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(Research Report)

Naoto Kasahara'

Abstract

A rational amalysis method for general thermal transient problems was proposed, by
utilizing transient response characteristics of structures. Structures can not respond to
quick change of fluid temperature, since they have finite time constants. Low rate
changes of fluid temperature hardly induce thermal stresses because of temperature -
homogenization in structures. In order to quantify above transient characteristics, author
developed a relaxation function method that describes Green function of structures. This
function can be applied to sensitivity analysis of thermal stress to fluid temperature and to

optimization of heat removal systems.

*  Structure and Material Research Group, System Engineering Division, OEC, JNC



JNC TN9400 2001-012
2000 # 8 H

— B EE BT T 5= D ERENCE
| (B EE)

B EAY

ZE g

WEOBREINEREERFIATLIZEICL>T, — AR EWRIEREIC K58 BRIk &R
WEEREU, HEWITEE O EMREREE 570, Rl IiEREE(CICBIE T
LHEARFAHETHD, WILEOHREEE IS ENTORGE I L > THEYLEND T, #
ISHOEREARDEENRE AR ECSTEE,

WEARERGITN T2 LESEEERL T2, AR CIIEEOR Ty IR ELEH
W DEmMBEARELFRR L,

BT, BUSH OREEERCKT T OREMTE, 77 N EIRORENE ER EHOE
HeaZentks,

A, ARPIZEIE 19999 A 235200068 A £ COMENCCEAN F T 2R RIS TR ML /o2
HEO—HTHD,

¥) REELEFE P — VAT LARRER Ha s sv—7



JNC TN8400 2001 ~ 012

Contents

NOMENCLATURE 1
1. INTRODUCTION pA
2. FORMULATION OF PHENOMENA BY RELAXATION FUNCTIONS 6
2.1. DESCRIPTION OF PHENOMENA AS RESPONSE PROBLEMS.....vvevreemeeeseeeeeeeeeeseesssssossessssssee e 6
2.2. ONE DEGREE OF HEAT CAPACITY PROBLEM ....vvvveeememeeeeeeererossessssesssessesssessssetsesseeeeee s ese e s e e seesen 7
2.3, TWO DEGREES OF HEAT CAPACITY PROBLEM ...vveveemnrrteeeteteemeee e e eeee et e 9
3. METHOD TO GET RELAXATION FUNCTIONS 12
3.1. MODAL ANALYSIS METHOD ....cceevurmrmeersrerersrscsssresesssessssemeessssss sesessssssssssssmsssseeeeeeoesenen s s s e eemnes 12
3.2. THEORETICAL ANALYSIS METHOD ....ovoeuueeterssrssieticmsenesesseesesesssssessssasssmeeseesssssasessssssses s e eeeeeeen 13
3.3, REGRESSION ANALYSIS METHOD ....cereuistrisememeneseseesasseessssessssesseesssessssenssssesessesesessssestsee s e eeoenne 15
4, CONCLUSIONS 22
5. DISCUSSIONS 23
ACKNOWLEDGEMENT 23
REFERENCES 24




INC TN9400 2001 — 012

Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 3.5

List of tables
Time constants for 15 order approximation by eigenfunction ................... 15
Coefficients of eigenfunctions for Pipes with various wall thickness........ 17
Time constants for Pipes (h=5000kcal/mm2hT)....cocoerereeeeerereeeenreerannns 18
Coefficients of eigenfunctions for Pipes with various heat transfer
Coefficient ... oeceereeeee e erenreeeeaeaseseearnnes ettt et ene e eenaen 19
Time constants for Pipes (t=10mm).......ccevuiuecomemeceere et eeer e e eneenans 20



JNC TN9400 2001 — 012

Fig.1.1
Fig.1.2
Fig.1.3
Fig.1.4
Fig.1.5

Fig.1.6
Fig.2.1
Fig.2.2
Fig.2.8
Fig.3.2
Fig.8.3
Fig.3.4
Fig.3.5
Fig.3.6
Fig.3.7
Fig.3.8

