低除染燃料中の残留FPの炉心影響評価

(研究報告)

2002年7月

核燃料サイクル開発機構 大洗工学センター

本資料の全部または一部を複写・複製・転載する場合は、下記にお問い合わせください。 〒319-1184 茨城県那珂郡東海村村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課 Inquiries about copyright and reproduction should be addressed to : Technical Cooperation Section, Technology Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184,

Japan

② 核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute) 2002

(W)

低除染燃料中の残留FPの炉心影響評価 (研究報告)

大木 繁夫*

要 旨

FBRサイクル実用化戦略調査研究 F/S)では、燃料中に不純物の混入を許容しだ 低除染 燃料」を用いた炉心,燃料,及び燃料サイクルシステムの設計検討を行っている。本報告書は,F/Sフェーズ この再処理候補概念について,低除染燃料中に残留する核分裂生成物(FP)による炉心特性への影響評価についてまとめたものである。炉心計算における簡易的な残留FPの取扱い方法として,FP等価係数とFP体積割合をパラメータとした代表核種による 模擬方法を構築し,効率的に炉心特性影響を評価できるようにした。平成11年度Na-MOXレファレンス炉心の炉心特性への影響を評価した結果,最も影響の大きかった再処理方式は酸化物電解法 RIAR技術)であり,無限回リサイクルを仮定した場合,燃焼反応度0.5% / k/ kk'増加,増殖比0.04減少,Naボイド反応度0.1×10⁻² / k/kk'増加,ドップラー定数絶対値) 0.7×10⁻³Tdk/dT減少程度の影響であることを明らかにした。

本報告書はFBRサイクル実用化戦略調査研究フェーズII計画(WBS)111110 「大型Na炉の炉心・燃料設計研究」に係る平成13年度の検討結果をまとめたものである。

* 大洗工学センター システム技術開発部 中性子工学グループ

i

Influence of Remaining Fission Products in Low-Decontaminated Fuel on Reactor Core Characteristics

OHKI Shigeo*

Abstract

Design study of core, fuel and related fuel cycle system with low-decontaminated fuel has been performed in the framework of the feasibility study (F/S) on commercialized fast reactor cycle systems. This report summarizes the influence on core characteristics of remaining fission products (FPs) in low-decontaminated fuel related to the reprocessing systems nominated in F/S phase I. For simple treatment of the remaining FPs in core neutronics calculation the representative nuclide method parameterized by the FP equivalent coefficient and the FP volume fraction was developed, which enabled an efficient evaluation procedure. As a result of the investigation on the sodium cooled fast reactor with MOX fuel designed in fiscal year 1999, it was found that the pyrochemical reprocessing with molten salt (the RIAR method) brought the largest influence. Nevertheless, it was still within the allowable range. Assuming an infinitetimes recycling, the alternations in core characteristics were evaluated as follows: increment of burnup reactivity by 0.5 % / k/kk', decrement of breeding ratio by 0.04, increment of sodium void reactivity by $0.1 \times 10^{-2} / k/kk'$ and decrement of Doppler constant (in absolute value) by 0.7×10^{-3} Tdk/dT.

^{*} Reactor Physics Group, System Technology Division, OEC, JNC

目次

$1. k_{-}^{-1}$	まじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2. 蕭	平価方法 ••••••••••••••••••••••••••••••••••••	2
2.1	概要	2
2.2	FP等価係数とFP体積割合 ······	2
2.3	代表核種による残留FP計算方法の妥当性 ・・・・・・・・・・・・・・・・・・・・・・	4
2.4	FP化学形の設定 ······	4
2.5	FPの同位体組成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.6	炉心解析条件	5
2.7	FP等価係数に対する燃焼効果	6
2.8	リサイクル効果簡易評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3. 乾	ち式再処理による低除染燃料の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
3.1	概要	22
3.2	対象乾式再処理方式及び炉心・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
3.3	FP混入燃料の炉心特性への影響(炉心燃料への混入, 1回リサイクル後)・・	22
3.4	FP混入燃料の炉心特性への影響(炉心燃料への混入,無限回リサイクル後)	24
3.5	ブランケットへのFP混入影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
3.6	MA混入による炉心特性への影響 ·····	26
3.7	まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
4. 沍	記式再処理による低除染燃料の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	57
4.1	概要	57
4.2	対象湿式再処理方式及び炉心・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	57
4.3	PUREX+SETFICSによる炉心特性への影響 ·····	57
4.4	炉心特性影響緩和方策の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
4.5	まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
5. I	ミとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	75
謝辞		76
参考文	献 ·····	77

図リスト

凶 2-1	FP 核種の Na-MOX 炉心特性に与える影響(内側炉心 Pu 富化度)・・・・・・ 9
図 2-2	FP 核種の Na-MOX 炉心特性に与える影響(外側炉心 Pu 富化度)・・・・・・ 10
🗷 2-3	FP 核種の Na-MOX 炉心特性に与える影響(燃焼反応度)・・・・・・・・・・ 11
図 2-4	FP 核種の Na-MOX 炉心特性に与える影響(増殖比)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図 2-5	FP 核種の Na-MOX 炉心特性に与える影響(最大線出力)・・・・・・・・・・ 13
図 2-6	FP 核種の Na-MOX 炉心特性に与える影響(最大高速中性子束)・・・・・・・ 14
図 2-7	FP 核種の Na-MOX 炉心特性に与える影響(取出平均燃焼度)・・・・・・・・ 15
図 2-8	FP 核種の Na-MOX 炉心特性に与える影響(Na ボイド反応度)・・・・・・・ 16
図 2-9	FP 核種の Na-MOX 炉心特性に与える影響(ドップラー定数)・・・・・・・ 17
図 2-10	FP 等価係数の燃焼による変化 ······ 18
図 3-1-1	燃焼反応度変化に対する元素別寄与 (酸化物電解法((RIAR 技術)), 炉心燃料
	への FP 混入 ,1 回リサイクル後) · · · · · · · · · · · · · · · · · ·
図 3-1-2	燃焼反応度変化に対する元素別寄与(金属電解法(Li 還元) ((ANL 技術)),
	炉心燃料への FP 混入,1回リサイクル後)・・・・・・・・・・・・・・・・・29
図 3-1-3	燃焼反応度変化に対する元素別寄与(金属電解法(塩溶塩素化法)((ANL 技
	術)) 炉心燃料への FP 混入 ,1 回リサイクル後) ・・・・・・ 30
図 3-1-4	燃焼反応度変化に対する元素別寄与(フッ化物揮発法 ,炉心燃料への FP 混入 ,
	1回リサイクル後)・・・・・ 31
図 3-2	炉心燃料への FP 混入による炉心特性の変化(平成 11 年度 Na-MOX レファレ
	ンス炉心)····································
図 3-3-1	燃焼反応度変化に対する元素別寄与 (酸化物電解法((RIAR 技術)), 炉心燃料
	への FP 混入 無限回リサイクル後)・・・・・・・・・・・・・・・・・・ 34
図 3-3-2	燃焼反応度変化に対する元素別寄与(金属電解法(Li 還元) ((ANL 技術)),
	炉心燃料への FP 混入 無限回リサイクル後) ***********************************
図 3-3-3	燃焼反応度変化に対する元素別寄与(金属電解法(塩溶塩素化法)((ANL 技
	術)), 炉心燃料への FP 混入, 無限回リサイクル後)・・・・・・・・・・・ 36
図 3-3-4	燃焼反応度変化に対する元素別寄与(フッ化物揮発法,炉心燃料への FP 混入,
	無限回リサイクル後)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
図 3-4	軸方向ブランケットへのFP 混入による炉心特性の変化(平成 11 年度 Na-MOX
	レファレンス炉心) 38
図 3-5	径方向ブランケットへのFP 混入による炉心特性の変化(平成11年度 Na-MOX
	レファレンス炉心)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 40
図 3-6	炉心燃料への MA 混入による炉心特性の変化 (平成 11 年度 Na-MOX レファ
	レンス炉心)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 42

🛛 4-1-1	燃焼反応度変化に対する元素別寄与(PUREX+SETFICS,1 回]リサイク	ッル
	後) • • • • • • • • •	••••	60
図 4-1-2	燃焼反応度変化に対する元素別寄与(PUREX+SETFICS,5回]リサイク	ッル
	後) • • • • • • • • • • • • • • • • • •	••••	61
図 4-2	リサイクルに伴う燃焼反応度変化の増加(PUREX+SETFICS:隙	} 染性能向	〕上
	検討ケース)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••	62
図 4-3-1	燃焼反応度変化に対する元素別寄与(Case-1,1回リサイクル後)	•••••	63
図 4-3-2	燃焼反応度変化に対する元素別寄与(Case-1,無限回リサイクル後	<u>غ</u>)	64
図 4-4-1	燃焼反応度変化に対する元素別寄与(Case-2 ,1 回リサイクル後)	• • • • • • • •	65
図 4-4-2	燃焼反応度変化に対する元素別寄与(Case-2,30回リサイクル後)	•••••	66
図 4-5-1	燃焼反応度変化に対する元素別寄与(Case-3,1回リサイクル後)	• • • • • • • •	67
図 4-5-2	燃焼反応度変化に対する元素別寄与(Case-3,無限回リサイクル後	<u>غ)</u>	68
図 4-6-1	燃焼反応度変化に対する元素別寄与(Case-4,1回リサイクル後)	•••••	69

図 4-6-2 燃焼反応度変化に対する元素別寄与(Case-4,無限回リサイクル後)・・・・・ 70

表リスト

表 2-1	低除染燃料中の主な残留 FP ・・・・・ 19
表 2-2	酸化物燃料中の残留 FP の化学形に関する仮定 ・・・・・・・・・・・・ 20
表 2-3	残留 FP の同位体組成 ······ 21
表 3-1-1	再処理で得た燃料に付随する FP の性質 (酸化物電解法((RIAR 技術)) , 1 回リ
	サイクル後)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・44
表 3-1-2	再処理で得た燃料に付随する FP の性質(金属電解法(Li 還元) ((ANL 技術)) ,
	1回リサイクル後) ・・・・・ 45
表 3-1-3	再処理で得た燃料に付随する FP の性質(金属電解法(塩溶塩素化法)((ANL)
	技術)),1回リサイクル後)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
表 3-1-4	再処理で得た燃料に付随する FP の性質(フッ化物揮発法,1 回リサイクル
	後) · · · · · · · · · · · · · · · · · · ·
表 3-2-1	再処理で得た燃料に付随する FP の性質 (酸化物電解法((RIAR 技術)) , 無限回
	リサイクル後)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・48
表 3-2-2	再処理で得た燃料に付随する FP の性質(金属電解法(Li 還元) ((ANL 技術)) ,
	無限回リサイクル後)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・49
表 3-2-3	再処理で得た燃料に付随する FP の性質(金属電解法(塩溶塩素化法)((ANL
	技術)),無限回リサイクル後)・・・・・ 50
表 3-2-4	再処理で得た燃料に付随する FP の性質(フッ化物揮発法 ,無限回リサイクル
	後)
表 3-3-1	低 除 染 燃 料 の 炉 心 特 性 へ の 影 響 (酸 化 物 電 解 法 ((R I A R 技
	術))) • • • • • • • • • • • • • • • • • •
表 3-3-2	低除染燃料の炉心特性への影響(金属電解法(Li 還元)((ANL 技
	術))) • • • • • • • • • • • • • • • • • •
表 3-3-3	低除染燃料の炉心特性への影響(金属電解法(塩溶塩素化法) ((ANL 技
	術))) • • • • • • • • • • • • • • • • • •
表 3-3-4	低除染燃料の炉心特性への影響(フッ化物揮発法)・・・・・・・・・・・・・・・55
表 3-4	再処理で得た燃料に対する MA 混入率(1回リサイクル後)・・・・・・・・ 56
表 4-1	再処理で得た燃料に付随する FP の性質(PUREX+SETFICS)・・・・・・・・ 71
表 4-2	低除染燃料の炉心特性への影響(PUREX+SETFICS)・・・・・・・・・・・・ 72
表 4-3	再処理で得た燃料に付随する FP の性質 (PUREX+SETFICS:除染性能向上検
	討ケース)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 73
表 4-4	低除染燃料による燃焼反応度の変化 (PUREX+SETFICS:除染性能向上検討
	ケース)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. **はじめ**に

