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INC contribution to the Benchmark Problem
on thermal transient strength evaluation of a welded vessel

(Research Report)

Naoto Kasahara"

Abstract

Fatighe and creep-fatigue strength of welded joints are iower than base metals, when
applied to elevated temperature components subjected to cyclic thermal transient loading.
CEA and JNC have developed design evaluation procedures for considering strength
reduction of weldments in elevated temperature components. It was planned to compare
both procedures based on the same benchmark problems under EJCC contract. One of
benchmarks provided by CEA is fatigue and creep-fatigue evaluation of welded plates due
to reverse bending at 550°C. Another problem by INC is creep-fatigue evaluation of a

welded vessel due to cyclic thermal transient loading. Point of view of the later problem
is comparison of total strength evaluation of base metal and welded joints against actual
loading conditions. This report describes details of the TTS experiments and defines the
INC benchmark problem.

*  Structure and Material Research Group, System Engineering Division, OEC, INC
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INTRODUCTION

Fatigue and creep-fatigue strength of welded joints in components are generally lower
than base metal under elevated temperature operative conditions. In order to take
strength reduction of welded joints into account for elevated temperature structural
design, design codes are required to provide rational evaluation methods for welded
joints.

CEA and JNC have developed design evaluation procedures for considering strength
reduction of weldments. Under EJCC framework, intercomparison of both procedures is
planned through application to the same benchmark problems. For benchmark, CEA
and JNC have submitted two complementary problems. One of benchmarks, which
was provided by Dr. Laurent LE BER of CEA, is fatigue and creep-fatigue evaluation of
welded plates due to reverse bending at 550°C[1]. Another problem, proposed by JNC
is creep-fatigue evaluation of a welded vessel due to cyclic thermal transient loading.
The objective of the later problem is comparison of creep-fatigue evaluation methods of
base metals and welded joints on actual components due to cyclic thermal transients.
This report describes detalls of the welded vessel experiment and defines the
benchmark problem.
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THERMAL TRANSIENT TEST OF A WELDED VESSEL MODEL

A thermal transient strength test was conducted on a welded strubture model by
using a sodium test facility [2]. The test model is a vessel type structure, which
has an outer container and an inner vessel as Fig.1. 1055 cycles of thermal
transients were applied by alternate flow of hot (600°C) and cold sodium (250°C)
which passed though the annulus space between the outside container and the
inner vessel. During each cycle, creep damage was accumulated by 2 hours of
holding time in 600°C. ' '

As for materials, the outside container and half of the structure of the inner
vessel are made of SUS304 (Japanese Type304SS), and the remainder half is
made of 316FR (Japanese 316L with midium nitrogen for FBRs), which is low
carbon nitrogen stainless steel for Liquid Metal Fast Reactors as in Fig.2.-
Circumferential and longitudial welded joints are incorporated in both SUS304 and
316FR portions.

A photograph of the vessel model and an outline of the sodium test facility are

as in Fig.3 and Fig.4.
Fig.5 describes the dimensions of the test model, where the outside container of
the vessel model is 2210mm high and 980mm in diameter with 25 mm thickness
wall, and the inner vessel is 456mm inner diameter with 20 mm thickness wall.
The inner vessel has a restraint plate with 25mm wall thickness to make stress
gradient on the inner vessel. _

Fig.8 and Fig.7 show initiated cracks on the surface of the inner vessel observed
by the liquid flaw detection test (PT) after 1055 cycles of thermal transients. In the
316FR division of inner vessel, few small cracks were found only at welded joints,
while many cracks were observed at both base metals and welded joints in the
3048S parts. Here, the cracks at welded joints were observed to be deeper than
that of the nearby base metal.
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Fig.1 Thermal transient strength test of welded vessel model

Fig.2 Welded joints in the welded vessel model
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Fig.3 Welded vesse! model
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Fig.4 Thermal transient test facility for structure (TTS)
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Fig.7 Thermal transient test result of inner vessel (SUS304)
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3. COPE BENCHMARK PROBLE

In order to define a scope of the problem as the comparison of creep-fatigue
gvaluation procedures and to eliminate influences from differences of materials and
structural analysis results, this benchmark program provides common material

properties and structural'ana!ysis results as in Fig.8.
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Fig.8 Scope of benchmark problem

Following material properties of SUS304 and 316FR are provided in Appendixi and
Appendix2. '

* Fatigue curve

*+ Monotonic stress-strain curve

+ Stress range-strain range relationship
+ Creep strain



TN9400 2001-009

Above characteristics are average one of base metal obtained by regression analysis
of material test results.
- Material properties of a weld metal for SUS304 (Type308SS) are describes in
literatures[3][4]. A 'fatigue curve of weld metal for SUS304 is equivalent to one of base
metal. Yield stress of a weld metal for SUS304 is lower than base metal after sufficient
cyclic loadings. .
Properties of weld metal of 316FR are explained in a referencef5]. A fatigue curve is
- approximately the same as base metal. Difference of Yield stress between weld and
base metals is smaller in 316FR than in SUS304. '

Target area of benchmark in the welded vessel model is defined as 524mm length on
the surface of the inner vessel as in Fig.9. This portion is made of SUS304 base metal,
flash grained welded joint of SUS304, 316FR base metal, and flash grained welded
joint of 316FR. All of these material parts have the same geometrical configuration.

