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MSV: MULTI-SCALE VISCOSITY MODEL OF TURBULENCE

Viadimir Kriventsev*

ABSTRACT

Multi-Scale Viscosity (MSV) model is proposed for estimation of the Reynolds stresses in turbulent
fully-developed flow in a wall-bounded straight channel of an arbitrary shape.

We assume that flow in an “ideal” channel is always stable, i.e. laminar, but furbulence is
developing process of external perturbations cased by wall roughness and other factors. We also
assumne that real flows are always affected by perturbations of any scale lower than the size of the
channel. The turbulence can be modeled in form of internal or “turbulent” viscosity increase.

The main idea of MSV can be expressed in the following phenomenological rule: A local
deformation of axial velocity can generate the turbulence with the intensity that keeps the value of
local turbulent Reynolds number below some critical value. Here, local turbulent Reynolds number
can be defined in two different ways:

i) as a product of value of axial velocity deformation for a given scale and generic length of
this scale divided by accumulated value of laminar and turbulent viscosity of lower
scales

i) as a ratio of the difference between total kinetic energy and “flat-profile” kinetic energy

to the work of friction forces

In MSYV, the only empirical parameter is the critical Reynolds number that is estimated to be around
100 in the former case and about 8.33 in the later.

MSV model has been applied to the fully-developed turbulent flows in straight channels such as a
circular tube and annular channel. Friction factor and velocity profiles predicted with MSV are in a
good agreement with numerous experimental data.

The MSV model can be classified as “zero-order” integral model of turbulence. Because of
simplicity, MSV can be easily implemented for calculation of fully-developed turbulent flows in
straight channels of arbitrary shapes including fuel assemblies of nuclear reactors.

The intent of this report is to summarize the progress made in the development of the model of
turbulence. Since the final formulations of MSV have not been yet derived, this report should be
considered to be preliminary.

*) INC International Fellow

Thermal Hydraulics Research Group, System Engineering Technology Division, O-arai Engineering
Center, JNC, Japan
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1. INTRODUCTION

Turbulent flow motions occur in many engineering problems and proper simulation of
turbulent flow heat transfer plays an important part in design of nuclear reactor and its components
on the "feasibility study” phase. Also, accurate and fast numerical prediction of velocity and
temperature filed are very important in safety and accident analysis.

The present sate of turbulence nature understanding is that Navier-Stokes equations can
properly describe the turbulent flow. However, direct numerical solution of Navier-Stocks
equations is not only too costly but also yet impossible in most important cases for not-very-low
Reynolds numbers even in simplest geometries. Instead, averaged Navier-Stokes, or Reynolds
equations are considered to be sufficient and practical enough to describe the turbulent flow in most
practical applications. Reynolds equations include cross-correlation terms to be estimated with a
turbulence model. Such a model should include expressions or/and equations for eddy diffusivity or
(in other terms) turbulence viscosity. In this work, we will concentrate on turbulent viscosity
modeling of fully-developed wall-bounded incompressible channel flows and propose our original
model.

1.1 Turbulence Modeling

One of the first and very effective turbulent viscosity models was a “mixing-length” model
proposed by Prandtl [1] long time ago. Prandtl’s hypothesis is that fluid particle, or eddy, keeps its
axial momentum when moving athwart the flow for some finite distance called “mixing len
According to the mixing length model, turbulent shear stress in athwart direction can be estimated
as

d{u)
dy

d (u)

Tyy = — PV = — pl? | 5 )

”

where [ is “mixing length”; p is density; u={(u)+u' and v ={(U)+ U are axial and cross
velocities; y is distance to the wall; index ‘is devoted for pulsation component of value; and values
in brackets () are ensemble averaged. Using the idea Boussinesq’s eddy viscosity model, one can
write the following expression for eddy diffusivity in athwart direction:

i ,U,>/d<u> plaa)|

dy |
Here, in Eq. (2), the mixing length / should be modeled and Prandtl proposed the following
simple relation for pipe flow:

@

I=%y, 3)

where ¥ is von Karman constant.

Since only simple formulas (2) and (3) are used here, the Prandtl’s mixing length model can
be classified as “zero-equation” model in contrast to more complicated modeling that uses
additional equations in partial-derivatives derived for other turbulent parameters such as kinetic
energy of turbulent fluctuations, dissipation and so on. Zero-equation models were popular because
they are relatively simple and intuitive. However, these models are very limited because the can be
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applied to particular problems with similar geometry and are inappropriate for predicting other types
of flows in more complicated geometries. For example, from Eq. (2) one can easy conclude that
turbulent transport becomes exactly zero at the flow symmetry line where axial velocity gradient is
zero by definition. While this conclusion opposes the physical phenomenon of turbulence, it does
not contribute a lot to the error of calculation simply because the turbulent transport near symmetry
line is not very important in most practical cases.

From the middle of twentieth century, with the advance of computer technique, turbulence
modeling also advanced. Turbulence modeling in engineering practice progressed to the second-
order turbulence closure models .in which the second-order turbulence transport quantities are
modeled. Comprehensive review of second-order turbulent models can be found in [2]. Although
complicated and tedious, these models are considered to be potentially more useful and less problem
dependent. However, the latest modifications have proven to be also very dependent on the flow

- geometry and regimen. For example, four coefficients used in famous k-& model must be adjusted

to different problems to predict relatively accurate solution. Yet k-& model cannot even predict
non-symmetry in eddy-diffusivity distribution for annular channels.