FBR サイクル実用化戦略調査研究(F/S)では,燃料中に不純物の混入を許容した「低除染燃料」を用いた炉心,燃料,及び燃料サイクルシステムの設計検討を行っている。本報告は,低除染燃料中に残留する核分裂生成物(FP)による炉心特性への影響について,F/S フェーズIにおける評価結果をまとめたものである。

残留 FP の組成は再処理方式ごとの除染係数あるいは移行率により様々であり,炉内 での中性子照射ならびに多重リサイクルによっても変化する。詳細設計段階においては, 炉心計算において残留 FP の組成を厳密に取り扱うことが望ましいが,F/S の初期段階 においては,種々の炉心,燃料,再処理方式の候補概念を比較し絞り込みが行われると ともに,設計の見直しが頻繁に行われるため,近似的に妥当な簡易 FP 取扱法の適用が 効率的である。

熱中性子炉では,巨大吸収断面積を持つ FP 核種による中性子寄生吸収作用が知られ ており,炉心計算においてそれらの巨大吸収反応核種周辺の燃焼チェーンを考慮する必 要がある。高速炉のエネルギー領域では吸収断面積の突出して大きな FP 核種はなく, 100 核種にも及ぶ FP をひとまとめにしたランプ化 FP 定数が使用されている。これより, 低除染燃料中の残留 FP についても,ランプ化定数あるいは代表核種による扱いが可能 であると考えられる。

そこで,炉心計算における簡易的な残留 FP の取扱い方法として,本報告では FP 等価係数と FP 体積割合をパラメータとした代表核種による模擬方法を提案する(第2章)。 ひとたび,FP等価係数とFP体積割合をパラメータとした炉心特性評価を行っておけば, 任意の FP 組成についての炉心特性への影響を,ただちに見出すことができる。再処理 方式の設計変更により FP 組成が変わった場合においても,炉心燃焼計算をやり直す必 要はなく,解析・評価作業を効率的に行うことができる。

同模擬方法を,F/SフェーズIで候補としてあげられた再処理方式ごとの低除染燃料 による炉心特性影響評価に適用した。第3章では乾式再処理法として,酸化物電解法 (RIAR 技術),金属電解法(ANL 技術),フッ化物揮発法の評価結果をまとめる。第4 章では,湿式再処理法(PUREX + SETFICS プロセス)についての評価結果を示す。

2. 評価方法

2.1 概要

低除染燃料中の残留 FP を炉心計算で簡易的に取り扱う FP 等価係数と FP 体積割合を パラメータとした代表核種による模擬方法について説明する。

2.2 FP 等価係数と FP 体積割合

残留 FP の炉心特性に与える影響は,FP の中性子吸収能力および燃料を押しのける体積によって決まる。前者を表すパラメータとして FP 等価係数を,後者を表すパラメータとして燃料に対する FP 化合物の体積割合を用いることにする。FP 等価係数と FP 体積割合をパラメータとして炉心計算値を求めておき,任意の組成および化学形の不純物 FP に対する影響度合いを見積もることにする。

(1) FP 等価係数

FP 等価係数 は次式によって定義される:

$$\alpha = \frac{\sum_{i \in FP} \sigma_c^i N_i}{\sigma_c^{Nd143} N_{Nd143}^{(reference)}}$$
(1)

ここで, σ_c^i は核種iの中性子捕獲反応断面積(単位:barn), N_i は核種iの個数密度(単位: a/cm^3)である。

FP 等価係数は,燃料に付随する FP を代表核種(¹⁴³Nd)で置き換えたときの両者の中 性子捕獲反応の比である。¹⁴³Nd を代表核種とした理由は,希土類元素の中で中性子捕 獲反応割合の主たる寄与を与えることと,平均的な捕獲反応断面積の大きさ(約 0.2 barn)を持っているからである。代表核種として用いることの妥当性については後述す る。

FP の組成比,1 群捕獲断面積,化合物密度が与えられた場合に,FP 等価係数を計算 しやすい形に式(1)を変形する。まず,FP 化合物一個あたりの占める体積を考える。こ こでは例えば FP₂O₃のような化学形の場合は,FPO_{1.5}のように FP 一個あたりの化合物 で扱うものとし,FPOx と表記する(燃料に混入する FP の化学形として酸化物を仮定 した表記であるが,その他の化学形態の場合も同様に取り扱う)。FP 核種*i*の化合物 FPOx_i一個の占める体積 v_{FPOx_i} (単位:cm³/個)は,化学式量 A_{FPOx_i} (単位:g/mol),密 度 ρ_{FPOx_i} (単位:g/cm³),アボガドロ数 N_A (単位:個/mol)を用いて,

$$\nu_{FPOx_i} = \frac{A_{FPOx_i}}{\rho_{FPOx_i} N_A} \tag{2}$$

と書くことができる。さらに , 式(2)に規格化された FP 核種 iの組成比 n_i ($\sum_{i \in FP} n_i = 1$)

をかけ, FP 核種について足し合わせることにより, FP 平均の FPOx 一つあたりの占め る体積を

$$\overline{\nu}_{FPOx} = \sum_{i \in FP} \frac{A_{FPOx_i}}{\rho_{FPOx_i} N_A} n_i$$
(3)

のように得ることができる。ここで,共晶等による体積の変化については考慮していない。

次に単位体積あたりの FP 核種iの個数すなわち個数密度 N_i は, FPOx 一つあたりの 占める平均体積 \overline{v}_{FPOx} と FP 組成比 n_i を用いて,

$$N_{i} = \frac{n_{i}}{\overline{V}_{FPOx}} = \frac{n_{i}}{\sum_{j \in FP} \frac{A_{FPOx_{j}}}{\rho_{FPOx_{j}} N_{A}}} n_{j}$$
(4)

のように求められる。

一方,実際の炉心計算で使用する¹⁴³Ndのみで全残留 FP 核種を代表させた仮想的な 場合について,¹⁴³Ndの個数密度は,

$$N_{Nd143}^{(reference)} = \frac{1}{v_{Nd0x}} = \frac{\rho_{Nd0x}N_A}{A_{Nd0x}}$$
(5)

となる。

式(4)及び式(5)を式(1)に代入すると,FP 組成比 n_i ,中性子捕獲断面積 σ_c^i ,化学式量 A_{FPOx} 及び密度 ρ_{FPOx} よりFP 等価係数を計算する表式

$$\alpha = \frac{\sum_{i \in FP} \sigma_c^i n_i / \sigma_c^{Nd143}}{\sum_{j \in FP} \frac{A_{FPOx_j}}{\rho_{FPOx_j}} n_j / \frac{A_{NdOx}}{\rho_{NdOx}}}$$
(6)

を得る。式(6)の分子は対象 FP の中性子吸収能力の¹⁴³Nd に対する比を,分母は FP 化合物一つあたりの占める体積の¹⁴³Nd Ox に対する比を表している。中性子吸収能力の増大に伴い FP 等価係数は増加し, FP 化合物一つあたりの占める体積の増加により FP 等価係数は減少する。

(2) FP 体積割合

FP 等価係数とともに用いるもう一つのパラメータとして,燃料中の FP 体積割合を

$$\frac{V_{FPOx}}{V_{UO2} + V_{PUO2} + V_{MAO2} + V_{FPO2}}$$
(7)

のように定義する(Vは体積を表す)。

2.3 代表核種による残留 FP 計算方法の妥当性

ここでは F/S フェーズI における再処理候補概念より得られる低除染燃料を対象に, 主要な残留 FP について炉心特性への影響を核種別に計算し,それらと代表核種¹⁴³Nd の中性子捕獲反応断面積を変化させて模擬する場合との一致性を確認した結果を示す。

各再処理方式の F/S フェーズ I 物質収支評価結果(中間結果, 付録 A~E 参照)より 求めた中性子吸収量の多い主要残留 FP を表 2-1 に示す。酸化物電解法では,貴金属 FP (Ru, Rh, Pd)及び希土類 FP(Nd, Sm 等)が,金属電解法では希土類 FP を中心とした 元素群が主たる影響を与えている。フッ化物揮発法では Mo, Tc, Ru の三元素が選択的に 燃料に随伴する。湿式再処理法(PUREX+SETFICS)では,質量数の大きな希土類 FP (Sm, Eu, Gd)の寄与が主となる。このように対象となる再処理方式ごとに主要残留 FP は異なったものとなっている。

これら残留 FP について,核種別に炉心特性影響を計算した。対象炉心は平成 11 年度 Na-MOX レファレンス炉心^[1]とし,燃料体積を 5%減じ,主要残留 FP を燃料部に均質 に混入した場合の炉心特性変化を調べた。ここで,混入する残留 FP の個数密度は¹⁴³Nd 酸化物のもの(¹⁴³NdO_{1.5}:理論密度 2.8×10²² 個/cm³)に固定した。着目する炉心特性は, Pu 富化度,燃焼反応度^{*},増殖比,最大線出力,最大高速中性子束,取出平均燃焼度, Na ボイド反応度(炉心部),ドップラー定数である。これらを,Pu 富化度調整を伴う 炉心燃焼計算システム「PENCIL」と統合炉定数「ADJ98」を用いた拡散計算により算 出した(解析方法の詳細は,第 2.6 節参照)。

炉心特性計算結果を,主要残留 FP の1 群中性子捕獲反応断面積を変数としてプロットしたものを図2-1~2-9 に示す。同図には¹⁴³Nd を代表核種として捕獲反応断面積を 変化(0倍、1倍、5倍、10倍、15倍)させた場合の結果を実線で示している。これよ り,核種ごとのプロットと¹⁴³Nd 線の相違は,燃焼反応度で0.1~0.15% k/kk³程度であ る。Na ボイド反応度及びドップラー定数では,絶対値に対し最大10~20%の不確定さ が生じるものの,現状の概念設計段階の評価精度を考えると大きな問題とはならない。 以上より,当面の設計検討における本代表核種法の妥当性は十分であると判断できる。

2.4 FP 化学形の設定

酸化物燃料に残留 FP を混入する場合の FP 化学形及び密度を表 2-2 に示す。FP 元素 ごとの化学形設定は次のとおりである。

・ Y 及び希土類元素については, FP₂O₃の化学形とした。

^{* 1} サイクルあたりの燃焼に伴う反応度減少量を意味する。サイクル初期及び末期の実効 増倍率から,次式により算出する: $\Delta
ho = \left(k_{\scriptscriptstyle BOC} - k_{\scriptscriptstyle EOC}
ight)/\left(k_{\scriptscriptstyle BOC}k_{\scriptscriptstyle EOC}
ight)$

- ・ 貴金属(Tc, Ru, Rh, Pd)及びAgについては,金属の状態で酸化物燃料中に存在するものとした。
- ・ Zr, Nb, Sn については 2 価の酸化物, Cd は 1 価の酸化物とした。
- Mo については金属と酸化物両方の化学形が考えられるが,本検討では全て金属とした。
- アルカリ土類金属(Sr, Ba)については,Zrとともに3元の酸化物になるものとした。

残留 FP の燃料への混入において燃料重量保存で考えた場合は, FP 化合物の密度は MOX 燃料密度よりも小さいため、燃料中にむりやり FP を押し込む形となってしまう。 そこで, FP を含む燃料体積が元の体積を超過しないように体積保存を原則とした。表 2-2 に示す密度より, 各 FP 化合物の占める体積を算出しそれらを足し合わせ, 燃料に 対する FP 混入体積とした(共晶等による FP 化合物の体積変化は考慮せず)。

2.5 FP の同位体組成

残留 FP の同位体組成は, ORIGEN2 コード^[2]による計算値を用いた(**表 2-3**参照)。 これは, ORIGEN2 に付属している FP 収率データ(²³⁹Pu)及び1 群断面積(FBRLWRC) を用いて,高速炉における取出燃焼度 15 万 MWd/t,冷却期間4年の条件で計算を行っ たものである。