List of figures

Thermal transient phenomena due to plant dynamics......cccccoevevveeeeeevervvennan. 3
Evaluation procedures of thermal transient strength of nuclear components 3
Graphical user interface of the total simulation code PARTS ...ooveveeeeneenn.. 4
General tendency of structural response to fluid temperature fluctuation.... 4

Variety of structural response characteristics to the same thermal transient

CONAILION 1.orveiiceie ettt e er e s b e e e ere s rmsenssassaa st s e eseene s 5
Fast stress calculation with Green function ..oceooveeeeeeeeeeeeeeeeeeeeeee e 5
Mechanism of transient thermal stress induced by fluid temperature change 6
One degree of heat capacity problem ....c...occoveeeiencvireseecevaeanens eerrraeerraanns 8
Two degrees of heat capacity problem.......occoveeiiiiieiiiiiiiiiie e eeeeeeanas 11

One dimensional continuum Problem ...........c.eveeveeveruersereereessrenenssssesesenans 14
Green's functions of pipes with various wall thickness (h=5000kcal/m?T) . 15
Structural response characteristics to time constant (h=5000kcal/m?hC) .. 17

Time constants of pipes (h=5000kcal/m2hT) .....oeoomreoreeeeeeeeeeeeeeeeeereaan 18
Green's functions of pipes with various heat transfer coefficient (t=10mm) 19
Structural response characteristics to time constant (t=10mm)................ 20
Time constants of pipes (Wall thickness=10mm) .........cccousvererererereerrvsenenee. 21



JNC TN9400 2001 - 012

NOMENCLATURE

T, (t): Temperature of fluid

Ts(x, t): Temperafure of structure

o{x,7): Stress in structure

G(x,t): Time response function of structure to fluid temperature fluctuation
H(t): Time response function of effective heat transfer

S(x, t): Time response function of effective thermal stress

¢{TS (x,t)}: Thermal stress function determined by mechanical boundary conditions
T, (s): Laplace transform of T, (t)

T.(x, s): Laplace transform of T, (x,)

G(x,s): Laplace transform of G(x,t)

H(s): Laplace transform of H(t)

S(x,5): Laplace transform of S(x,7)

(I){Ts (x,s)}: Laplace transform of ¢{Ts (x,)}
r : Time constant of structural temperature response
¢ : Igen values of structures

x: Length from the surface of structure
t: Time

h: Heat transfer coefficient

L: Wall thickness of structure
A: Area
V: Volume

a: Thermal diffusivity of structural material

A : Heat conductivity of structural material

¢ Specific heat

o : Density

E: Young's modulus of structural material

«: Linear expansion coefficient of structural material
v: Poisson's ratio of structural material

K: Stress index determined by mechanical boundary conditions and material properties

K =1/(1-v) in the case of biaxial plane stress condition
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1 INTRODUCTION

Design experiences of Japanese DFBR notified that thermal transient loads induced by
fluid temperature change become sometimes critical for their plant design. Thermal
transient loads are caused from combined thermohydraulic and thermomechanical
phenomena as in Fig.1.1, so that there are neither rational evaluation methods nor rules
for these problems. Recently, simple and compact components are demanded for FBRs
because of a strong requirement of economical improvement, which leads to increase
thermal stresses. On the otherhand, seismic loads give no limitation because of
adoption of seismic isolation systems. This situation motivated author to develop total
assessment approaches of thermohydraulic and thermomechanical p_henomena. One of
them is a total simulation of fiuids and structures by the Object oriented code (Figs.1.2,
1.3 [1)).

Another is a theoretical approach with structural response functions by utilizing
transient response characteristics of structures as in Fig.1.4. Structures can not
respond to quick change of fluid temperature, since they have finite time constants. Low
rate changes of fluid temperature hardly induce thermal stresses because of
temperature homogenization in structures. These characteristics vary according to
structures as in Fig.1.5. In order to quantify above transient characteristics, author
developed a relaxation function method with time constants of structures. By using
relaxation functions, we can understand characterisiics of Green function clearly. For
design of the SPX plant, French engineers developed an assessment method of time
dependent damage, where they defined the forgetting time that is similar to the time
constant of relaxation function [2] [3]. " For example, when a time constant of fluid
temperature change is longer than structurat one, its structure forgets effect from fiuid.
Another application of this method is quantification of Green function that can be applied
to fast calculation of transient thermal stress as in Fig.1.6 [1]. Green function is also
utilized for on-line monitoring {4]. The purpose of this study is a development of the
refaxation function method for general thermal transient problems by extension of the
frequency response function [5] [6].
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Fig.1.1 Thermal transient phenomena due to plant dynamics
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Fig.1.3 Graphical user interface of the total simulation code PARTS