Another alternative is direct numerical simulation (DNS) of Navier-Stokes that becomes more

and more popular as computer power grows. Yet, “true” direct simulation is limited by very low

- Reynolds numbers and no significant achievements can be expected in forecastable future. The

promising developing of DNS is its combination with algebraic or second-order modeling to resolve

turbulent modes lower than finest mesh size. The resulting model called Large-Eddy Simulation

(LES) became very popular in recent years. LES has been applied to many engineering problems

including nuclear engineering [3]. However, since LES uses some kind of empirical model of

turbulence it cannot be considered as universal. Moreover, LES must always be applied in three
dimensions that results in huge demand for computer power.

Long history of “zero-equation” models has proven they posses the advantage of simplicity
and are capable of modeling turbulence in many cases. The feeling of the author is that simple zero-
order models like Prandtl’s mixing length should be applied as a first estimation first to the every
new flow in complicated geometry. Also, it seems fo be very interesting and promising to enhance a
zero-equation modeling using more physical approaches. Thus, the main weakness of mixing-
length model is that mixing length itself and turbulence viscosity at a local point are considered to
be exactly defined by velocity gradient in this point. However, it’s obvious that turbulence
parameters must depend on-velocity distribution and, perhaps, turbulence intensity relatively far
from any given location or, at least, nearby. Second-order modeling resolves this by introducing
additional differential equations for energy of turbulence fluctuation, dissipation, and some other
virtual variables. However, another approach could be also applied. In 1962, N. Buleev proposed
an integral model of turbulence based on the consideration of original Prandtl’s hypothesis of
momentum transported by stochastic eddy movements [4]. Buleev’s model results in the system of
non-linear integral-differential equations for tensor of turbulent viscosity that can be solved
numerically. In spite the fact that Buleev’s model could give quite accurate prediction of velocity
distribution in very complicated three-dimensional areas such as hexagonal rod bundle array [5], it
has been never accepted broadly. It poses some additional calculation complications and, after all,
also depends very much on some empirical constants. Here, we recall the Buleev’s model because
Multi-Scale Viscosity (MSV) proposed in this work can be also categorized as an integral zero-
equation model. In fact, MSV is a further development and generalization of Prandtl’s and Bullev’s
mixing length hypothesis.

Before we discuss definitions and assumptions of MSV, let us make some physical
considerations related mainly to wall-bounded channel flows.
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1.2 Reynolds Number and Transition to Turbulence

The first systematic investigation of a pipe flow was conducted by Reynolds who discovered
the law of similarity based on a dimensionless parameter which now is labeled by his name:

ud
Re=—,
y _ 4)

where u is flow velocity, d is pipe diameter, and Vv is kinematic viscosity of the fluid. In more
general form applicable to any flow, # and d are considered as some “typical” flow velocity and
flow scale that, in case of channel flow, called hydraulic diameter and defined as d, = 4A4/11,

where A is cross-section area of the channel and IT is wetted perimeter. Multiplier four is given to
make d}, equal to the pipe diameter is the reference case of circular tube studied be Reynolds. The
flows of different fluids in channels of different sizes (and, roughly, of different shapes) are similar
when they defined by the same value of Reynolds number, One of the most fundamental facts is

that there exists some critical Reynolds number Re., where flow becomes unstable and turbulent

for all the higher Reynolds numbers. Reynolds himself found that Re,, is between 11800 and
14300. So high values can be explained by using very smooth pipe inlet in Reynolds experiments.

Latest numerous experiments discovered that Re.,22000. Nevertheless, it is important to note here
that in some other works, and first to mention in the experiment of Pfeninger [6], conducted on very
smooth pipes, the laminar flow observed for Reynolds numbers up to 100000. The ratio length-to
diameter was up to 600 and entire laminar flow was observed over all the length.

Suggesting that the experiments of Pfeninger [6] and others were correct, one should accept
‘that laminar flow region cannot be limited by Reynolds number 2000. Then, we suggest that
turbulent motions in wall-bounded channel flow are the result of finite-size perfurbations causes
either by wall roughness or inlet conditions. If the flow became unstable due to infinitively small
disturbances that are always exist, the laminar flow would not be observed at any Reynolds number
higher than critical. Furthermore, a precise value of this critical Reynolds number would be easy
obtained by applying a linear instability analysis. If this conclusion is true, we suggest that there
cannon be an “universal” theory of channel flow turbulence simply because real channels are
- different. However, for the most practical cases, turbulent flow in relatively smooth channels
definitely behaves very similar developing the universal velocity profile. The wall influences the
flow only for relatively large roughness at relatively high Reynolds numbers. :

1.3 Flow Disturbances, Vortex Development and Statistics

The study of transition to the turbulence is occupied many researchers from the time of
Reynolds until now making it very difficult referencing every paper in the field. In this work, we
shell mention some works that provide a background for present investigation. Very detailed
historical review following by discussion of careful experimental study was given by Wygnanski
[7, 8].