2.6 炉心解析条件

炉心解析条件は次のとおりである。

(1) 核データ

F/S フェーズ I での炉心設計に採用された JENDL-3.2 に基づく統合炉定数「ADJ98」 (JFS3J32.ADJ98.Y9902)^[3]を本報告の炉心解析において用いるものとした。統合炉定数は, 積分実験データをもとに炉定数アジャストメント手法により核データの持つ不確かさ を低減し,核特性予測精度を向上させた高速炉用炉定数セットである。ADJ98 の作成に は,JUPITER 臨界実験で得られた 185 核特性が用いられている。FP の核データはアジ ャストメントの対象でないため,JENDL-3.2 を処理した炉定数 (JFS-3-J32)^[4]と同一のま まである。

(2) 計算コード

Pu 富化度調整を伴う炉心燃焼計算を PENCIL^[5] (SLAROM, JOINT, CITATION からな る炉心設計用計算システム)を用いて行った。体系モデルは 2 次元 RZ とし,エネルギー 群は 70 群から 7 群に縮約した。中性子束計算は拡散近似である。Pu 富化度調整は,運 転補償と出力平坦化の観点から,実効増倍率の最低値と内側・外側炉心の出力比に条件 を設定して行った。なお,Naボイド反応度とドップラー定数は,70群計算で求めた実 効増倍率の差より評価した。

なお,上記条件に基づく解析は最確評価目的ではなく,基準ケースからの相対的変化 量を見るためのものである。

2.7 FP 等価係数に対する燃焼効果

ここでは炉内での燃焼による FP の組成変化に伴い, FP 等価係数の値がどのように変わるかについて調べる。

図 2-10 に次の4種の組成の FP について燃焼による FP 等価係数の変化を示す。

- ・ FP1 Y から Cd までの第4周期元素(高速中性子核分裂による FP 収率を仮定)
- FP2 La から Dy までの希土類元素(高速中性子核分裂による FP 収率を仮定)
- ・ FP3 Mo, Tc, Ru (フッ化物揮発法の FP 組成)
- ・ FP4 Y 及び Pm 以上の重希土類元素 (PUREX + SETFICS での FP 組成)

ここで,燃焼計算は ORIGEN2 コード^[2]により,高速炉における典型的な一群断面積 (FBRLWRC)を用い,中性子束レベルは 3.5×10¹⁵ n/cm²/sec とし,リサイクルステッ プ(2700 day + 4 year cooling)ごとに燃焼と冷却を繰り返した。

結果として,上記 FP 組成それぞれについて,FP 等価係数は炉心特性を大きく変える ほどの燃焼依存性を持たないことがわかった。 今回検討対象の再処理方式で得られる FP 組成は,上記の FP の群あるいはその重ね合わせによって表すことができるため,そ れらの FP 等価係数の燃焼依存性を無視することにする。

2.8 リサイクル効果簡易評価方法

多重リサイクルを考える場合,燃料に付随する残留 FP がリサイクルに伴い蓄積する 効果を考慮しなければならない。特に除染係数(DF)が小さい場合にこの効果は重要 となる。本報告においては,次のようにしてリサイクル効果を簡易的に評価する。

ある FP 元素に着目し,k回目リサイクル後に燃料に付随する重量を,各炉心領域(内 側炉心,外側炉心,ブランケット)について

$$\mathbf{m}^{(k)} = \begin{pmatrix} m_{IC}^{(k)} \\ m_{OC}^{(k)} \\ m_{Blanket}^{(k)} \end{pmatrix}$$
(8)

のようにベクトルで表記する。k = 0は再処理前の使用済燃料中の FP 重量を、k = 1は

1回リサイクル後の新燃料中の FP 重量を表している。 次に再処理による FP 重量の変換行列を

$$\mathbf{U} = \begin{pmatrix} u_{IC} & u_{IC} & u_{IC} \\ u_{OC} & u_{OC} & u_{OC} \\ u_{Blanket} & u_{Blanket} & u_{Blanket} \end{pmatrix}$$
(9)

と表す。ここで、

$$u_{IC} = \frac{m_{IC}^{(1)}}{m_{Total}^{(0)}}, \quad u_{OC} = \frac{m_{OC}^{(1)}}{m_{Total}^{(0)}}, \quad u_{Blanket} = \frac{m_{Blanket}^{(1)}}{m_{Total}^{(0)}}$$
(10)

であり,1回リサイクル後の FP 重量は

$$\mathbf{m}^{(1)} = \mathbf{U}\mathbf{m}^{(0)} \tag{11}$$

によって与えられる。ここでは,再処理過程をブラックボックスのように捉え,すべての領域の燃料が混ぜ合わされ,上記行列要素の割合で各領域の燃料に FP が分配されるものとして定式化を行った^{*}。

なお、変換行列要素の値は再処理のリサイクルが進むにつれて変化すると考えられる が、本検討では1回目再処理のマスバランス評価で得られた値を近似的に全てのリサイ クルステップにおいて用いるものとする。

考えている FP 元素は炉内での燃焼に伴い,異なる元素に変換していく。元素番号の 連続した FP 元素群が等しい除染係数で再処理される場合には,燃焼に伴う FP の変換 を無視しても,FP 組成変化の FP 等価係数への影響が小さいため,元素群全体としての 炉心特性影響は変わらないと考えられる。これより,FP 元素群が等しい除染係数で再 処理される場合について,燃焼による FP 組成変化を考えないことにする。これは酸化 物電解法(RIAR 技術),金属電解法(ANL 技術)の場合が該当する。なお,燃焼によ り FP 元素群全体としての重量が減少する効果も無視する。

以上の仮定より, リサイクルによる FP 重量について, 次の漸化式を立てることができる。

$$\mathbf{m}^{(k)} = \mathbf{U} \left(\mathbf{m}^{(k-1)} + \mathbf{m}^{(0)} \right)$$
(12)

これを用いると,無限回リサイクル後のFP重量を次のように求めることができる。

^{*} 全ての燃料(炉心,ブランケット)を混ぜ合わせるというブラックボックス的取扱いは、 再処理のプロセスフローを着実に模擬していないため,今後改善の余地がある。ここでは 概略評価を目的として,簡易的な計算方法を採用した。

$$\mathbf{m}^{(\infty)} = \left(\mathbf{U} + \mathbf{U}^{2} + \mathbf{U}^{3} + \cdots\right) \mathbf{m}^{(0)} = \left(1 - \mathbf{U}\right)^{-1} \mathbf{U} \mathbf{m}^{(0)}$$
$$= \frac{1}{1 - u_{IC} - u_{OC} - u_{Blanket}} \mathbf{U} \mathbf{m}^{(0)} = \frac{1}{1 - \frac{1}{DF}} \mathbf{m}^{(1)}$$
(13)

ここで,使用済燃料中の FP 重量を1回目再処理後の FP 重量で割った全領域についての除染係数

$$DF = \frac{1}{u_{IC} + u_{OC} + u_{Blanket}} = \frac{m_{Total}^{(0)}}{m_{Total}^{(1)}}$$
(14)

を導入した^{*}。式(13)により,無限回リサイクル後の FP 重量を,1回目リサイクル後の FP 重量に対し,1/(1 - 1/DF)の因子を乗じることで算出できる。

以上は等しい DF 値を持った元素群に対して妥当な近似であり,フッ化物揮発法や PUREX+SETFICS のように少数元素が残り,それぞれ DF 値が異なる場合には,近似モ デルの誤差が大きくなると予想される。しかし,今回の概略評価ではこれら核変換によ る効果を無視し,式(13)による算出法を適用するものとする。

^{*} 除染係数の代わりに,移行率 m⁽¹⁾/m⁽⁰⁾が用いられる場合もある。

図2-1 FP核種のNa-MOX炉心特性に与える影響(内側炉心Pu富化度)

図2-2 FP核種のNa-MOX炉心特性に与える影響(外側炉心Pu富化度)

6.0

5.5

5.0

4.5

4.0

3.5

k/kk ']

燃焼反応度 [%

◆ Sm-148

□ Mo-97

▲ Pd-106

♦ Sm-150

Mo-95

△ Sm-152

0.5

3.5

6.0

5.5

5.0

4.5

4.0

3.5

燃焼反応度[% k/kk']

k/kk']

燃焼反応度 [%

Nd-144

□ Mo-98

× Ru-104

• Nd-146

∆ Pr-141

▲ Mo-100

♦ Nd-148

Ru-102

図2-3 FP核種のNa-MOX炉心特性に与える影響(燃焼反応度)

図2-4 FP核種のNa-MOX炉心特性に与える影響(増殖比)

400

390

400

390

◆ Nd-144

□ Mo-98

▲ Mo-100

0 Nd-148 • Nd-146

△ Pr-141

図2-5 FP核種のNa-MOX炉心特性に与える影響(最大線出力)

図2-6 FP核種のNa-MOX炉心特性に与える影響(最大高速中性子束)

図2-7 FP核種のNa-MOX炉心特性に与える影響(取出平均燃焼度)

図2-8 FP核種のNa-MOX炉心特性に与える影響(Naボイド反応度)

図2-9 FP核種のNa-MOX炉心特性に与える影響(ドップラー定数)

図2-10 FP等価係数の燃焼による変化

FP1: YからCdまでの第4周期元素, FP2: LaからDyまでの希土類元素 FP3: Mo, Tc, Ru(フッ化物揮発法), FP4: Y及びPm以上の重希土類元素(PUREX+SETFICS)

表2-1 低除染燃料中の主な残留FP

数字は燃料に随伴する全残留FPの中性子捕獲反応率に対する割合を表す。

酸化物電解法		金属電解法		フッ化物揮発法		PUREX + SETFICS	
Ru-101	11.5%	Pr-141	6.9%	Mo-95	7.0%	Sm-147	9.4%
Ru-102	5.0%	Nd-143	10.6%	Mo-97	6.7%	Sm-148	2.7%
Ru-104	3.2%	Nd-144	3.3%	Mo-98	3.1%	Sm-149	15.1%
Rh-103	14.7%	Nd-145	8.5%	Mo-100	2.5%	Sm-151	11.4%
Pd-105	13.1%	Nd-146	3.0%	Tc-99	15.0%	Sm-152	3.8%
Pd-106	3.1%	Nd-148	2.6%	Ru-101	37.4%	Eu-153	16.5%
Pd-107	6.1%	Pm-147	2.3%	Ru-102	16.3%	Eu-154	5.3%
Ag-109	2.7%	Sm-147	8.0%	Ru-104	10.5%	Eu-155	4.2%
Pr-141	2.2%	Sm-148	2.3%			Gd-155	6.9%
Nd-143	3.4%	Sm-149	12.9%			Gd-156	3.5%
Nd-145	2.7%	Sm-151	9.8%			Gd-157	7.1%
Sm-147	2.6%	Sm-152	3.2%				
Sm-149	4.1%	Eu-153	6.0%				
Sm-151	3.1%						
計	77.4%	計	79.7%	計	98.4%	計	86.0%

元素	分類	化学形	密度 [*] [g/cm ³]
Se	Volatile	a Charles and a charles	
Br	Volatile		
Rb	Volatile		
Sr	Alkaline Earth	SrZrO ₃	5.46
Y		Y ₂ O ₃	5.03
Zr		ZrO ₂	5.85
Nb		NbO ₂	5.90
Мо		Mo (metal)	10.20
Тс	Noble Metal	Tc (metal)	11.49
Ru	Noble Metal	Ru (metal)	12.45
Rh	Noble Metal	Rh (metal)	12.41
Pd	Noble Metal	Pd (metal)	12.02
Ag		Ag (metal)	10.49
Cd		ObO	8.15
În	Volatile		
Sn		SnO ₂	6.95
Sb	Volatile		
Те	Volatile		
Ba	Alkaline Earth	BaZrO ₃	6.31
La	Rare Earth	La_2O_3	6.48
Ce	Rare Earth	Ce ₂ O ₃	6.86
Pr	Rare Earth	Pr ₂ O ₃	7.07
Nd	Rare Earth	Nd_2O_3	7.28
Pm	Rare Earth	Pm_2O_3	7.75***
Sm	Rare Earth	Sm_2O_3	8.35
Eu	Rare Earth	Eu ₂ O ₃	8.64
Gd	Rare Earth	Gd_2O_3	7.64
ТЬ	Rare Earth	Tb_2O_3	7.80**
Dy	Rare Earth	Dy ₂ O ₃	8.15