For evaluation of structural strength against thermal transients, thermal stress
analyses under thermal transient test conditions are required. To avoid complexities of
structural analyses, a stress classification table obtained from thermal elastic analysis
based on measured temperature data is provided in Fig.10 and by Appendix3. Both
European and Japanese participants would apply the elastic route to evaluate creep-
fatigue strength, based on the same stress classification table.
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4. BENCHMARK

The objective of this benchmark program is to evaluate creep-fatigue strength of
the inner vessel in the welded vessel model which is made of SUS304, flash
grained welded joint of SUS304, 316FR base metal, and flash grained welded
joint of 316FR. ,

Both European and Japanese participants are expected to make a report with
following items for SUS304, flash grained welded joint of SUS304, 316FR base
metal, and flash grained welded joint of 316FR.

1. Creep-fatigue evaluation procedure

2. Criteria used for failure analysis

3. Total strain range

4. Fatigue strength reduction factor of welded joints
5. Fatigue damags factors

8. Creep damage factors |

5. RI DAT

Photographs and sketches of initiated cracks on both 304SS and 316FR area of

the inner vessel after 1055 cycles are provided in Appendix 4, which clarifies
distribution and depth of cracks.
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6.1.

6.2.

C CREEP-FATIGUE EV ATI

CREEP-FATIGUE EVALUATION PROCEDURE

JNC creep-fatigue evaluation procedure for weldments is explained in
literatures[6][7]. Concemning design factor, elastic follow-up parameter q for
structural discontinuity is different from SOUFFLE test. Since geometries of
SOUFFLE test specimens are flat plates without structural discontinuities, elastic
follow-up parameter q is one. The inner vessel of a TTS welded vessel model is
also a smooth cylinder, however, the surface becomes bi-axial field under severe
thermal transients. Elastic follow-up parameter q of cylinders due to bi-axial

. bending stress was found to be g=1.67 by previous studies[8][9] and its value

was adopted.

When parameter gy and vy are equal to one, the creep-fatigue evaluation
procedure for weldments becomes a procedure for base metal{8].

FATIGUE EVALUATION RESULTS

Distributions of total strain range on the surface of the inner vessel were
estimated as in Fig.11 and Fig.12. ,

From fatigue curves of materials (304SS and 316FR) and calculated strain
range, fatigue damage factors were evaluated by Miner’s rule as in Fig.13 and
Fig.14. '
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6.3.

CREEP-FATIGUE EVALUATION RESULTS

From creep rupture curves of materials (304SS and 316FR) with estimated
stress history, creep damage factors were calculated based on time fraction rule
considering stress relaxation.

Predicted creep-fatigue damage on the inner vessel was as in Fig.15 and Fig.\1 6.
From these figures, creep-fatigue damage factors for all materials are beyond 1.0
at all of locations. It means that calculation results predicted possibility of crack
initiation at all portions of the inner vessel after 1055 cycles of thermal transients.
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7. DISC 1ON

Fig.17 is a sketch of initiated cracks on the surface of the inner vessel. Further
sketches and photographs are attached in the Appendix 4. From comparison of
calculated results with these experimental results, JNC procedure is considered to be
conservative for 316FR. One of reasons is that yield strength difference between base
and weld metals is less than v ~0.9 in the most of strain range of this test. Another
reason is that « r=10 is adjusied factor to the weakest heat. These reasons are
common with uni-axial material tests and SOUFFLE test, however, evaluation results of
TTS test are considered to be more conservative than other tests. It is possible that qy
caused by thermal stress is less than one of mechanical stress, even if value of v is
the same.