When fluid enters a channel through the inlet that usually a smooth contraction from a large
settling chamber, the cross-section velocity distribution changes with downstream distance.
Initially, velocity profile is nearly uniform, but because of viscous effects, the profile changes
downstream until flow reach a cross-section where a fully-developed velocity profile is attained. It
means that from this cross-section downstream the flow becomes independent on the axial
coordinate. If the Reynolds number is high enough, flow becomes instable and turbulent in some
point. For relatively small Reynolds numbers slightly higher that critical value 2000, the rapid

-3
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transition of the flow from laminar to turbulent and then back to laminar can occur as shown in
Fig. 1(a).
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Figure 1. (a) Schematic diagram of the flow in a turbulent slug
(b) The regions in which slugs and puff occur in transitional pipe flow as a function of
the disturbance level
by Experiment of Wygnanski [7]

Wygnanski [7] found experimentally two very different types of intermittently turbulent flow
occurring naturally in a pipe:
- Slugs, which are caused by instability of of the boundary layer to small disturbances in
the inlet region of the pipe and
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- Puffs, which are generated by large disturbances at the inlet

While slugs are associated with transition from laminar to turbulent flow, puffs represent an
incomplete re-laminarization process. Wygnanski [7] only observed puffs generation at
2000<Re<2700, while slugs occurred at any Re>3200. In Fig. 1(b) the Reynolds numbers at
which puffs and slugs occur are delineated as a function of the disturbance level at the entrance.
This figure represents schematically the various regions encountered in transitional pipe flow at
large distances from the inlet, i.e. at locations where the flow can be considered fully-developed.
One can see that these data do not uniquely determine the critical Reynolds number at which
transition occurs. In case of very low inlet disturbance flow can remain laminar even for Reynolds
numbers up to 5000 {according to Wygnanski [7]).

Many other experiments, actual as well as virtual, numerical were performed to study the
structure of turbulence, types of eddy developments, and nature or transition from laminar to
turbulent flow. Among them, Eckelman [9] and Kreplin [10] studied the structure of the viscous
Sublayer and behavior of fluctuating velocity in the wall region of turbulent channel flow. Thomas
[11] reviewed up-to-date approaches for modeling of wall turbulence and proposed a model of
transport mechanism associated with the turbulent burst phenomenon. A Dimensionless burst
period was calculated and found to be independent on Reynolds number:

2
r+ =440 14032 w223, 5)
v

where #,=./T,, / p is dynamic, or friction, velocity; 7, is wall shear stress, and {T') is mean burst

period. This value correlates very well with experiment of Alp [12] who found that T ~250ina
wide range of Reynolds numbers. It should be note here that dimensionless burst period
corresponds to some “dynamic” Reynolds number defined as follows:
2 2
ul ul. u
Re,=Zreole e _Tr(ry_T*, ©)
vV | 4

T

where average burst period is defined via dynamic velocity #, (that nearly the same as near-wall

fluctuation velocity), and mean length of burst /,. Kirillov [13] used mean period of fluctuations in
study of influence of wall conductivity to the turbulent heat exchange. In recent private

communications, P.L. Kirillov mentioned similarity above (Eq. (6)) between dimensionless T" and

Re,. This is in support of the central idea of MSV assuming an existence of the universal Reynolds
number.

Numerical simulation in a plane channel with a sudden expansion was performed by
Mizushima [14]. Experimental observations show that flow in symmetric channel makes a
transition from symmetric flow to asymmetric one due to a symmetry-breaking pitchfork bifurcation
on a gradual increase of the Reynolds number. Numerical simulation could not confirm this for
perfectly symmetric systems. However, when slightly asymmetric boundary conditions were given,
calculation demonstrated asymmetric bifurcation similar to experimental observations. Though the
present work is limited by fully-developed turbulent channel flows, we see one more flow sample
that remains stable to infinitesimal disturbance for all Reynolds numbers range but can easily go
unstable because of finite-size “imperfectness” in symmetry.

Bradshaw [15] discussed the influence of wall roughness on turbulent flow at high-Reynolds
numbers. The concept of the “critical roughness height” is under the doubt. Analysis shows that
Nikuradse [16] performed the experiments on close-packed sand roughness of uniform size.
Considering new detailed measurements on “natural” pipes found in engineering, Bradshaw

-5-
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concluded that “the effects of small roughness vary as power of roughness Reynolds number... then
one can say only that the errors would become smaller, and eventually negligible, as Roughness
Reynolds number decreased”. We add, that if the latter is true, one should conclude that there are
no really smooth pipes but relatively smooth walls to neglect roughness effects. In addition, should
we suggest that in such an ideal pipe existed along with ideal inlet conditions, flow would be always
laminar and would not depend on the pipe Reynolds number? Another uncertainty is whether the
flow in a long ideal pipe changes to laminar at infinity,

The shape and frequency (both in space and in time) of imperfect disturbances are also very
important and were recently studied intensively with advance of measurement technique. Eliahou,
Tumin, Han and Wygnanski [17, 18] studied experimentally the influence of artificial periodic
perturbations emanating from the wall on the transition to the turbulence. Vincont [19] measured
viscosity and scalar concentration fields in the plume emitting from a two-dimensional line source
at the wall. Andersson [20] performed direct numerical simulation of developing natural
disturbances in a flat boundary layer.

~ As for the developed turbulent flow, the vortex organization and development can be found in
experiments of Adrian [21] where the structure of energy-containing turbulence in the outer region
of zero-pressure-gradient boundary layer has been studied. Though these data are related to the
boundary layer flow, they can be used as reference in channel flow modeling due to a lack of
detailed measurements in pipe and plane channel flows.