表2-2 酸化物燃料中の残留FPの化学形に関する仮定

* 出典: J.A.Dean (editor), "Lange's Handbook of Chemistry (twelfth edition)", McGraw-Hill (1979)

** (データ不祥のため前後元素値より推定。)

表2-3 残留FPの同位体組成

<計算条(牛>					
計算:1-	-ド:		ORIGEN2			
新面積	ライブラリ		FBRLWRC			
新燃料	組成(重量比)					
471 /2011 1	(Pu+Am)/(U+Pu+A	m)	=0.192			
at a statistica. A statistica	11235/11238		=0.003			
and the second sec	Pu238/Pu239/Pu2	40/Pu241/	Pu242/Am241			
	1 4200/1 4200/1 42		=0.03/0.52/0.27/0	095/007/0	015	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	性度		15万 MWd/t			
	問		2700 day			
1 1111	111		55.6 MW/t			e L
上出 <u></u> 一	88		4 vear			
核種	。 組成比 [at%]	核種	· / 組成比 「at%]	核種	組成比	[at%]
SR86		CD110	17.04	SM146		0.01
SR87	0.01	CD111	30.34	SM147		22.41
SR88	44 15	CD112	21.00	SM148		15 44
SR90	54.96	CD113	13 51	SM149		20.54
Y 89	99.98	CD114	10.77	SM150		8 09
Y 90	0.02	CD116	735	SM151		10.04
7R 90	2.02	SN115	0.47	SM152		17.85
ZR 91	13.47	SN116	8.49	SM154		5.62
78 92	16.50	SN117	9.55	FI1151		4 83
7R 93	20.13	SN118	9.98	EU101		0.56
7P 94	20.10	SN119	9 9 9	FU153		63 19
7R 96	25.78	SN120	9.77	EU154		16.92
MO 95	20.70	SN122	10.21	EU155		14 50
	1 71	SN124	13.81	GD152		0.26
	22 04	SN126	27.73	GD154		919
	26.14	BA134	8.87	GD155		17 70
MO100	28.38	BA135	0.07	GD156		38 99
TC 98	0.01	BA136	0.00	GD157	t Maria Marian	9.82
TC 99	99 99	BA137	12.31	GD158	na an a	20.51
RU100	3.53	BA138	75.73	GD160	an eo está da	3.52
BU101	29.21	LA139	100.00	TB159	STER SHEERS	100.00
RU102	35.78	CF140	53.02	DY161	s sa a di sa sa sa sa sa	39.82
RU104	31.20	CF142	46.82	DY162	na Nen said	37.95
RU106	0.28	CF144	0.02	DY163	上云书元为5	1436
RH103	100.00	PR141	100.00	DY164	the search	7 88
PD104	7 21	ND142	1 38		1. A 1997 A 1977 A 1	1.00
PD105	25.36	ND143	24 44			
PD106	30.78	ND144	23.92	All Shares of		
PD107	17.09	ND145	17 45	医神经 的过去		
PD108	15.41	ND146	16 73	ne ne sutranet d'al l		
PD110	416	ND148	10.70	Politik		
AG109	99.99	ND150	5 96			
AGI10M	0.01	PM147	100.00			

-21-

3. 乾式再処理による低除染燃料の影響

3.1 概要

F/S フェーズ I で検討対象となった乾式再処理方式について,低除染燃料中の残留 FP が炉心特性に及ぼす影響を, F/S フェーズ I 物質収支評価結果(中間結果)に基づき解 析した。

3.2 対象乾式再処理方式及び炉心

対象とする乾式再処理方式及び炉心は次のとおりである。

<対象とする乾式再処理方式>

酸化物電解法 ((RIAR 技術)) 金属電解法 (Li 還元) ((ANL 技術)) 金属電解法 (塩浴塩素化) ((ANL 技術)) フッ化物揮発法

各乾式再処理方式の物質収支評価結果(中間結果)を付録A~Dに示す。

<対象炉心>

・平成 11 年度 Na-MOX レファレンス炉心^[1]

3.3 FP 混入燃料の炉心特性への影響(炉心燃料への混入,1回リサイクル後)

各再処理方式によって得られた燃料に付随する FP について,まず1回リサイクル後の炉心燃料への混入影響について調べることにする。

FP 等価係数及び FP 体積割合の値を表 3-1-1~3-1-4 に示す。同表には FP 化合物の平均密度,平均化学式量,FP の平均捕獲断面積も示している。なお,FP 等価係数の算出には ORIGEN2 コード^[2]内蔵の高速炉用1群定数セット(FBRLWRC)を使用した。

代表的な炉心特性である燃焼反応度の変化に対する元素ごとの寄与割合を図 3-1 に 示す。ここでは、炉心燃料部のみへの FP 混入影響について示している。FP 混入影響は 中性子吸収効果と燃料体積占有効果に分解した^{*}。

これらより,各再処理方式で得られる燃料に付随する FP の性質として次のことがい

^{*} FP 等価係数 と FPOx 体積割合をパラメータとした炉心特性影響解析結果(図3-2)において, =0のラインにより中性子吸収効果と燃料体積占有効果の二つの成分に分離できる。さらに,式(6)の分子が核種ごとの中性子吸収効果割合を,分母が核種ごとの燃料体積占有効果割合を与える。

える。

< 再処理後の炉心燃料に付随する FP の性質 >

酸化物電解法 ((RIAR 技術))

Zr,貴金属(Ru, Rh, Pd),希土類元素(La, Ce, Pr, Nd, Sm)が存在する。中性子 吸収効果の小さい元素(Zr, La, Ce)と大きい元素(Rh, Pd, Sm, Eu等)が混在して いる。金属元素は体積占有率が小さく,FP等価係数を増加させる働きを持つ。

金属電解法(Li 還元) ((ANL 技術))

Y及び希土類元素が燃料に随伴する。平均化学式量は比較的大きい。中性子吸収 効果に寄与する主な元素は Nd と Sm である。

金属電解法(塩溶塩素化)((ANL 技術))

に加え Zr が随伴する。Zr の中性子吸収断面積は小さく, FP 等価係数は に 比べ小さくなる。

フッ化物揮発法

燃料に付随するのは Mo, Tc, Ru といった元素であり,平均化学式量は小さい。 これらは金属のため体積占有率が小さく, FP 等価係数が大きくなる。なお,他の 乾式再処理方式と比べ, FP 体積割合が小さいのが特徴である。

平成 11 年度 Na-MOX レファレンス炉心の燃焼反応度,増殖比, Na ボイド反応度(炉 心部),ドップラー定数に対する FP 混入影響解析結果を図3-2 に示す。これらは FP 等 価係数と FP 体積割合によって整理されている。

各再処理方式によって得られた FP 混入燃料について, **表 3-1** に示す FP 等価係数及 び FP 体積割合より, 炉心特性の変化量を次のように見積もることができる。

< 炉心特性への影響(1回リサイクル後)>

酸化物電解法 ((RIAR 技術))

- ・燃焼反応度変化 + 0.4 % k/kk'
- ・増殖比変化 0.03
- ・Na ボイド反応度変化 + 0.06 × 10⁻² k/kk'
- ・ドップラー定数(絶対値)変化 0.4×10⁻³ Tdk/dT

金属電解法(Li 還元) ((ANL 技術))

・燃焼反応度変化 +0.3% k/kk²

・増殖比変化	- 0.02
・Na ボイド反応度変化	+ 0.03 × 10^{-2} k/kk'
・ドップラー定数(絶対値)変化	- 0.3 × 10 ⁻³ Tdk/dT

金属電解法(塩溶塩素化)((ANL 技術))

・燃焼反応度変化	+ 0.3 % k/kk'
・増殖比変化	- 0.02
・Na ボイド反応度変化	+ 0.03 × 10^{-2} k/kk ²
・ドップラー定数(絶対値)変化	- $0.3 \times 10^{-3} \text{ Tdk/dT}$

フッ化物揮発法

・燃焼反応度変化	+ 0.1 % k/kk'
・増殖比変化	- 0.01
・Na ボイド反応度変化	+ 0.03 × 10^{-2} k/kk'
・ドップラー定数(絶対値)変化	- $0.15 \times 10^{-3} \text{ Tdk/dT}$

最も影響の大きいのは、「酸化物電解法((RIAR 技術))」であるが、この程度の変化 であれば炉心設計での対応が可能と考えられる。一方、「フッ化物揮発法」は FP 等 価係数が大きいものの、FP 体積割合が小さく、炉心特性への影響は比較的小さいこと がわかった。

3.4 FP 混入燃料の炉心特性への影響(炉心燃料への混入 無限回リサイクル後)

第 2.8 節で示した方法によって,無限回リサイクル後に炉心燃料に混入する残留 FP についての FP 等価係数及び FP 体積割合を算出した。表 3-2 に結果を示す。また,燃焼 反応度の変化に対する元素ごとの寄与割合を図 3-3 に示す。これらについて次の傾向が 見られた。

<無限回リサイクルによる FP 等価係数及び FP 体積割合の変化 >

酸化物電解法 ((RIAR 技術))

貴金属の領域平均 DF が 3.06,希土類元素については 9.84 であり,無限回リサイクル後は貴金属がやや多く蓄積しており,平均化学式量の低下及び平均密度の増加が生じる。FP 等価係数の変化はわずかであった。FP 体積割合は 1回リサイクル後に比べ約 30% 増加する。

& 金属電解法 ((ANL 技術))

希土類元素に対して 3~5 の領域平均 DF が一様にかかるため,特定の元素が選

択的に残ることはなく, FP 等価係数の変化はほとんど見られない。FP 体積割合は 1回リサイクル後に比べ, 30~40%増加する。

フッ化物揮発法

領域平均 DF が Mo, Tc, Ru についてそれぞれ 1.09, 12.6, 5.97 であり,特に Mo の 蓄積が顕著となる。Mo の存在割合が増えることで、平均密度の減少及び平均吸収 断面積の減少が起こり,FP 等価係数は 2.3 から 1.6 まで減少する。FP 体積割合は 1 回リサイクル後に比べ約 5 倍に増加し,1~2 vol%となった。

無限回リサイクル後の炉心特性への影響を表 3-3 にまとめる。1 回リサイクル後に比べ、「酸化物電解法((RIAR 技術))」及び「 & 金属電解法((ANL 技術))」については, FP 体積割合の 30~40% 増加による影響が現れている。「フッ化物揮発法」については, FP 体積割合の増加に伴い炉心特性への影響が増加しているが, 元々FP 体積割合が小さかったことと FP 等価係数の減少によって, 他の再処理方式と同程度の影響度合いとなった。

無限回リサイクル後において炉心特性への影響が最も大きいのは、「 酸化物電解法 ((RIAR 技術))」である。ただし、この程度の変化であれば,炉心設計での対応は可能と 考えられる。

3.5 ブランケットへの FP 混入影響

次にブランケットへの FP 混入影響について調べる。1回リサイクル後のブランケット(軸方向,径方向)に付随する FP の FP 等価係数及び FP 体積割合を表 3-1 に,無限回リサイクル後の値を表 3-2 に示す。平成 11 年度 Na-MOX レファレンス炉心のブランケットに FP が混入したときの炉心特性変化を図 3-4 及び図 3-5 に示す。ブランケットへの FP 混入により燃焼反応度の増加,増殖比の減少が引き起こされることがわかる。Na ボイド反応度(炉心部)及びドップラー定数への影響は比較的小さい。炉心特性の変化は,FP 等価係数が0のときは FP 体積割合に依らず小さいことから,主に FP による中性子吸収効果が影響を及ぼしていることがわかる。