] . Induced
Changing rate of Attenuation
: . thermal stress
fluid temperature mechanism )
| amplitude
Heat transfer losses

High from fluid to structures E:) Low

Medium | > Maximum

Low Thermal homogenization E:> Low

inside structures

Fig.1.4 General tendency of structural response to fluid temperature fluctuation
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2. FORMULATION OF PHENOMENA BY RELAXATION FUNCTIONS

2.1. DESCRIPTION OF PHENOMENA AS RESPONSE PROBLEMS
Structural surfaces that contact to fluid can respond rapidly to fluid temperature
change as in Fig.2.1. Temperature within structures follow slowly to surface
temperature.  Different response characteristics among structural part cause
temperature distribution and thermal stress. Temperature response characteristics
depend on structural configuration and they can be quantified by relaxation
functions.
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Time
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~ Time
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Fig.2.1 Mechanism ofrtransient thermal stress induced by fluid temperature change
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2.2, ONE DEGREE OF HEAT CAPACITY PROBLEM

In order to understand mechanism and to quaniify structural response
characteristics, thermal and mechanical responses problems are theoretically
formulated. Fig.2.2 is a one degrée of heat capacity model. A differential equation .
with a boundary condition for this problem is R

(2.1)
Laplace transform _of Eq.(2.1}is.
(Veps + ARYT(s) = ART,(s). (22

Transfer function H(s) from fluid temperature T, (s) to structural temperature
T.{s) can be described as

A)=L6) L Vo

_Tf(s)=1+1s' Ah @3)

Response of this system to a step temperature change is

UH(S)=H(S)X(S)=I.+1_Q% 2.4)

that is the first order delay system with the time constant ©.

Inverse Laplase transform of Eq.(2.4) gives

T(t)=1-¢"" (2.5)

which is the relaxation function with the relaxation time ©.
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ig.2.2 One degree of heat capacity problem
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2.3. TWO DEGREES OF HEAT CAPACITY PROBLEM

Next problem described in Fig.2.3 is a two degrees of heat capacity model. In
this problem, thermal stress is assumed to be proportional to difference between
two heat capacity points as

o =KEo(T,, —T,), (2.6)

where K is a stress factor determined from a geometry.

Differential equation with boundary condition is

@7

where A, is a convection area, A; is conductive area, L4 is conductive length with
heat conductivity A ;. '

Transfer function from fluid temperature to stress can be obtained by Laplace
fransform of Egs.{2.6) and (2.7) as

ols) _Tal8) ol9) _ reroar(o)s(s) = KEaG(s). 2.8)

r,(s) T,() 7o)

In Eq.(2.8), H(s) is an effective heat transfer function described as

H(s)= Tals) 1 r, =L0Ps. (2.9)
T (s) I+z,s’ 4yh
which is the same as Eq.(2.5), and
S(s) is an effective thermal stress function expressed as
§(s)=— ols) ,__ 1~ _Vesl (2.10)

KEa Ty(s) l+r,s 5 44,

When inputting the relaxation function

-9 -
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T()= e, | (2.11)

to Eq.(2.7), a determination equation

det =0 (2.12)

T[ch]{fg_]

is obtained and this solutions are two eigen values 74, T, and two eigen vectors
¢ 1 ¢ 2.