8. FUTURE PLAN

In the next step of benchmark program, thermal transient strength evaluation of un-
finished welded joints with penetration beads is planned.
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ANNEXE 1 : Material properties of Japanese 304SS{SUS304)
ANNEXE 2 : Materiai properties of Japanese 316FR

ANNEXE 3 : Stress classification table obtained by thermal elastic analysis of the
inner vessel model

ANNEXE 4 : Photographs and sketches of initiated clacks on both surface and

section area of the inner vessel after 1055 cycles
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Appendix 1 Material properties of Japanese 304SS
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SUS304, 316FR Fatigue Curve

1
10g,g (N} ? = 4y + Arlog,, Ag, + 4,(logy, As, Y + A, (log,, As, )"

Unit
T : Temperatue (°C )
& : StrainRate(mm/mm/sec)

A g, : Total Strain Range ( mm/mm )

N, : Number of Cycles to Failure

4, 1.621827 - 0.4567850 x107 xT?x R

4 1131346 + 0.8665061 x 10 % x ‘Tz

Ag 03439663

4, — 01374387 x 10" +0.4910723 x 10 *x R

Where R=log, g
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SUS304 Monotonic Stress-Strain Curve

<Unit> .
£, (mm/mm), &, (mm/mm), ofkg/mm?®)

< Limit of total strain >
Maximum total strain(g, + £, )max < 0.03(mm/mm)

Temperature(°C

Parameter

315<T <650

E(kg/mm*)

3158T <400 E=2.040x10* -8.000T
400<T <650 E=2.126x10*-10.125T

o, (kg /mm®)

o, — K(0.002)"

o, (kg ! mm®)

25.5655—5.58937 x 10727 +1.04384 x 10~ T2
—7.42535x107¢ 12

K(kg!mm?)

44 3068 -1.78933 x 10T

0.279395+7.749%107°T
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SUS304 Stress Range — Strain Range Relationship

Ao /2> o,
IOglo (Aa_zap) = AD +Al.10g10 (AS' —AG/E)
sAc/2 <o,

Ao =E-Ag,

Unit

T : Temperature (°C) 4255 T <650
Ao : StressRange ( kg/mm? )

A g, : TotalStrainRange ( mm/mm)

E : ElasticModulus (kg/mm® )

o, : ProportiolLimt(kg / mm®)

4, 0.9772687 +0.6446708x10% x T — 0.4675557x 10 x T2 —0.3724201x 10~ x T’

A | 3.650128-0.1847969%10™ x T +0.3544927x10™ x T% —0.229 782210~ x T°

E 2.10236 x10*-9.71895 xT

25.5655~5.58937x107% x T +1.04384x 10~ x T2 ~7.42535x 10~ x T°
— (44.3068 - 1.78933x 10°2 x T) x (0.002) 279395+ 2745107
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SUS304 Creep Strain

gc =Cl-e™)+C (1~ + g,

Unit
T : Temperture (°C)  425<T <650
o : Stress (kg/mm’) Olsco
tp : CreepRuptureTime (hr)

£, * Stationary Creep Strain Rate { mm/mm/hr)
t :Time (hr) | |

| 26248 .54  6104.579 425.0012 \
1 = —17.54301 - - 2o 0012
fa {l0guo(acta)==17.34301 + a5 10810 0 = e l0g 0 @)
40812 _1.1338
2 .416 - exp[ ~ .t
Em 62.416 o2l ~ e v o 5 ) #
Cl 1.2692‘8’“03“91 /rl C2 0.48449' gmu.sllss /rz
n 103372, r 17.2550¢,~%"
'Whére ac=1
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SUS304 Creep Rupture Time

(T+273.15) {log,, (aaty)+C}

= d, + 4, log,, o + 4, (log,, 0)*

Unit
T :Temperature (°C) 425<T <825
o :Stress (kgmm’) 2<¢

tp : CreepRuptureTime (hr)

C 17.54301

4; 26248.54

4, -6104.579

4, —-425.0012

ap Average 01
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Appendix 2 Material properties of Japanese 316FR
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316FR Monotonic Stress-Strain Curve

-o. L
&, = (_._K_ﬂ.)”'
<Unit> -

& (mm/mm), &, (mm/mm), o(kg/mm?)

<Limit of total strain >
Maximum Total Strain (¢, + £, )max < 0.03(mm/mm)

Temperature (°C)

315<€T <650
Parameter

315=T <400
400 < T <650

E=2,040x10* —8.000T
E=2126x10*-10.125T

E(kg/mm*)

o, (kg /mm*)

o, ~ K(0.002)"

o,(kg/ mm®)

26.8073—5.04547x 1072 T +8.03901x10™° T2
—5.11282x'10‘3T3

K(kg ! mm?)