Detailed data on fully-developed turbulence structure including timescale velocity
distributions and statistical moments are vital for turbulence modeling both as a source of empirical
knowledge and reference for numerical predictions. Johansson [22] measured streamwise velocity
component on fully-developed water-channel flow for three different Reynolds numbers (13800,
34600 and 48900). '

Kim [23] performed a direct numerical simulation of turbulent flow in a plane channel. The
Navier-Stokes equations were solved in three dimensions at low Reynolds number of 3300, with
about four millions grid nodes. All “essential” turbulence scales were resolved and no subgrid
model was used. Numerical results were compared with experimental measurements at low
Reynolds numbers. Kim found that although the general characteristics of the computed turbulence
statistics were in a good agreement with experimental results, detailed comparison in the wall
region revealed consistent discrepancies. In particular, the predicted Reynolds stresses, both normal
and shear stresses were consistently lower than the measured values. Kim pointed that same
disagreement could be found in other numerical works and suggested the possible reason would be
inaccurate near-wall measurements. In another numerical simulation, Spalart [24] studied the
turbulent boundary layer on a flat plate with zero pressure gradient. Again, time-dependent Navier-
Stokes equations were solved in three dimensions by spectral method using about ten millions grid
points. Results showed a good agreement with experimental data in general. The most significant

discrepancy (about 5%} was the friction factor at the highest Reynolds number that was Reg=1410
(based on the boundary layer thickness).

1.4  Experimental Data for Velocity Profile, Eddy Diffusivity and Friction Factor

Detailed experimental measurements of velocity profile and statistics are very important for
the turbulence modeling due to the following main reasons:

- Experiments provide the necessary empirical base for models of turbulence
- The validity of modeling should be verified by comparison with experiment

Although both statements above may seem identical, the difference is that former provide an
input for the model while later is related to the output. And those experimental data are not
necessary the same. For example, results of modeling are easy to compare with experimental

-6-
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velocity profile and friction factor. However, calculating turbulent viscosity via experimental
velocity profile may be not accurate because of uncertainty and measurement errors. Certainly,
turbulent viscosity can be easily found by differentiating velocity profile. Let us consider a fully-
developed turbulent flow in a circular tube. Reynolds equations are reduced to single one-
dimensional equation like following:

1dp) 10 m) |
o & —rar(r(v+v’""’) o ) )

where (p)is pressure, ¥ and z are radial and axial coordinate correspondently. Since the pressure
gradient is constant, turbulence viscosity can be easy obtained from Eq. (7):

rdip) (%
- p dz o or w
Vary = 2_@(3{2 V=V . @ 1 » (8)
or Y or

where subscript index w is assigned to the wall values. Since the gradient of axial velocity is used
as denominator, even small error in velocity profile results in much higher error in turbulent

viscosity distribution. If velocity profile is given by the set of NV velocity values, one can calculate
numerically turbulent viscosity distribution as follows:

ou
T2 a

—— 1] )

U,
r

w
i~k

r:'+1 +7’,-

P — —
Viurb = vmrb( ] = Vewrs ("i+1/2 =V

Using Eq. (9), let us calculate turbulent viscosity distribution based on the experiments of
Zagarola [25, 26] conducted on Princeton’s “SuperPipe” facility. SuperPipe was constructed to
investigate a fully developed turbulent pipe flow over a large range of Reynolds numbers.
SuperPipe experiments were performed in a very large range of Reynolds numbers, 3.1E+4 to
3.5E+7 that provide an excellent reference base for pipe flow calculations. Axial velocity was
measured at 52 locations starting from 0.45mm from the wall. However, as it was mentioned
above, even precise and detailed data on velocity profile cannot guarantee accuracy in turbulent
viscosity distributions. Figure 2(a) shows velocity profiles from SuperPipe experiment [25] for two
Reynolds numbers, low and high. For the reference, velocity profiles calculated with experimental
formula of Reichardt {27] are given by solid lines. Reichardt’s formula was applied to the same
locations of points given by SuperPipe experiment but symmetrically extended to the opposite wall.
Both profile are in a very good agreement. Distributions of turbulent viscosity calculated from
SuperPipe and Reichardt’s velocity profiles are shown in Fig. 2(b). The same profiles versus

logarithmic dimensionless coordinate y* = yu, /v are shown in Fig. 3. One can see that those
results cannot satisfy even minimal accuracy requirements.
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Figure 2.  Calculation of turbulent viscosity(b) from SuperPipe experimental velocity profiles(a)

of Zagarola [25]
Solid lines refer for the same calculations based on the Reichardt’s profile formula
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Figure 3. Calculation of turbulent viscosity from SuperPipe experimental velocity profiles of
Zagarola [25] vs. dimensionless distance to the wall
Solid lines refer for the same calculations based on the Reichardt’s profile formula

As for the Reichardt’s formula, its results can be easy smoothed by increasing the number of
points in the data set. However, for experimental data, only three options are available:

- 1o apply some smoothing algorithm for velocity profile
- to increase significantly the number of measurement locations
- to measure second-order moments including Reynolds shear stresses directly

Probably only the later can guarantee a good accuracy. Unfortunately, this kind of detailed
transient measurements is very difficult for channel flows. However, such data can be found in
many available experiments for the boundary layer flows. The good review and assessment of
boundary layer experimental data was performed by Sreenivasan [28] and, later, by Fernholz [29].
Recently, very detailed measurements of Reynolds stresses for a flat-plate boundary layer in a wide
range of Reynolds numbers were performed by DeGraff [30]. In the present work, doing with the
MSYV model, we will concentrate on the fully-developed channel flow. Nevertheless, detailed
experimental data for the boundary layer flow help to understand the structure and features of
turbulent flow in general as well as give a way for the extension of MSV for the other types of
turbulent flows. Figure 4 shows velocity profiles measured in DeGraff [30] experiment. Here, the
Reynolds number is defined by boundary layer thickness and velocity: Re, = 1,8 / V.
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Figure 4. Dimensionless velocity profiles by experiment of DeGraff [30]
Reynolds number is based on the thickness 6 and the outer speed of the boundary layer
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Figure 5. Reynolds shear stress distribution in boundary layer by experiment by DeGraff [30]
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Second- and even third-order moments were measured directly in DeGraff [30] experiment.
The distribution of Reynolds shear stresses is shown in Fig. 5. One can see that velocity profiles are
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very smooth (Fig. 4) but the accuracy of shear stress measurements is not very good. There are
some unphysical oscillations in the outer region of boundary layer. Also, some values for shear
stress become even negative near the wall and in the core flow region. Nevertheless, accuracy of
the DeGraff’s measurements is good enough to compare with result of turbulence modeling.