各再処理方式によって得られたブランケット燃料について,FP 等価係数及び FP 体積 割合より炉心特性変化量を見積もった結果を表3-3 に示す。「酸化物電解法((RIAR 技術))」及び「& 金属電解法((ANL 技術))」については,ブランケットへの FP 混 入影響は十分小さいことがわかる。一方,「フッ化物揮発法」では多重リサイクル 後の FP 蓄積(Mo)が無視できなくなり,炉心及びブランケットの影響を合わせると, 炉心特性の悪化は検討対象の乾式再処理方式の中で最大となる。この Mo の蓄積につい ては,除染係数を保守的に想定した結果であるとの情報があり,除染係数の見直しによ り炉心特性影響は低減する見通しである。

3.6 MA 混入による炉心特性への影響

低除染燃料には FP だけでなくマイナーアクチナイド(MA)も含まれるため, MAの 炉心特性に与える影響も考慮する必要がある。ここでは炉心燃料に混入する MA につい て簡単にふれておきたい。

各乾式再処理方式について,一回リサイクル後燃料中の MA 混入率を表 3-4 に示す。 およそ 1%程度の MA が燃料に混入しており,「酸化物電解法((RIAR 技術))」及び 「& 金属電解法((ANL技術))」については Am及びCmが主な成分となっている。 「フッ化物揮発法」では Np がわずかに燃料に含まれる。

MA について多重リサイクルを考えた場合, MA の燃焼と蓄積の平衡点が存在し, お およそ1 wt%程度の MA 混入率に漸近すると考えられる。図3-6 に典型的な MA 核種 組成を仮定した場合の炉心燃料部への MA 混入による炉心特性の変化を示す。これより, MA1 wt%混入時の炉心特性変化量を見積もると次のようになる。

< MA 混入による炉心特性の変化(混入率約1%のとき)>

・燃焼反応度変化	- 0.3 % k/kk'
・増殖比変化	$0.0 \sim + 0.01$
・Na ボイド反応度変化	+ 0.1 × 10^{-2} k/kk'
・ドップラー定数(絶対値)変化	- $0.4 \times 10^{-3} \text{ Tdk/dT}$

MAの混入については、特に Na ボイド反応度の増加及びドップラー定数の絶対値の減 少に注意する必要がある。

3.7 まとめ

本章では, F/S フェーズ I で検討対象となった乾式再処理方式についての物質収支評価結果(中間結果)を用いて, これら再処理によって得られた低除染燃料が平成 11 年度 Na-MOX レファレンス炉心の炉心特性に与える影響を調べた。

調査対象とした乾式再処理方式は, 酸化物電解法((RIAR 技術)), 金属電解法 (Li 還元)((ANL 技術)), 金属電解法(塩浴塩素化)((ANL 技術)), フッ化物 揮発法の4種である。これらの中で炉心特性への影響が最も大きかったのは,「酸化 物電解法((RIAR 技術))」であり,無限回リサイクルを仮定した場合,残留 FP による 炉心特性変化は次のように求められた。

<低除染燃料による炉心特性変化(無限回リサイクル後)>

<u>酸化物電解法 ((RIAR 技術))の場合</u>

・燃焼反応度変化 + 0.5 % k/kk'

・増殖比変化	- 0.04
・Na ボイド反応度変化	+ 0.1 × 10^{-2} k/kk'
・ドップラー定数(絶対値)変化	- $0.7 \times 10^{-3} \text{ Tdk/dT}$

この程度の変化であれば炉心設計での対応が可能と考えられる。また,これを残留 FP による炉心特性影響の上限としておけば,他の再処理方式を採用する場合を包絡した炉 心設計検討を行うことができよう。

-28-

JNC TN9400 2002-066

図3-1-2 燃焼反応度変化に対する元素別寄与(金属電解法(Li還元) ((ANL技術)), 炉心燃料へのFP混入, 1回リサイクル後)

-29-

-30-

JNC TN9400 2002-066

-31-

- 図3-2 <u>炉心燃料へのFP混入による炉心特性の変化(平成11年度Na-MOXレファレンス</u> 炉心)(1/2)
 - (:¹⁴³Ndを基準としたFP等価係数)

- 図3-2 <u>炉心燃料へのFP混入による炉心特性の変化(平成11年度Na-MOXレファレンス</u> <u>炉心)(2/2)</u>
 - (:¹⁴³Ndを基準としたFP等価係数)

JNC TN9400 2002-066

-34-

-35-

JNC TN9400 2002-066

-36-

JNC TN9400 2002-066

-37-

図3-4 軸方向ブランケットへのFP混入による炉心特性の変化(平成11年度Na-MOX レファレンス炉心) (1/2) (α:¹⁴³Ndを基準としたFP等価係数)

-38-

-6-84 α=5 -6.82 -6.95-6.95

軸方向ブランケットへのFP混入による炉心特性の変化(平成11年度Na-MOX 図3-4 レファレンス炉心) (2/2) (α :¹⁴³Ndを基準としたFP等価係数)

-39-

図3-5 径方向ブランケットへのFP混入による炉心特性の変化(平成11年度Na-MOX レファレンス炉心) (1/2) (α:¹⁴³Ndを基準としたFP等価係数)

-40-

図3-5 径方向ブランケットへのFP混入による炉心特性の変化(平成11年度Na-MOX レファレンス炉心) (2/2) (α:¹⁴³Ndを基準としたFP等価係数)

-41-

図3-6 炉心燃料へのMA混入による炉心特性の変化(平成11年度Na-MOXレファレンス 炉心) (1/2)

 $(MA1 : {}^{237}Np/{}^{241}Am/{}^{242m}Am/{}^{243}Am/{}^{242}Cm/{}^{243}Cm/{}^{244}Cm/{}^{245}Cm = 49.14/29.98/0.08/15.5/0.0/0.05/4.99/0.26 [wt\%]) (MA2 : {}^{237}Np/{}^{241}Am/{}^{242m}Am/{}^{243}Am/{}^{242}Cm/{}^{243}Cm/{}^{244}Cm/{}^{245}Cm = 6.7/23.1/1.5/27.7/1.7/0.3/31.5/7.5 [wt\%])$

-42-

図3-6 炉心燃料へのMA混入による炉心特性の変化(平成11年度Na-MOXレファレンス 炉心) (2/2)

 $(MA1 : {}^{237}Np/{}^{241}Am/{}^{242m}Am/{}^{243}Am/{}^{242}Cm/{}^{243}Cm/{}^{244}Cm/{}^{245}Cm = 49.14/29.98/0.08/15.5/0.0/0.05/4.99/0.26 [wt\%]) (MA2 : {}^{237}Np/{}^{241}Am/{}^{242m}Am/{}^{243}Cm/{}^{243}Cm/{}^{244}Cm/{}^{245}Cm = 6.7/23.1/1.5/27.7/1.7/0.3/31.5/7.5 [wt\%])$

-43-

	内側炉心燃料	内側炉心 軸方向ブランケット	外側炉心燃料	外側炉心 軸方向ブランケット	径方向ブランケット
リサイクル回数 FP混入率		1 (C		ar- 約91	
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	1.2%	1.0%	1.3%	0.3%	0.2%
体積比:V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	1.6%	1.1%	1.7%	0.4%	0.3%
平均密度	8.03	8.86	8.30	8.92	8.93
平均化学式量 A _{FPOx} [g/mol] *	129.4	111.9	122.8	111.0	111.0
平均捕獲断面積 σ _{FP} [barn]	0.25	0.26	0.26	0.26	0.27
FP等価係数α(基準核種: ¹⁴³ Nd)** 	1.3	1.7	1.4	"*************************************	1.7

表3-1-1 再処理で得た燃料に付随するFPの性質(酸化物電解法((RIAR技術)), 1回リサイクル後)

* FP₂O₃はFPO_{1.5}とみなし, 平均化学式量を算出した。

** FP等価係数の定義 $\alpha = (\Sigma_{i \in FP} \sigma_{c, i} N_i) / (\sigma_{c, Nd143} N_{Nd143}) (\sigma_{c}: 捕獲断面積, N: 個数密度)$

	内側炉心燃料	内側炉心 軸方向ブランケット	外側炉心燃料	外側炉心 軸方向ブランケット	径方向ブランケット
リサイクル回数	1	1	1	1	. 1
FP混入率					
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	0.7%	1.7%	1.1%	1.7%	0.0%
体積比:V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	1.1%	2.4%	1.7%	2.4%	0.0%
平均密度 <i>ρ</i> _{FPOx} [g/cm ³]	7.10	7.64	7.10	7.64	:
平均化学式量 A _{FPOx} [g/mol] *	165.3	144.5	165.2	144.5	
平均捕獲断面積 σ _{FP} [barn]	0.24	0.25	0.24	0.25	
FP等価係数α(基準核種: ¹⁴³ Nd)**	0.8	1.0	0.8	1.0	e <mark>sure</mark> s S
		n an	n je se	1. (1997) 1. (1997)	
** FP等価係数の定義 $\alpha = (\sum_{i \in FP} \sigma_{c, i} N_i) / (\sigma_{c, Nd143} N_{Nd143})$,)(σ _c :捕獲断面	積, N:個数密度)			

表3-1-2 再処理で得た燃料に付随するFPの性質(金属電解法(Li還元)((ANL技術)), 1回リサイクル後)

-45-

	内側炉心燃料	内側炉心 軸方向ブランケット	外側炉心燃料	外側炉心 軸方向ブランケット	径方向ブランケット
リサイクル回数	1	1	1	1	-1
FP混入率。			·	•	I
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	0.8%	0.6%	1.1%	0.6%	0.1%
体積比:V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	1.2%	0.9%	1.8%	0.9%	0.2%
平均密度	6.96	7.64	7.03	7.64	5.95
平均化学式量 A _{FPOx} [g/mol] *	159.8	144.5	162.5	144.6	125.4
平均捕獲断面積 σ _{FP} [barn]	0.21	0.25	0.22	0.25	0.05
FP等価係数α(基準核種: ¹⁴³ Nd)**	0.7	1.0	0.8	1.0	0.2

表3-1-3 再処理で得た燃料に付随するFPの性質(金属電解法(塩溶塩素化法)((ANL技術)), 1回リサイクル後)

* FP₂O₃はFPO_{1.5}とみなし, 平均化学式量を算出した。

** FP等価係数の定義 $\alpha = (\Sigma_{i \in FP} \sigma_{c, i} N_i) / (\sigma_{c, Nd143} N_{Nd143}) (\sigma_{c}: 捕獲断面積, N: 個数密度)$

	内側炉心燃料	内側炉心 軸方向ブランケット	外側炉心燃料	外側炉心 軸方向ブランケット	径方向ブランケット
リサイクル回数	1	1	1	1	1
FP混入率					
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	0.3%	0.9%	0.5%	0.9%	0.9%
体積比:V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	0.2%	0.8%	0.4%	0.8%	0.8%
平均密度	11.8	10.4	11.8	10.4	10.4
平均化学式量 A _{FPOx} [g/mol] *	100.6	97.6	100.6	97.6	97.6
平均捕獲断面積 σ _{FP} [barn]	0.24	0.17	0.24	0.17	0.17
FP等価係数α(基準核種: ¹⁴³ Nd)**	2.3	1.4	2.3	1.4	1.4

表3-1-4 再処理で得た燃料に付随するFPの性質(フッ化物揮発法、1回リサイクル後)

* FP₂O₃はFPO_{1.5}とみなし、平均化学式量を算出した。

** FP等価係数の定義 α=(Σ_{i∈FP} σ_{c,i} N_i)/(σ_{c,Nd143} N_{Nd143}) (σ_c:捕獲断面積, N:個数密度)

-47-

表3-2-1 再処理で得た燃料に付随するFPの性質(酸化物電解法((RIAR技術)), 無限回リサイクル後)