Atfter that, time response of the two degree system is

T=ae™ +a,e™. (2.13)
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3. METHOD TO GET RELAXATION FUNCTIONS

3.1. MODAL ANALYSIS METHOD

The formulation of two degree system can be extended to N-dimensional
problems as the next equations.

det =0 (3.2

r[ch]{i_ﬂ

Above equation gives neigenvalues T4, T, * * * T, and n eigen vectors ¢ 4,

by = - - bn

After that, time response of the 1 degree system is

T=aqe™ +a,e™ +--+ae™. (3.3
a, factors are determined From Eq.(3.2)

(z, -z g} [Clig.} =0, (3. 4

that has orthogonal properties.

Modal analysis programs for elastic structures may be utilized to above
calculation with some modification.

A detailed formulation for programming is required as a future study.
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3.2. THEORETICAL ANALYSIS METHOD

Theoretical analysis approach is applicable for simple problems.

For example, consider a plate of infinite extent, which is subjected to a step
temperature change of fluid on its front surface through heat transfer coefficient h
with the back surface being adiabatic. The through thickness temperature can be
found from the one dimensional heat conduction equation.
oT. 6 T, A

5

, &= — 3.5
ot c")‘x2 cp (3:9)

Under the boundary condition :

T.(0,6)=0 (3. 6)
(3. 7)
and the initial condition : |
T.(x,0)=0, (3. 8)
Solution[7] is
T(x,6)= Y a,e™ " sin(4,x), (3.9)
n=1
where
tand, =-4 /h, (3.10)
a,= 24, Iésm(/l EYE and (3. 11)
A, sm/l cos A, :
1/2, (m=n)
3. 12
Ism( E)sin(A EYE = {0, (m 1) 3. 12)

Once temperature distribution T(x.t) was obtained, the following equations[8]
give stress distribution o (x.t).
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Fig.3.2 One dimensional continuum problem
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3.3 REGRESSION ANALYSIS METHOD

Green functions of structures can be described by linear summation of relaxation
functions as

Ulx,f)= S T.()X, () (3. 16)
n=l

time term T, {t)= g% (3. 17)

spatial term X,(x)=e,sin({,x) (3. 18)

Paying aftention to above expression, it is possible to approximate Green
functions by linear summation of several relaxation functions, time constant of

which covers the phenomena. Factors of relaxation functions are determined by
regression analysis.

Since time constants of thermal transient phenomena in nuclear plants exist

between 0.2 seconds and 10000 seconds, the next equation can approximate
phenomena.

15

()= C e | (3. 19)
=l .

where On is a factor for relaxaiion fahctions.

Table 3.1 Time constants for 15 order approximation by eigenfunction

Order 1 2 3| 4 5 § 1 8 g 10 i1 12 i3 14 15
T,sec | 10000f 5000 ZOUDI 1000 500 200] 100 60 20 10 l 2 1 05 02
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To validate this idea, pipes subjected to step temperature change of fluid are
considered. Material is 316FR SS and ratio of half diameter to wall thickness is
kept Rt=10. Heat transfer coefficient is 5000 kcal/m*hC. Wall thickness are
2mm, 5mm, 10mm, 20mm, 50mm, 70mm and 100mm. The next figure shows
F.E. calculated stress histories. These results explain that thicker wall pipes
geherate larger stress and keep them longer time.

0.4

0.35 —
03 [t i

0.25 e

—— FEM/t=2mm,h=5000kcal -~¢
— - FEM/t=5mmh=5000kcal

—&— FEM/t=7mmh=5000keal

—¢ FEM/t=10mm,h=5000kcal
—%— FEM/t+=20mmh=5000kecal —
—8-FEM/t=50mm,h=5000kcal
—t+— FEM/t=70mmh=5000ksal
—— FEM/t=100mmh=5000kcal |

T
]

60 80 100

0.2

015 M

Mises stress o (kg/mm?)

01 I

0.05 &

Time (sec)

Fig.3.3 Green's functions of pipes with various wall thickness (h=5000kcal/m?*°C)

When approximating stress histories of Fig.3.3 by Eq.(3.19), results have good
agreement with original curves. Obtained factors by regression analysis are
shown in Table 3.2 and in Fig.3.4. Factors of relaxation functions with long time
constants increase when wall thickness increase. From these results, it was
clarified that factors of relaxation functions quantified Green functions.