1.5 Experimental Velocity Scaling Laws and Theoretical Models

The other good source of model verification is the velocity scaling laws which based mainly
on the analysis of many other experimental data. Barenblatt [31, 32, 33] proposed a non-universal
(i.e. depending on the Reynolds number) for the mean velocity distribution in fully-developed
turbulent shear flows including channel flows and wider classes, such as boundary layers. The
proposed scaling law involves a special dependence of the power exponent and multiplication factor
on the flow Reynolds number. It emerges that universal logarithmic law is closely related to the
envelope of a family of power-type curves each corresponding to a fixed Reynolds number.
Barenblatt [32] compared the model with available experimental data (mainly from Nikuradse [16])
and found a good agreement both for velocity profiles and skin-friction factor.

Wosnik [34] proposed a theory for fully-developed pipe and channel flows. This theory also
extends classical universal velocity profile approach to include the effect of finite Reynolds
numbers. In the limit of infinitive Reynolds number, these reduce to the familiar law of the wall

- and velocity deficit law respectively. Wosnik [34] introduced a mesolayer near the bottom of the

overlap region approximately bounded by 30 < y* <300 where there is not the necessary scale

separation between the energy and dissipation ranges for inertially dominated turbulence. The
experimental data from the SuperPipe experiment of Zagarola [26] at Princeton and direct
numerical simulation (DNS) of plane channel flow by Kim [23] were carefully examined and shown
to be in excellent agreement with Wosnik’s theory over the very large range of Reynolds numbers.

The MSV model does not predict the universal velocity profile, independent on the Reynolds
number. Thus, it is important to compare MSV results not only with experimental data but also
with some physical models described in this section.
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2. FORMULATION OF MULTI-SCALE VELOCITY MODEL OF TURBULENCE

2.1 Energy-Balanced Turbulent quofds Number
First of all, let us suggest possible physical explanations for the Reynolds number Re = ul / V.

Generally, the Reynolds number indicates the intensity of turbulence: the higher Reynolds number --
the higher flow turbulence. And vice versa, for low Reynolds numbers, the turbulence does not
occur or, at least, is very unlikely.

Schlichting [35] suggested that physically, Reynolds number is a ratio of inertia forces to
Jriction forces. This theory is supported by good reasoning for external boundary layers around
solid obstacles where flow changes its direction. However, there are no inertia forces neither in
straight channel flows nor in plane boundary layers. Another possible treatment of Reynolds

numbser is as ratio of turbulent energy production ( o u / 1) to the corresponding energy dissipation

2
(pu*/1”) (from private communication with P.L. Kirillov),

From analysis of dimensions, few physical explanations of Reynolds number are possible. Let
us suggest that Reynolds number represent a balance of energies. For example, it is ratio of flow -
kinetic energy to the work of friction forces inside the same volume of fluid:

Kinetic Energy _ K

Re = = .
°  Work of Friction W (10)

Work of friction forces W can be calculated as follows:

W= jyj feav = | Vﬂu a;: ndy . | (11

For the laminar flow in a circular tube, formula (11) can be rewritten as:

To
-W=27rzj‘y—aﬁrdr=§7rrozyﬁ, (12)
o lor 3

assuming that velocity profile is given by:

2
.u(r)= 217[1—%} (13)

o

where Fy is pipe radius, z is axial coordinate, and # is mean velocity, averaged over the area of
integrating (i.e. whole the pipe in this case).
Kinetic energy of entire flow can be written as:

2 2
K= gJWTdV=M—I;2K. (14)

Again, for the pipe flow it reduces to
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0 4
K=2rzp I—uzrdr=—7rr02pzif2. (15)
52 3

Then, dividing (15) by (12), one can obtain energy-based Reynolds number as follow:

K tr,pu Re
Ree=—=—i =—, (16)
W 2 u 4
Formula (16) is obtained for the laminar pipe flow. What is happening if we apply the same

procedure to the turbulent flow? Let us do integrating above for the turbulent velocity profile
obtained by Reichardt [27]:

~ 1.5(1+04y* ) 1+ L
. u ro y+ y+ +
ut=—=2.5In . +7.8 1-exp| -2 |- Lexpl-023y%) . a7)
" - 1) 11

1+2—2
.ro

Formula (17) describes experimental data for pipes very well but analytical integration and
differentiation is difficult. For simplicity, we use numerical integration with very fine mesh (10000
grid points on irregular mesh system with fine near-wall resolution). All calculations were also
performed on a mesh with 1000 grid points and no visible discrepancy was found. Using
Reichardt’s formula (17), the following energetic Reynolds number was calculated:

o
1
2 —u“rd
P ﬁzpfzurr : <u2>
Re = —= 0 =—p 18
4 o o 2 (6u>' (18)
27rzjy~é;rdr ‘uar
0