·	内側炉心燃料	内側炉心 軸方向ブランケット	外側炉心燃料	外側炉心 軸方向ブランケット	径方向ブランケット
リサイクル回数	∞	œ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
FP混入率					
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	1.6%	1.4%	1.8%	0.4%	0.4%
体積比: V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	2.1%	1.7%	2.3%	0.5%	0.4%
平均密度 P _{FPOx} [g/cm ³]	8.16	8.88	8.41	8.92	8.93
平均化学式量 A _{FPOx} [g/mol] *	126.1	111.7	120.3	111.0	111.0
平均捕獲断面積 σ _{FP} [barn]	0.26	0.26	0.26	0.26	0.27
FP等価係数α(基準核種: ¹⁴³ Nd)**	1.3	1.7	1.5	1.7	1.7

* FP₂O₃はFPO_{1.5}とみなし, 平均化学式量を算出した。

** FP等価係数の定義 $\alpha = (\Sigma_{i \in FP} \sigma_{c, i} N_i) / (\sigma_{c, Nd143} N_{Nd143}) (\sigma_{c}: 捕獲断面積, N: 個数密度)$

(簡易評価結果)

表3-2-2 再処理で得た燃料に付随するFPの性質(金属電解法(Li還元)((ANL技術)),無限回リサイクル後)

(簡易評価結果)

	内側炉心燃料	内側炉心 軸方向ブランケット	外側炉心燃料	外側炉心 軸方向ブランケット	径方向ブランケット
	~	∞	∞	∞	œ
FP混入率 Water Part of the Part					
重量比:	1.0%	2.1%	1.5%	2.2%	0.0%
体積比: V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	1.5%	3.0%	2.4%	3.0%	0.0%
平均密度	7.10	7.58	7.10	7.58	
平均化学式量 A _{FPOx} [g/mol] *	165.3	146.4	165.2	146.4	2
平均捕獲断面積 σ _{FP} [barn]	0.24	0.24	0.24	0.24	.
FP等価係数α(基準核種: ¹⁴³ Nd)**	0.8	1.0	0.8	1.0	
* FP ₂ O ₃ はFPO _{1.5} とみなし, 平均化学式量を算出した。 ** FP等価係数の定義 α=(Σ _{i∈FP} σ _{c,i} N _i)/(σ _{c, Nd143} N _{Nd143}	₃)(σ _c :捕獲断面積	責, N:個数密度)	. (g) ⁽¹		(* 1 V
			20月1日 - 中国大学		
1997年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	nen an annan an ann ann an ann an an an an	19. No internet and a state of the second second Second second			東海鉄炉粘泥。

表3-2-3 再処理で得た燃料に付随するFPの性質(金属電解法(塩溶塩素化法)((ANL技術)), 無限回リサイクル後)

	内側炉心燃料	 内側炉心 軸方向ブランケット	外側炉心燃料	外側炉心 軸方向ブランケット	径方向ブランケット
リサイクル回数	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	
FP混入率(Markalanta Andreada				~	
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	1.0%	0.9%	1.4%	0.9%	0.1%
体積比: V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	1.6%	1.2%	2.3%	1.2%	0.2%
平均密度 ρ _{FPOx} [g/cm ³]	6.97	7.82	7.04	7.82	5.95
平均化学式量 A _{FPOx} [g/mol] *	160.3	143.5	162.8	143.5	125.4
平均捕獲断面積 σ _{FP} [barn]	0.21	0.26	0.23	0.26	0.05
FP等価係数α(基準核種: ¹⁴³ Nd)**	0.7	1.1	0.8	1.1	0.2

* FP₂O₃はFPO_{1.5}とみなし, 平均化学式量を算出した。

** FP等価係数の定義 $\alpha = (\Sigma_{i \in FP} \sigma_{c, i} N_i) / (\sigma_{c, Nd143} N_{Nd143}) (\sigma_{c}: 捕獲断面積, N: 個数密度)$

自要人心的感染

(簡易評価結果)

表3-2-4 再処理で得た燃料に付随するFPの性質(フッ化物揮発法, 無限回リサイクル後)

	内側炉心燃料	内側炉心 軸方向ブランケット	、外側炉心	然料 軸フ	外側炉心 5向ブランケット	径方向ブランケット
リサイクル回数	∞	∞	∞		∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FP混入率						
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	1.3%	11.0%	2.0%		11.0%	11.0%
体積比:V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	1.1%	9.3%	1.8%		9.2%	9.2%
平均密度	10.7	10.4	10.7		10.4	10.4
平均化学式量 A _{FPOx} [g/mol] *	98.4	97.6	98.4		97.6	97.6
平均捕獲断面積	0.19	0.17	0.19		0.17	0.17
FP等価係数 <i>α</i> (基準核種: ¹⁴³ Nd)**	1.6	1.4			1.4	1.4

* FP₂O₃はFPO_{1.5}とみなし、平均化学式量を算出した。

** FP等価係数の定義 $\alpha = (\Sigma_{i \in FP} \sigma_{c, i} N_i) / (\sigma_{c, Nd143} N_{Nd143}) (\sigma_c: 捕獲断面積, N: 個数密度)$

(簡易評価結果)

-51-

	炉心燃料	軸方向ブラン ケット	径方向ブラン ケット	合計
(1)1回リサイクル後				
燃焼反応度変化 [%∠k/kk']	+0.4	~0	~0	+0.4
增殖比変化	-0.03	~0	~0	-0.03
Naボイド反応度変化 [10 ⁻² ∠k/kk']	+0.06	∼ 0	~0	+0.06
│ ドップラー定数 (絶対値) 変化 [10 ⁻³ Tdk/dT]	-0.4	~0	~0	-0.4
(2)無限回リサイクル後*				
燃焼反応度変化 [%∠k/kk']	+0.5	~0	~0	+0.5
增殖比変化	-0.04	~0	~0	-0.04
Naボイド反応度変化 [10 ⁻² ⊿k/kk']	+0.10	~0	~0	+0.10
ドップラー定数 (絶対値) 変化 [10 ⁻³ Tdk/dT]	-0.7	~0	~0	-0.7

表3-3-1 低除染燃料の炉心特性への影響(酸化物電解法((RIAR技術)))

* 簡易評価結果

-52-

医血液的 法法

	炉心燃料	軸方向ブラン _{ケット}	径方向ブラン ケット	合計
(1)1回リサイクル後				
燃焼反応度変化 [%∠k/kk']	+0.3	~0	0.0	+0.3
增殖比変化	-0.02	~0	0.0	-0.02
Naボイド反応度変化 [10 ⁻² ⊿k/kk']	+0.03	~0	0.0	+0.03
ドップラー定数 (絶対値) 変化 [10 ⁻³ Tdk/dT]	-0.3	~0	0.0	-0.3
(2) 無限回リサイクル後 [*]				
燃焼反応度変化 [%⊿k/kk']	+0.35	~0	0.0	+0.4
增殖比変化	-0.02	~0	0.0	-0.02
Naボイド反応度変化 [10 ⁻² ⊿k/kk']	+0.05	~0	0.0	+0.05
ドップラー定数 (絶対値) 変化 [10 ⁻³ Tdk/dT]	-0.4	~0	0.0	-0.4

表3-3-2 低除染燃料の炉心特性への影響(金属電解法(Li還元)((ANL技術)))

* 簡易評価結果

	炉心燃料	軸方向ブラン ケット	径方向ブラン ヶット	合計
(1) 1回リサイクル後				
燃焼反応度変化 [%∠k/kk']	+0.3	~0	~0	+0.3
增殖比変化	-0.02	~0	~0	-0.02
Naボイド反応度変化 [10 ⁻² ⊿k/kk']	+0.03	~0	~0	+0.03
ドップラー定数 (絶対値) 変化 [10 ⁻³ Tdk/dT]	-0.3	~0	~0	-0.3
(2)無限回リサイクル後*				
燃焼反応度変化 [%⊿k/kk']	+0.35	~0	~0	+0.4
增殖比変化	-0.02	~0	~0	-0.02
Naボイド反応度変化 [10 ⁻² ⊿k/kk']	+0.05	~0	~0	+0.05
ドップラー定数 (絶対値) 変化 [10 ⁻³ Tdk/dT]	-0.4	~0	~0	-0.4

表3-3-3 低除染燃料の炉心特性への影響(金属電解法(塩溶塩素化法)((ANL技術)))

* 簡易評価結果

	炉心燃料	軸方向ブラン _{ケット}	径方向ブラン ケット	合計
 (1) 1回リサイクル後 燃焼反応度変化 [%∠k/kk'] 増殖比変化 Naボイド反応度変化 [10⁻²∠k/kk'] ドップラー定数 (絶対値) 変化 [10⁻³Tdk/dT] 	+0.1 -0.01 +0.03 -0.15	~0 ~0 ~0 ~0	~0 ~0 ~0 ~0 ~0	+0.1 -0.01 +0.03 -0.2
 (2) 無限回リサイクル後[*] 燃焼反応度変化 [%∠/k/kk'] 増殖比変化 Naボイド反応度変化 [10⁻²∠/k/kk'] ドップラー定数 (絶対値) 変化 [10⁻³Tdk/dT] 	+0.35 -0.02 +0.07 -0.5	+0.1 -0.01 -0.03 -0.1	+0.1 -0.03 ~0 ~0	+0.6 -0.06 +0.04 -0.6

表3-3-4 低除染燃料の炉心特性への影響(フッ化物揮発法)

* 簡易評価結果

ANL技術))	
則炉心燃料	
1	
1.3%	

表3-4 再処理で得た燃料に対するMA混入率(1回リサイクル後)

•	酸化物電角	释法((RIA	R技術))	金属電解法(Lij	金属電解法(Li還元)((ANL技術))			
	内側炉心燃料	外	側炉心燃料	内側炉心燃料	外側炉心燃料			
リサイクル回数	1		1	1	1			
MA混入率(重量比) M _{MA} /(M _U +M _{Pu} +M _{MA})	1.0%		0.8%	0.8%	1.3% 8.7%			
MA元素組成(重量比) Np	2.9%		3.3%	8.7%				
Am	74.0%		73.3%	69.2%	69.2%			
Cm	23.1%		23.4%	22.1%	22.1%			
a da Angela	÷	an a bar			en se			
	金属電解法(塩溶	塩素化法	生)((ANL技術))) フッ化物	フッ化物揮発法			
	内側炉心燃料	外	側炉心燃料	内側炉心燃料	外側炉心燃料			
リサイクル回数	1		1	1 🗍	6.51			
MA混入率(重量比) M _{MA} /(M _U +M _{Pu} +M _{MA})	0.8%		1.3%	0.0%	0.1%			
MA元素組成(重量比) Np	8.7%		8.7%	100.0%	100.0%			
Am	69.2%		69.2%	0.0%	0.0%			
Cm	22.1%		22.1%	0.0%	0.0%			

酸化物電解法((RIAR技術))

-56-

4. 湿式再処理による低除染燃料の影響

4.1 概要

F/S における湿式再処理のシステム設計においては, PUREX を基本にマイナーアク チナイド(MA)回収プロセスの付加を検討している。MA回収プロセスでは, MA と 化学的性質の同じ希土類元素を中心とする FP が不純物として随伴する。本章では, MA 回収プロセスを付加した湿式再処理方式について,随伴 FP の燃料への混入を炉心設計 で許容できるか否か, あるいは FP 除染率をどこまで高める必要があるか判断するため の炉心特性影響評価結果を示す。

4.2 対象湿式再処理方式及び炉心

MA 回収プロセスを付加した湿式再処理の一候補概念である PUREX + SETFICS^{*}を評価対象とする。同システムの F/S フェーズI における物質収支評価結果を**付録E**に示す。 PUREX + SETFICS において FP が混入するのは炉心燃料部のみである。

対象炉心は第3章での検討と同じ,平成11年度 Na-MOX レファレンス炉心^[1]とする。 燃焼反応度,増殖比,Naボイド反応度(炉心部),ドップラー定数の変化量に着目する。

4.3 PUREX + SETFICS による炉心特性への影響

表 4-1 に PUREX + SETFICS における随伴 FP の性質を,表 4-2 に炉心特性変化量の評価結果を示す。多重リサイクルにより FP 体積割合が増加し,5~6回のリサイクル後には,第3章で炉心特性影響が最大となった無限回リサイクル時の乾式再処理 RIAR 法における炉心特性影響を超えることがわかった。現状の移行率では多重リサイクルに耐える炉心を成立させることは困難である。