-~ 16 —
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Table 3.2 Coefficients of eigenfunctions for Pipes with various wall thickness

t=2mm, b=5 | t=5mm, h=5|t=Tmm, h=5 |t=10mm, h=|t=20mm, b=} t=50mm, h={¢=70mm, h=|t=100mm, k
T, sec 00kcal [000kcal {000kcal |5000kcal [5000kcal |5000kcal |5000kcal |=5000kcal
100001 -0. 0002 | -0.0002 | -0. 0002 0. 0005 | -0. 0003 0. 0045 0. D016 | -0. 0028
5000] 0. 0005 0. 0007 0. 0005 -0 0013 0. 0008 | -0. 0127 —) 0045 0. 0085
2000{ -0.0010 | -0.0014 | -0. 0011 0. 0025 { 0. 0017 0. 0273 0. 0510 | -0. 0262
1000] 0. 0017 0. 0022 . 0018 | -0. 0439 0. 0028 | -0.0527 | ~0. 0295 . 3594
500 —0.0019 | =0.0024 | =0. 0020 0. 0044 [ =0.0033 ). 0973 0. 3642 0. 0358
200] 0.0026 | 0.0034 0.0029 | 0. 0067 f. 0060 0. 3639 0.0212 | -0. 0244
100] -0. 0042 [ -0. 005 =0. 004 0.0122 | 0. 0160 | 0. 1430 [ 0. 0149 {. 0393
50y 0. 0051 ). 0073 0. 0064 | -0.020b 0. 3004 0. {955 ). 0076 | 0. 0379
201 ~0. 0084 | ~0. 0151 [ -0. 0167 0. 1486 | -0.0032 § -0. 1143 [ -0. 0320 0. 0011
10] 0.0149 0.0448 | 0. 1907 0. 1359 {.0138 0. 0830 ¢ 0. 0217 | -0. 0763
bl -0.0210 0. 1265 0.0028 § -0.0780 | -0. 1008 | -0. 1436 | ~0.0639 | ~0. 010
21 0. 1089 0. 0091 0. 0500 0. 0597 0. 0343 0. 0237 | 0. 052 ~(. 1235
1] -0.0800 ¢ -0.0662 | -0. 1678 { -0.2136 § 0. 1765 | 0. 1421 | -{. 064 0. 02%
0.5] 0. 141 0. 0460 ). {834 . 1147 0. 0830 0. 0395 | -0.0128 { -0. 0810
0.2] 0. 1583 | 0. 1491 } -0. 1518 —J. 1545 | -0. 1443 | -0. 1265 | ~0. 1100 | -0. 0864
1.0E+00
1.0E-01 A—HA—A
1.0E-02 g}}ﬂ‘*’ XY ,}" <
"é 1.0E-03
: \/ \)(
g 1.0E-04
kS —4— t=2mm,h=5000kcal
£ 1.0E-05 |— —%— t=5mmh=5000kcal
5 ~— t=Tmm,h=5000kcal
@ | —%—=10mmh=5000kcal
1.0E-06 —¥%— t=20mim, h=5000kcal
—8— t=50mm,h=5000kcal
1.0E-07 |— ——-t=70mm,h=5000kcal
——1t=100mm,h=5000kcal
1.0E-08 L !

o1

i 10

100
Time constant of decay 7, sec

1000 10000

Fig.3.4 Structural response characteristics to time constant (h=5000kcal/m*h°C)

To be compared, time when stress becomes the maximum and fime constant
when stress becomes the maximum stress divided by e were evaluated as in the
next table and figure. This tendency agrees with Green function resuits. The later
can provide more detailed information such as the maximum stress level.
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Table 3.3 Time constants for Pipes (h=5000kcal/mmzh°C)

—

2

2

m i 0 )] 50 )] 100
| T ay_SEC 0.4 0.7 1.5 3 ) 16 25 35
T /e SEC ; 7 12 20 50 780 550{ 1000
1000 /.
900
800 —— T max sec /
—_ —8— 7 1/e sec
g 700
2
600
e
& 500 Ve
8 400 4
o
£
i~ 300 /.r/
200
100
0 M/T/ . .
0 20 40 60 80 100

Fig.3.5 Time constants of pipes (h=5000kcal/m2h°C)

The second problem is pipes subjected to step temperature change of fluid with
different heat transfer coefficients. Material is 316FR SS, half diameter is 100mm
and wall thickens is 10mm. Heat transfer coefficients are 1000 kcal/m*h*C, 2000
keal/m*h'C, 5000 keal/m*hC and 10000 keal/m?h®C. The next figure shows E.E.

calculated stress histories.