Figure 6 shows dependence of the energy-based Reynolds number on regular one.
Surprisingly, relation (16) is valid not only for laminar flow but for turbulent region as well, even
for the high Reynolds numbers. It should be mentioned however, that denominator in Eq. (18)
actually does not represent the work of friction forces for the turbulent flow. Real friction is
contributed by Reynolds stresses (dissipation of turbulence) and should be much higher that simple
product of molecular viscosity and mean axial flow gradient. Nevertheless, energy Reynolds
number given by Eq. (18), that is actually the same as regular, helps to give a physical meaning to
the Reynolds number as a ratio of total kinetic energy of the flow to the work of friction that should
occur in a laminar flow with the same velocity profile.
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Figure 6. Energy-based Reynolds number versus regular Reynolds number

Let us consider now another possibility of Reynolds number definition. In a turbulent flow,
two controversial trends can be considered:

- Velocity profile intends to be flat. As we mentioned many times before, there always
exist turbulent vortexes that transport energy from lower speed region to higher speed
energy and vice versa. Energy losses (dissipation) occur because of mixing high and
low speed eddies. The flatter velocity profile is — the lower energy spends on
dissipation.

- From the other hand, average velocity gradient intends to be small to lower skin
friction energy loss.

These contradictory factors shape resulting velocity profile for the turbulent flow. In case of
the laminar flow, there is no vortexes and no energy transport. Therefore, the laminar flow profile is
shaped by minimal average velocity gradient only.

Taking in mind trends above, let us suggest a universal criterion for the turbulent flow
conditions. We shell use the same idea about kinetic energy to friction work ratio. Let us define a
kinetic energy of profile flatorization, or an energy that is released when flow is completely mixed,
or become flat:

K= J'pr” dv — p" V= pV((u) ?). (19)

The work of friction is defined as a total energy loss because of friction including Reynolds

shear stress:
7= {Jf
14

Let us apply integrals (19) and (20) to the pipe flow as shown in Fig. 7.
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Figure 7. Pipe flow: Areas of Integraﬁon

If the area between radius 7; and 7y is considered, two types of integration area shown in
Fig. 7 are possible: '

a) Non-weighted integration:

: r, . ry
K,=—— |Pdr - ———| |udr|, 21
Y 2(’"2 _"1);1[ 2("'2 _”1)2 r‘! ( : )
1Y Ay 13 &u)
W, = [u = —(u’v'>Jdr=— (u+ )=y 22
=y G vy Ll @)
b) Annular area weighted integration
’ ry 5 r, 2

—_— 2 — e ————

K, = ——( » 2) Iu rdr ( - 2)2 Iurdr , (23)
r=n)n r=n )7,

S p)
W = 2 _[(/-’ o(u) _ (u'u')]rdr =(_2__2__2_ I

2 2 or )
(r2 r] ) rl rz _rl rl

0
(u +pvt)% rdr. 24)

K
Figure 8 shows numerically calculated Re, =W , which we call a turbulent Reynolds

number defined for three flow areas.
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Figure 8. Turbulent Reynolds number versus regular Reynolds number

a) no-radius weighted integration over (a) area on Fig.
b) radius-weighted integration over (b) area
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One can see that Re, grows linearly within laminar region, reaches its maximum near the

critical point Re=2000, and then directs to some constant value that ranges from about 8 to 11
depending on integration area. We suggest that for every fluid area:

There exists a turbulent Reynolds number Re; that never exceeds some critical, constant and
universal value. :

Re, is defined as balance of kinetic energy given by Eq. (19) and work of friction forces
Eq. (20). Knowing the value of this turbulent Reynolds number, one can calculate the turbulence
viscosity distribution for a given velocity profile, and, at the end, calculate the final velocity and
turbulent distributions that satisfy non-exceeding Re; condition at every point of the fully-developed
channel flow. It will be elaborated in the following section. Here, we would like to mention that
the critical turbulent Reynolds number is the only experimental value in the MSV model. It also
can be estimated from the following experimental fact. For the all turbulent flows, there exist a
laminar sublayer near the wall where u+=y+ that is limited by y+<5. Then, by integrating the
laminar velocity profile, one can easy find that near the wall within laminar sublayer:

, ) ﬁ +2_ﬁ +2 5
Re, = p =@ _ 37 T4 W e
<au> u? 12 77 (25)
ﬂ [
oy

Here, we assumed that no turbulence occur at y+:5 point so the total integration area in
Eq. (25)is y; =10,

It should be noted that, for the moment, we consider only fully-developed wall-bounded
flows. However, we also believe the same hypothesis can be extended to zero-gradient boundary
layers and, perhaps, to wide types of the turbulent flows.

The behavior of the plots in Fig. 8 generally supports the furbulent Reynolds number
hypothesis. However, several question arise that can doubt this. In ideal, unlike plots shown in
Fig. 8, the turbulent Reynolds number should grows in laminar area and stays at the constant level
(below critical Re,) after reaching turbulent regimen. Let us formulate the problems and suggest a
possible explanation.