図 4-1 に燃焼反応度変化の元素別寄与を示す。随伴 FP の主な組成はイットリウムと 重希土類元素 (Sm, Eu, Gd) であり, これらは移行率が1ないしはそれに近い値となっ ているためリサイクルにより炉心燃料に蓄積し, 炉心特性を悪化させている。なお,イ ットリウムによる炉心特性影響は体積占有効果,重希土類元素は中性子吸収効果による ものである。

^{*} SETFICS (Solvent Extraction for Trivarent-f-elements Intra-groupsepararion in CMPO-comlexant System)は,使用済燃料の硝酸溶解液からUやPu等を回収した後の高酸性廃液からAmやCmを回収するために,核燃料サイクル開発機構が開発した溶媒抽出法ベースのMA回収システムである。

PUREX 法では FP の高除染が可能であるが,SETFICS で回収した MA のリサイクルにより, FP が燃料製品に混ざることになる。そこで,前章まで用いていた「除染係数」及び「残留 FP」という用語はふさわしくなく,本章では代わりに「移行率」及び「随伴 FP」を用いることにする。

4.4 炉心特性影響緩和方策の検討

前節で見たように,現状の PUREX + SETFICS の移行率では,多重リサイクルを成立 させることができない。そこで,同システムに若干の改良を加えることにより,随伴 FP の蓄積を許容範囲内に抑えることができないかを検討する。

次表に PUREX + SETFICS に改良を加えた検討ケースを示す(付録 F 参照)。

	Y	La-Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er
PUREX+SETFICS	1	0.001	0.1	0.3	0.7	1	1	1	1	1
Case-1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Case-2	0.7	0.001	0.1	0.2	0.5	0.8	1	1	1	1
Case-3	0.5	0.001	0.1	0.2	0.4	0.4	0.2	0.1	0.001	0.001
Case-4	0.85	0.001	0.09	0.25	0.60	0.85	0.85	0.85	0.85	0.85

表 PUREX + SETFICS に改良を加えた検討ケースの FP 移行率

Case-1 は,高い除染係数は期待できないものの,軽希土類元素および重希土類元素双 方とも除染可能なプロセスを想定した場合である。Case-2 は SETFICS の分離性能の向 上を期待した場合であり,PUREX + SETFICS における主影響元素である Y, Sm, Eu, Gd の移行率の減少が図られている。Case-3 は SETFICS の後段を別の溶媒(TODGA 等)に 変更し,重希土類元素の除染性能を向上させた場合である。Case-4 は,PUREX + SETFICS における各 FP の移行率を単純に 0.85 倍したものであり,多重リサイクルによる FP 蓄 積量が許容範囲内で平衡となる移行率減少割合を見出すために設定した。

表4-3 に各検討ケースについて, FP 体積割合と FP 等価係数を示す。これらより評価 した平成11 年度 Na-MOX レファレンス炉心の燃焼反応度の変化を表4-4 及び図4-2 に 示す。燃焼反応度変化に対する元素別寄与を図4-3~4-6 に示す。各ケースとも多重リ サイクルによる FP の蓄積による影響を, 乾式 RIAR 法無限回リサイクル時以下に抑え ることのできる結果となった。

ただし, Case-2 については移行率 1 の FP (Tb, Dy, Ho, Er) があるため, リサイクル によりこれら FP が蓄積しつづけ, もとの PUREX + SETFICS と同様, いずれは炉心を 成立させることのできない状態に至ることになる。しかし, FP の蓄積速度は十分ゆる やかであり, 60 ~ 70 リサイクル(約 400 年間)の長期にわたって炉心特性への影響は 許容できるレベルにある。

なお Case-4 より PUREX + SETFICS の FP 移行率を 0.85 以下に一様に小さくすれば, リサイクルによる FP の蓄積は炉心設計対応が可能な範囲で平衡状態に至ることがわかった。

4.5 まとめ

湿式再処理法に MA 回収プロセスを付加した「PUREX + SETFICS」について,イットリウム及び重希土類元素を主とする随伴 FP の混入した燃料が炉心特性に与える影響を評価した。結果として 5~6回のリサイクル後には,乾式再処理で最大であった RIAR 法無限回リサイクル時の炉心特性への影響を超え,さらに FP が蓄積しつづけるため,多重リサイクルを成立させることは困難であることがわかった。そこで,PUREX + SETFICS をベースに FP 除染性能を向上させた検討ケース(Case-1, -2, -3)について影響評価を行った。各ケースとも多重リサイクルによる FP の蓄積による影響を許容範囲 に抑えることのできる見通しが得られた。

図4-1-1 燃焼反応度変化に対する元素別寄与(PUREX+SETFICS, 1回リサイクル後)

図4-1-2 燃焼反応度変化に対する元素別寄与(PUREX+SETFICS,5回リサイクル後)

図4-3-1 燃焼反応度変化に対する元素別寄与(Case-1,1回リサイクル後)

図4-3-2 燃焼反応度変化に対する元素別寄与(Case-1, 無限回リサイクル後)

図4-4-1 燃焼反応度変化に対する元素別寄与(Case-2,1回リサイクル後)

図4-4-2 燃焼反応度変化に対する元素別寄与(Case-2,30回リサイクル後)

図4-5-1 燃焼反応度変化に対する元素別寄与(Case-3,1回リサイクル後)

図4-5-2 燃焼反応度変化に対する元素別寄与(Case-3, 無限回リサイクル後)

図4-6-1 燃焼反応度変化に対する元素別寄与(Case-4,1回リサイクル後)

図4-6-2 燃焼反応度変化に対する元素別寄与(Case-4, 無限回リサイクル後)

	リサイクル数				
	1	5	10	30	
FP混入率					
重量比: M _{FP} /(M _U +M _{Pu} +M _{MA})	0.4%	1.2%	2.0%	5.5%	
体積比: V _{FPOx} /(V _{UO2} +V _{PuO2} +V _{MAO2} +V _{FPOx})	0.6%	2.1%	3.8%	10%	
平均密度 _{FP0x} [g/cm ³]	6.82	6.23	6.02	5.83	
平均化学式量 A _{FPOx} [g/mol] [*]	148.7	139.1	135.5	132.2	
平均捕獲断面積 _{FP} [barn]	0.62	0.48	0.40	0.32	
FP等価係数 (基準核種: ¹⁴³ Nd) ^{**}	2.3	1.7	1.4	1.1	

表4-1 再処理で得た燃料に付随するFPの性質(PUREX+SETFICS)

* FP₂0₃はFP0_{1.5}とみなし,平均化学式量を算出した。

** FP等価係数の定義 =(_{i FP c, i} N_i)/(_{c, Nd143} N_{Nd143}) (_c:捕獲断面積,N:個数密度)

		PUREX+S	SETFICS		乾式RIAR法 (参考)
リサイクル数	1	5	10	30	
燃焼反応度変化 [% k/kk'] 増殖比恋化	+0.15	+0.45	+0.8	+1.8	+0.5
¹⁴ /11に反化 Naボイド反応度変化 [10 ⁻² k/kk']	+0.03	+0.09	+0.14	+0.30	+0.10
ドップラー定数 (絶対値) 変化 [10 ⁻³ Tdk/dT]	-0.2	-0.6	-1.0	-2.1	-0.7

表4-2 低除染燃料の炉心特性への影響 (PUREX+SETFICS)

			リサイクル回数	<u>ل</u> ا	
	1	5	10	30	
PUREX + SETFICS					
FP体積割合	0.6%	2.1%	3.8%	10%	は シー・ナシー ヽ
FP等価係数	2.3	1.7	1.4	1.1	
Case-1					
FP体積割合	0.7%	0.7%	0.7%	0.7%	0.7%
FP等価係数	0.8	0.8	0.8	0.8	0.8
Case-2					
FP体積割合	0.4%	1.0%	1.2%	1.4%	
FP等価係数	2.3	2.1	2.1	2.4	
Case-3					
FP体積割合	0.3%	0.5%	0.5%	0.5%	0.5%
FP等価係数	2.4	2.1	2.1	2.1	2.1
Case-4					
FP体積割合	0.5%	1.4%	1.9%	2.3%	2.3%
FP等価係数	2.3	1.8	1.6	1.5	1.5

表4-3 再処理で得た燃料に付随するFPの性質(PUREX+SETFICS:除染性能向上検討ケース)

* FP体積割合 = V_{FP0x}/(V_{U02}+V_{Pu02}+V_{MA02}+V_{FP0x})

** FP等価係数 = (_{i FP c, i} N_i) / (_{c, Nd143} N_{Nd143}) (_c: 捕獲断面積, N: 個数密度) PUREX + SETFICSとCase-2では移行率1のFPがあるため, リサイクルによりFPが蓄積しつづけ,途中で炉心が成立 しなくなる。

表4-4	 低除染燃料による燃焼反応度の変化(PUREX+SETFICS:除染性能向. 	上検討ケース)	
		(単位:% ト	

				`	
			リサイクル回数	Ż	
	1	5	10	30	
PUREX + SETFICS	+0.15	+0.45	+0.8	+1.8	成立しない
Case-1	+0.12	+0.12	+0.12	+0.12	+0.12
Case-2	+0.10	+0.24	+0.28	+0.35	成立しない
Case-3	+0.08	+0.12	+0.12	+0.12	+0.12
Case-4	+0.12	+0.3	+0.4	+0.5	+0.5
乾式RIAR法(参考)	+0.4	-	-	-	+0.5

PUREX + SETFICSとCase-2ではリサイクルによりFPが蓄積しつづけ,途中で炉心が成立しなくなる。ただし, Case-2の場合はFPの蓄積速度はゆるやかであり,60~70リサイクル(約400年間)の長期にわたり炉心特性への影響 は許容できるレベルである。

5. まとめ

FBR サイクル実用化戦略調査研究(F/S)では,燃料中に不純物の混入を許容した「低除染燃料」を用いた炉心,燃料,及び燃料サイクルシステムの設計検討を行っており, 再処理候補概念ごとに組成が異なる燃料中の残留 FP による炉心特性影響を評価する必要があった。F/S の初期段階においては,種々の炉心,燃料,再処理方式の候補概念を比較し絞り込みが行われるとともに,設計の見直しが頻繁に行われる。そこで,本研究では,炉心計算における簡易的な残留 FP の取扱い方法として,FP 等価係数と FP 体積 割合をパラメータとした代表核種による模擬方法を構築し,効率的に炉心特性影響を評価できるようにした。

F/S フェーズ I の再処理候補概念を対象として,低除染燃料中の残留 FP による平成 11 年度 Na-MOX レファレンス炉心の炉心特性への影響を評価した結果は次のとおりで ある。

乾式再処理法については、「酸化物電解法(RIAR 技術)」、「金属電解法(ANL 技術)」、 「フッ化物揮発法」を評価対象とした。これらの中で炉心特性への影響が最も大きかっ たのは酸化物電解法(RIAR 技術)であり、無限回リサイクルを仮定した場合、燃焼反 応度は 0.5 % k/kk'増加、増殖比は 0.04 減少、Na ボイド反応度は 0.1 × 10⁻² k/kk'増加、 ドップラー定数(絶対値)は 0.7 × 10⁻³ Tdk/dT 減少した。この程度の影響であれば、炉 心設計で対応可能であると考えられる。

湿式再処理法については, PUREX 法に MA 回収プロセス付加した「PUREX + SETFICS」を評価対象とした。同システムでは, イットリウム及び重希土類元素を主とする FP がリサイクルとともに燃料に蓄積し, 多重リサイクルを成立させることは困難な結果となった。ただし, プロセスに若干の改良を加えることができれば, 炉心特性への影響は酸化物電解法(RIAR 技術)の無限回リサイクル時程度に抑えることができることがわかった。

以上より,当面の設計作業においては,酸化物電解法(RIAR 技術)無限回リサイク ル時を残留 FP による炉心特性影響の上限としておけば,他の再処理方式を採用する場 合を包絡した炉心設計検討を行うことができる。¹⁴³Nd を代表核種とした場合,酸化物 電解法(RIAR 技術)無限回リサイクル時の FP 等価係数は 1.5, FP 体積割合は 2.3 vol% (最も大きくなる外側炉心燃料の値)である。

謝辞

本研究における解析の一部は,㈱原子力システムの神智之氏に行っていただきました。 第2.3節の代表核種法の妥当性確認計算,第3章と第4章における評価のベースデータ である平成11年度 Na-MOX レファレンス炉心に対する残留 FP の炉心特性影響解析は 氏によるものです。感謝の言葉を申し上げます。

参考文献

[1] 池上 哲雄, 他, "ナトリウム冷却炉の炉心・燃料設計検討 - 平成 11 年度報告 - ", JNC TN9400 2000-068, (2000).

