 9.69990 x 10 7T

0.326245+6.13276x10°°T