1. Why the turbulent Reynolds number exceeds significantly the critical value within and
around the transition region? As one can suggest from Fig. 8, transition to the

turbulence should start at Re~200, where the whole pipe flow reaches critical value

Re,~10, but not near the classical Rex2000. However, the “classical” transient is
observed in relatively smooth channels with relatively quiet inlet condition. Since the
turbulent Reynolds number is a balance of kinetic energy change and friction forces
sourced in possible energy dissipation by vortexes, it is suggested that these vortexes
or other kinds of perturbations of scales comparable with the scale of the channel.
Then, it may be suggested that near-turbulent, or similar-to-turbulent motions, can
exist and expand in presence of large-scale perturbation as shown schematically in
Fig. 9. Of course, this should be confirmed experimentally. All the experiments and
numerical simulation of transition we reviewed, deal with higher Reynolds numbers
and smaller perturbations.

2. The turbulent Reynolds number reaches the critical value  smoothly, after
approximately Re>10E+5, not after transition region, as one could expect.
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3. The discrepancy between different integration areas is big enough as in the value

(8 <Re;<'10), as well as in the slope. That is natural for laminar flow but in
disagreement with critical turbulent Reynolds number theory.

The answer to the later questions 2 and 3 is not easy. Nevertheless, we may suggest that:

- The Reichardt formula (17) used in these calculation is not necessary correct. Even
smooth and well-fitted experimental velocity profiles do not guarantee the same
smoothness in turbulent viscosity and Reynolds shear stress distributions derived by
dlfferentlatmg of the measured data or experimentally obtained formulas as was shown
in introduction {see Fig. 2,5).

- The integration area is not necessary (a) or (b) type as shown in Fig. 7. It may be
different, for example (¢)-type shown in the same figure. For the moment, it is still
unclear for us which type of integration to use. Definitely, it should reflect the way in
which vortexes are developed in the flow. In other words, the energy balance should
be applied to area where eddies can move, exchange the momentum and dissipate the
energy.

- The last, but not least, is that an actual work of friction forces must include Reynolds
shear stresses from the other two directions (u'w') and (U'W") of stress tensor to
satisfy the full energy balance. For the moment, it is not clear how to model these
moments. We hope to elaborate it in a future.

Stable (L.aminar) Flow:

Ler /////////////////

obstacles, roughness

Unstable (Turbulent) Flow:

——

Vs ///// ////////// /////////////// i

Figure 9. Laminar and near- turbulent flow at low Reynolds numbers

In spite of the problems above, we believe that an original idea of the turbulent Reynolds
number and its critical value is entitled to be studied and verified. In the following section, we
discuss the Multi-Scale Viscosity (MSV) model of turbulence that is based on these principles.
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2.2 Calculation of Turbulent Viscosity Based on Critical Turbulent Reynolds Number

Following the idea of previous section, we assume that deformation of axial velocity within
the area with scale / generates an extra turbulence for the given scale that keeps the local turbulent
Reynolds number, defined for this scale, below some critical value. Here, the main question is the
appropriate definition of the turbulent Reynolds number. As it was mentioned, very preliminary
results are reported in this work. Additional researches are necessary to improve the model and find
the proper physical criteria for the turbulent Reynolds number.

Let us start with very simple definition of the local Reynolds number. Let us define it as

_ AU

Re, =—,
] @6

where AU is a velocity deformation for the scale /, and th is an additional compensative turbulent

viscosity for the given area. In the schematic view of the channel flow shown in Fig. 10, AU is
defined as simple difference between axial velocities taken at the ends of the corresponding scale /.
Then, if the turbulent Reynolds number calculated by Eq. (26).is higher then some experimentally

found critical value Re,,, the value turbulent viscosity at the middle point of scale is calculated as
follows:

| _AUIL
v, = Re, | @7

(Al

!
L LLLLLL L LYLLLLLLLLLLLLL L,

AU, P\ |
Pt » : I (scale)
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5
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Figure 10. Velocity profile in a channel

Again, if we assume that, there exist a laminar sublayer near the wall where u+=y+ that is
limited by y+<5. Then, by integrating the laminar velocity profile, one can easy find that within

laminar sublayer:
2 +
u+ (2 y; }‘T ) y 0

Re, = u(zyo) 2y, - Ur  _ 4y3'2 ~100. @8
v v
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In actual calculations, we accepted the value of critical turbulent Reynolds number as

Re,,. =130 because it fits better the friction factor calculations.

In the following, we shell refer to the MSV model that uses Reynolds number defined by
Eq. (26), as first-type MSV, or simply MSV-1. The second type of the MSV model that is based on
the energy-balanced turbulent Reynolds number, discussed in the previous section, is referred as
second-type MSV, or MSV-2. We shell elaborate the differences, benefits and disadvantages of -
MSV-1 and MSV-2 in the following section.

2.3 Application of MSV to Simple Channel Flows (Preliminary Results)

The calculations were performed on the pipe, plane channel and annutus. Computational
algorithm is chosen as following:

1. Initial estimation of velocity distribution is calculated as laminar flow, i.e. turbulent

viscosity V: is zero at every point for every scale

2. For every local point turbulent Reynolds number Re;, is calculated with Eq. (26) (in
case of MSV-1) or using Eq. (23) and (24) (MSV-2)

3. In those points, where Re, < Re,,, that is 130 in the case of MSV-1 and 8.33 for
MSV-2, turbulent viscosity is recalculated with Eq. (27)

4. Using new turbulent viscosity distribution, the velocity profile is recalculated

5. In case of convergence, when the difference between fresh calculated velocity profile
does not exceed a given numerical error, calculations stop; otherwise, Step 2 is
repeated again.

A computer program in C++ has been developed for PC-Windows platform. It allows
calculation of the velocity profiles in simple channels, such as a pipe, plane channel and annular
channel. Some visual control features were implemented. Figure 11 shows a sample screen shot of
one the program windows. This work is not finished yet and we shell give more details in a future
report.