40 .0909 - 9.69990 x10 T

0.326245+6.13276x10°T
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316FR Stress Range — Strain Range Relationship

*Ac/2>0,
log,s (Ao ~20,) = 4, + 4 log,,(Ag, ~ Ao/ E)
*Ac/2<c,

Ao =E*Ag,

Unit

T : Temperature (°C)  425<T <650
Ac: StressRahge ( kg/fmm? )

A g, : TotalStrainRange ( mm/mm)

E : ElasticModulus ( kg/mm?® )

o, : ProportiolLimt(kg | mm®)

4, 4.139556 - 04434273 x 107 x T + 0.1354228 x 107 x T +0.1593061x 107 x T

4, | 2.171727-0.7045263x10% x T +0.7832692x 107 x T2 — 0.2083600% 10° x T°

E 2.10236 x10*—9.71895 xT

26.8073 ~5.04547x 102 x T +8.03901x 10~ x 7% —5.11282x 10" x T*?
— (40.0909 -9.69990 x 105 x T) x (0.002) *326245+6.13276x10T
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316FR. Creep Strain

s =C(1~e™)+Cy(1-e )+, ¢

Unit
T :Temperture (°C) 425<T <650
o : Stress (kg/mm?) O0l<o
tp : CreepRuptureTime (hr)

&, : Stationary Creep Strain Rate ( mm/mm/hr)
t :Time ( hr)

32232.27 _ 35.74271 .3481.803

1 = ~25.82042 - ?

fp [(Bwl@ct) Teanas TeaBas o0 T T (e )
51222 -1.1032
33 - ~ bty
Em | 24133 el - e ey e
of 12692- ¢ "' /1 c, 0.48449- o 1% 7y,
: 17.255- 086775
n 103.371, ™ n R
Where ac=1
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316FR Creep Rupture Time

(T+273.15) {log,, (aty)+C}

=4, + 4, log,, o + 4, (log,, o)?

Unit
T :Temperature (°C) 425<7T <825
o :Stress (kg/mm’) 2<¢

tp : CreepRuptureTime ( hr)

C 25.82042

A, 3223227

4, -39.74271

4, ~3481.803

oy Average |
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Appendix 3 Stress classification table obtained by thermal elastic
analysis of the inner vessel model
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Appendix 4 Photographs and sketches of initiated cracks
on both surface and section area of the inner vessel
after 1055 cycles
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Fig.A4.1 Distribution of initiated cracks on the surface of the inner vessel
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Fig.A4.2 Sketches of initiated cracks on a section area of the inner vessel after 1055 cycles
(SUS304 135° ref: FigAd.1)
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Fig.A4.3 Sketches of initiated cracks on a section area of the inner vessel after 1055 cycles
(SUS304 135° ref: Fig.A4.1)



JNC TNS400 2001-009

—-.-"""f
7 wa j11GHRE -t
L i ]
T 3
,_]:.. o.
we
T
315" WE
wESUS316
mR:1/1
/\J
e
REEFHED
SMAWE
( ‘ B\VC (mm)
REEEFHON
SMAWRE N, ,

Fig.A4.4 Sketches of initiated cracks on a section area of the inner vessel after 1055 cycles
(316FR 315° ref: Fig.A4.1)
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Fig:A4.5 Sketches of initiated cracks on a section area of the inner vessel after 1055 cycles
(316FR 315° ref: Fig.A4.1)
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Fig.A4.6 Photograph of initiated cracks on a section area of the inner vessel after 1055 cycles
(SUS304 135° ref: Fig.A4.1)
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Fig.A4.8 Photograph of initiated cracks on the surface of the mﬁer vessel after 1055 cycles
(316FR-SUS304 315° — 45° ref: Fig.Ad4.1)
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Fig.A4.9 Phéfogréph -of initiated cr‘-aéks on the surface o% fhé innef veééel éﬁér 1055 cycles
(SUS304 0° — 90° ref: Fig.Ad.1)
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Fig. A4.10 Photograph of initiated cracks on the surféce of the inner vessel after 1055 cycles
(SUS304 45° - 135° ref: Fig.A4.1)
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Fig.A4.11 Photdg}'aph of initiafed cracké 'on the surface of the inner \;éséel afté
(SUS304-316FR 135° - 225° ref: Fig.A4.1)
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Fig.A4.1é Pﬁotoérébh of inifiéfec'l. cracks on fhe sUrféce of“tl.'xe inner vésse! aﬁ:er 1055 cycles
(316FR 180° — 270° ref: Fig.A4.1)
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Fig.A4.1ﬂ3ﬂPhot.bgrapi1 of initiéced cracks 6-n-th'é.sufféce of the mner vesse! éfter 1055 cycles
(316FR 225° - 315° ref: Fig.A4.1)
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Fig.A4.14‘Photog'ra'ph 61:' initiafed crééké 6n thé sL:rFaceﬁ 6f the iriﬁer véséél aﬂ:ek 1055 cycles
(316FR 270° ref: Fig.A4.1)