Wall thickness mm

increases and relaxes rapidly when heat transfer coefficient increases.

These results explain that the maximum stress
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0.25

4 \ |
g%é —+— FEM/t=10mmh=1000kcat

—&— FEM/t=10mm h=5000kcal
—— FEM/t=10mm}5=10000kcal

0.2 X —&— FEM/t=10mm h=2000kcal

Mises stress o (kg/mm>)

0 20 40 60 80 100
Time (sec)

Fig.3.6 Green’s functions of pipes with various heat transfer coefficient (t=10mm)

When approximating stress histories of Fig.3.6 by Eq.(3.19), results have good
agreement with original curves. Obtained factors by regression analysis are
shown in Table 3.4 and in Fig.3.7. When heat transfer coefficient increases,
values of factors increase and time constant becomes shorter.

Table 3.4 Coefficients of eigenfunctions for Pipes
with various heat transfer coefficient

t=10mm, h=|t=10mm, h=|{=10mm, h=|t=10mm, h=
,sec  |2000kcal |2000kcal [5000kcal |10000kcal
10000] 0. 0001 | . 0007 { 0.0005 [ 0.0003
5000{ 0.0003 ! 0.0019 | -0. 0013 | -0. 0069

2000] -0. 0007 | -0.0038 | 0.0025 | 0.0017

1000] 0.0012 | 0.0061 | -0.0039 | -0. 0027

000] -0. 0015 | -0.6070 | 0.0044 | 0. 0031

2000 0.0027 | 0.0113 { -0. 0067 | -0. 0047

100} —0.0072 | -0.0229 j 0.0122 { 0.0084

o] 0.0764 | 0.0497 | 0. 0205 | -0.0136

201 0.0060 | 0.1344 | 0.1486 | 0.0602

10] -0.0037 | -0.0677 | 0.1359 | O0.3066

o] 0.0014 7 0.0448 | -0.0780 | -0. 1227
2] -0.0349 } -0.0740 | 0.0597 | 0. 1794

1l -0.0176 | -0.0264 | -0.2136 | -0.4038
0.0f 0.0028 | 0.0066 | 0.1147 ] 0.3156
0.2 -0.0252 | -0.0523 | 0. 1545 | -0. 3269

- 19 —
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Fig.3.7 Structural response characteristics to time constant (t=10mm)

To be compared, time when stress becomes the maximum and time constant
when stress becomes the maximum stress divided by e were evaluated as in the
next table and figure. This tendency agrees with Green function results. The later
can provide more detailed information such as the maximum stress level.

Table 3.5 Time constants for Pipes (t=10mm)

Heat iransfer

coefficient

keal/m*hC) 1000 2000] 50000 10000
| T mag SEC ) 4 3 3
T 1/e SEC 95 35 20 16
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Fig.3.8 Time constants of pipes (Wall thikness=10mm)
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4.

CONCLUSIONS

Structural response mechanism to fluid temperature fluctuation was clarified and was
formulated by the relaxation functions. This function can quantify Green functions of
structures. Green function 'enables fast calculations of stress response to arbitrary
thermal transient conditions. Furthermore, we can obtain such characteristics of
structures from Green function expressed by relaxation functions as the maximum stress
level and time when stress becomes the maximum and time constant when stress
becomes the maximum value divided by e.

~ For evaluation of the relaxation functions in structures, such evaluation methods were

proposed as a modal analysis method, theoretical method and regression analysis
method.
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5. DISCUSSIONS

The modal analysis method requires more detailed formulation for programming. By

'using relaxation function, optimum design against thermal transient problems is
expected.
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