Results of turbulent viscosity calculations are shown in Figs. 12, 13, 14, and 15. Figures 12
and 13 are related to the first-type MSV model, MSV-1. Results calculated for the second-type

MSV-2 are shown in Figs. 14 and 15. Calculations for the Reynolds numbers Re=3.2E+4 and

Re=1.0E+7 are shown in Figs. 12, 14, and Figs. 13, 15 correspondingly. The upper plots show the
turbulent viscosity distributions versus radius while lower plots show the same profiles versus

dimensionless distance to the wall y*. Turbulent viscosity profiles calculated with Reichardt’s and
three-layers formulas are also shown for comparison.

Brief analysis shows that MSV-2 profiles behave more physically but average magnitude is
rather low for higher Reynolds numbers. From the other hand, turbulent viscosity seems to high
near the center velocity line in case of the MSV-1 model. However, simple MSV-1 has a very
important advantage. It perfectly predicts a friction factor for all Reynolds numbers (except
transition area) as shown in Fig. 16, MSV-1 results for friction factor are in a perfect agreement
with both famous experimental formula and SuperPipe measurements of Zagarola [25]. MSV-2
significantly underestimates the friction factor for high Reynolds numbers perhaps as a result of
underestimation of turbulent viscosity (see Fig. 15 for details).

Dimensionless velocity distributions are shown in Fig. 17 in comparison with SuperPipe
experiment. Again, one can see that profiles calculated with MSV-2 are very far from experimental
data because of underestimation of friction and, consequently, the friction velocity. Profiles
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calculated with MSV-1 are also not shaped very well; even the numerical values are in a good
agreement with experimental data.

The flow in plane and annular channels were also calculated. In general, results are very
similar to those of the circular tube. Since this report is not final, we show here only one interesting
result. Figure 18 shows the calculated position of the maximal velocity line in the annular channels
versus internal-to-external diameters ratio. Here, R, is external radius and R is internal radius.
Results were calculated with both MSV-1 and MSV-2 and appeared to be the same.

Let us summarize some preliminary conclusions:

- MSV-1 that is based on the very simple definition of the turbulent Reynolds number
(see Eq. (26)), predicts. very precisely the friction factor in a whole range of Reynolds
numbers except transitional ones. The shape of turbulent viscosity distribution is not
physical, as well as the shape of velocity profile itself (lower then should be in the
central area)

- MSV-2 that is based on more complicated and physically originated relations Eq. (23)
and (24) predicts physically acceptable turbulent viscosity profiles but with rather low
magnitude for the high Reynolds numbers. The later is the reason why MSV-2 does
not predict correctly friction factor and scale of the velocity profile.

If it was possible to combine the physical logic and the right shape of the turbulent viscosity
distribution given by MSV-2 and perfect prediction of the friction factor with MSV-1, we would
consider the development of the new model of turbulence as completed. However, an additional
work is necessary to elaborate the definition of the energy-balanced turbulent Reynolds number.
The main direction of the future work is seen as elaboration of the modeling of shear stress in the
other direction of the stress tensor.
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Figure 12. Distribution of eddy diffusivity calculated with first-type MSV model; Re=3.2E+04
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Figure 13. Distribution of eddy diffusivity calculated with first-type MSV model; Re=1.0E+7
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Figure 14. Distribution of eddy diffusivity calculated with second-type MSV model; Re= 3.2E+04
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(MSV-2) models in comparison with SuperPipe experiment of Zagarola [25]
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Figure 18. Maximal velocity line in annular channel calculated by first-type MSV model

-28-



JNC TN9400 2001-053

3. CONCLUSIONS

~ In this work, preliminary results of Multi-Scale Viscosity (MSV) model have been reported.
MSV model can be applied to the fully-developed wall-bounded channels flows. The main idea of
MSYV is to define an appropriate physical criterion which we call a turbulent Reynolds number, that
reflect a level of turbulence within a given area of the channel. In doing so, we assume that the
turbulent Reynolds number can never exceed a critical value that is the only experimental parameter
used in MSV model. Two different definitions of the turbulent Reynolds number were proposed
and investigated:

1. a product of the value of axial velocity deformation for a given scale and generic
length of this scale divided by accumulated value of laminar and turbulent viscosity of
lower scales '

2. a ratio of the difference between total kinetic energy and “flat-profile” kinetic energy
to the work of friction forces

The former definition is very simple and logical even it is not derived from basic laws of
physics. The later has a clear physical meaning as a balance of two energies: i) energy necessary to
change velocity profile to flat, minimizing the energy loss due to momentum transport and ii) work
of friction forces.

Both definitions of the turbulent Reynolds number above have been examined on the basic
shape flows: a circular pipe, a plane channel and an annular channel. The results of calculation
shows that the first model can very accurate predict a friction factor that is an integral conservative
parameter. However, it cannot predict a right physical shape of the turbulent viscosity profile.
From the other hand, the second model predicts physically correct distribution of turbulent viscosity
but the magnitude is underestimated for high Reynolds numbers. As a result, the second model
underestimates the friction factor as well.

A very attractive feature of MSV, that it is capable to predict a turbulent flow in complicated
shapes, like a fuel assemble of the nuclear reactor. In this work, we declare that MSV can been
applied to wall-bounded flows. However, there are some reasons to believe that MSV can also
work in more general turbulent flow, such as a boundary layer flow.

Possible ways of the MSV model improvements are discussed. New results will be presented
in a future final report.
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