[2] A. G. Croff, "A User's Manual for the ORIGEN2 Computer Code", ORNL-TM-7175, (1980); A. G. Croff, "ORIGEN2: A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials", *Nucl. Technol.*, **62**, 335 (1983).

[3] 横山 賢治, 他, "JENDL-3.2 に基づく大型高速炉用統合炉定数の整備", JNC TN9400 99-042, (1999).

[4] 高野 秀樹, 金子 邦男, "JENDL-3.2 の炉定数の整備", JAERI-memo 07-083, (1995).

[5] S. Hunter, "Fast Reactor Calculational Route for a Pu Burning Core Design", PNC TN9460 98-001 (1998).

付録 A 酸化物電解法 F/S フェーズ I 物質収支評価結果 (中間結果) JNC TN9400 2002-066

図1 酸化物電解法のプロセスフロー

en de T angés	内側	恒心	外個	恒心的		ALE L
元素	炉心部	軸ブラ部	炉心部	軸ブラ部	住ノフ	合計
$\frac{1}{1} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}$	質量	質量	質量	質量	質量	質量
ົ່ • ປ* 👘	9.04E+03	8.62E+03	4.72E+03	5.01E+03	1.41E+04	4.15E+04
Np	9.56E+00	1.19E+00	7.29E+00	6.72E-01	1.49E+00	2.02E+01
Pu	2.12E+03	4.21E+02	1.50E+03	2.20E+02	5.07F+02	4 77E+03
Am	7.88E+01	4.15E-01	6.91E+01	1.67E-01	3 77F-01	1 49F+02
Cm	2.59E+01	2.87E-04	2.14E+01	8.39E-05	2 14F-04	4 73E+01
HM合計	1.13E+04	9:04E+03	6.32E+03	5 23E+03	146E+04	4 65E+04
H	2.83E-03	201F-04	1.88E-03	9.37E-05	2 10E-04	5.21E-03
C	1.42E-06	1.01E-07	947E-07	4 72E-08	1.06E-07	2.62E-06
Ċs	1.93F+02	1.37E+01	1 28E+02	6.39E+00	1.00E 01	3 55E+02
Rh	1 14F+01	8.09E-01	7.56E+00	3 77E-01	8 44E-01	2 10E+01
Be	8.08F-06	5 75E-07	5.38E-06	2 68E-07	6.00E-07	1 405-05
Sr	2 38F+01	1.69E+00	1 58E+01	7 80E-01	1 77E+00	1.49C 00
Ba	8 80F+01	6.26E+00	5.86E+01	2 92E+00	6.54E+00	1.62E+02
Y	1.35E+01	9.63E-01	9.00E+00	4 48E-01	1 00E+00	2/0E+01
1a	6 18F+01	4 40E+00	411F+01	2 05E+00	4 59E+00	1 1/E+02
Ce	1 12E+02	797E+00	7.45E+01	371E+00	8 32E+00	207E+02
Pr	5 76F+01	4 10E+00	3.83E+01	1 91E+00	4.27E+00	1.06E+02
Nd	1 90E+02	1.35E+01	1.26E+02	6 29E+00	1.41E+01	3 50E+02
Pm	2 53E+00	1.80E-01	1.68E+00	8 39E-02	1 88E-01	4 66E+00
Sm	6.06F+01	4.31E+00	4 03E+01	201E+00	4 50E+00	1 12E+02
Fil	5.83E+00	4 15E-01	3 88E+00	1 93E-01	4 33E-01	1.08E+01
Gd	7 28E+00	5 18E-01	4.85E+00	241E-01	5.41E-01	1.00L+01
Th	4 00F-01	2 85E-02	2.66E-01	1 33E-02	2 97E-02	7 385-01
Dv	421E-01	3 00F-02	2.80E-01	1 40E-02	3 13E-02	7.76E-01
Ho Ho	9.80E-03	697F-04	6.52E-03	3 25E-04	7 28E-04	1.81E-02
Er	1.40E-02	9.94E-04	9 29E-03	4.63E-04	1.04E-03	2 57E-02
Tm	9.71E-06	691F-07	646F-06	3 22E-07	7 21E-07	1 79E-05
Yb	4.05E-06	2.89F-07	2 70E-06	1.34F-07	3.01E-07	748E-06
Se	2.10E+00	1.49E-01	1 40E+00	6.96E-02	1.56E-01	3.87E+00
Te	3.43E+01	2,44E+00	2.28F+01	1 14F+00	2 55E+00	6.33E+01
i in Talitics	1.81E+01	1.29E+00	1.20F+01	6 00F-01	1.34E+00	3 34F+01
Br	6.43E-01	4.58E-02	4.28F-01	2 13E-02	4 78E-02	1 19E+00
Zr	1.40E+02	9.97F+00	9.32E+01	4 64E+00	1.04E+01	2.58E+02
Cd	1.19E+01	8 50F-01	7 95E+00	3.96E-01	8 87E-01	2 20E+01
110	2.08E-05	148E-06	1.38E-05	6.89E-07	1 54E-06	3.83E-05
Zn	2.62E-09	1.87E-10	1 75E-09	8 70E-11	1.95E-10	4 84E-09
Ga	3.33E-07	2.37E-08	2 22F-07	1 10F-08	2 47E-08	6 14F-07
Ge	5.84E-02	416E-03	3.89E-02	1 94E-03	4 34E-03	1.08E-01
A's	1.73E-02	1.23E-03	1 15E-02	572E-04	1.28E-03	3 18E-02
NB	2.22E-04	1.58E-05	1 48E-04	7.37E-06	1.65E-05	4 10E-04
Mo	1.69E+02	1 20E+01	1 12E+02	5.60E+00	1.00E 00	3 11E+02
Tc	4 10F+01	2 92F+00	2 73E+01	1.36E+00	3.04E+00	7.56E+01
Ru	1.56E+02	1 11F+01	1.04E+02	5 16E+00	1 16E+01	2 87E+02
Rh	4.49F+01	319F+00	2.99F+01	1 49F+00	3 335+00	8 27E+02
P4	1 37F+02	973E+00	9 09F+01	4 52 =+00		2 52 ETUI
Δσ	1 22F+01	871F-01	814E+00	4 065-01	0 00E-01	2.026702
 In	4.81F-01	3 42 -02	3 20 -01	1 605-01	3.03E-01	2.20E+UI
Chille	1.07	7 205-01	6 82E+00	2.40E-01	3.30E-02	0.00E-UI
CL	2 1020-00	1715-01		7.065.00	1 70F 01	1.095+01
<u> </u>	1 205+01			1.905-02		4.435+00
	1.30E+01	9.235-01	0.02E+00	4.30E-01	9.03E-01	2.39E+01
		1./26+01	1.01E+02	8.022+00	1.80E+01	4.46E+02
	1.805103	1.33E+02	-1.24E+03	0.17E+01	1.38E+02	3.43E+03
TIC AT	1-1-316+04	9.18E+03	1.50E+03	3.29E+03	48E+04	4.99E+04

表1 使用済燃料中各元素の重量組成(kg)

	大 内相	顺行心	外個	收回心。	相對他家也是是	
元素	炉心部	軸ブラ部	炉心部	軸ブラ部	住フラ	合計
	質量	質量	質量	营量	皆量於	習量
U U	1.09E+04	9.14E+03	5.63E+03	5.29E+03	1.47E+04	4.57E+04
Np	3.99E+00	3.99E+00	2.01E+00	2.00E+00	5.99E+00	1.80F+01
Pull*	2.13E+03	2.79E+01	1.94E+03	4.00E+00	9,99F+00	4 11E+03
Am	1.02E+02	0.0	4.42E+01	0.0	0.0	1.46E+02
Cm	3.19E+01	0.0	1.41E+01	0.0	0.0	4.60E+01
HM合計	1.32E+04	9.17E+03	7.63E+03	5 29E+03	1485+04	5 00E+04
H	0.0	0.0	0.0	0.0	0.0	0.000
C	0.0	0.0	0.0	0.0	0.0	0.0
Cs	0.0	0.0	0.0	0.0	0.0	0.0
Rb	0.0	0.0	0.0	0.0	0.0	0.0
Be	0.0	0.0	0.0	0.0	0.0	0.0
Sr	0.0	0.0	0.0	0.0	0.0	0.0
Ba	0.0	0.0	0.0	0.0	0.0	0.0
Y	1.74E+00	5.27E-02	7 43E-01	0.0	0.0	2 54E+00
La	7.95E+00	2.41E-01	3.40E+00	0.0	0.0	1 16F+01
Ce	1.44E+01	4.36E-01	6.15E+00	0.0	0.0	2 10E+01
Pr	7.40E+00	2.24E-01	3.16E+00	0.0	0.0	1.08F+01
Nd	2.44E+01	7.39E-01	1.04E+01	0.0	0.0	3 56E+01
Pm	3.25E-01	9.85E-03	1.39E-01	0.0	0.0	4 74F-01
Sm	7.79E+00	2.36E-01	3.33E+00	0.0	0.0	1.14E+01
Eu	7.50E-01	2.27E-02	3.20E-01	0.0	0.0	1.09E+00
Gd	9.37E-01	2.84E-02	4.00E-01	0.0	0.0	1.37E+00
Tb	5.14E-02	1.56E-03	2.20E-02	0.0	0.0	7.50E-02
Dy	5.41E-02	1.64E-03	2.31E-02	0.0	0.0	7.89E-02
Ho	1.26E-03	3.82E-05	5.38E-04	0.0	0.0	1.84F-03
Er	1.80E-03	5.44E-05	7.67E-04	0.0	0.0	2.62E-03
Tm	1.25E-06	3.78E-08	5.34E-07	0.0	0.0	1.82E-06
Υв	5.21E-07	1.58E-08	2.23E-07	0.0	0.0	7.60E-07
Se	0.0	0.0	0.0	0.0	0.0	0.0
Те	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0
Br	0.0	0.0	0.0	0.0	0.0	0.0
Zr	2.56E+01	2.39E+01	2.02E+01	4.46E+00	1.00E+01	8.43E+01
Cd	2.19E+00	2.04E+00	1.72E+00	<u>3.81E-01</u>	8.57E-01	7.19E+00
Li	0.0	0.0	0.0	0.0	0.0	0.0
Zn	4.80E-10	4.48E-10	3.78E-10	8.36E-11	1.88E-10	1.58E-09
Ga	0.0	0.0	0.0	0.0	0.0	0.0
Ge	0.0	0.0	0.0	0.0	0.0	0.0
As	0.0	0.0	0.0	0.0	0.0	0.0
Nb	0.0	0.0	0.0	0.0	0.0	0.0
Mo	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0
Ru	2.85E+01	2.66E+01	2.25E+01	4.96E+00	1.12E+01	9.37E+01
<u> </u>	8.21E+00	<u>/.67E+00</u>	6.47E+00	1.43E+00	3.22E+00	2.70E+01
Pd State	2.50E+01	2.34E+01	1.97E+01	4.36E+00	9.80E+00	8.22E+01
Ag	2.24E+00	2.09E+00	1.76E+00	3.90E-01	8.77E-01	7.36E+00
in	0.0	0.0	0.0	0.0	0.0	0.0
Sn	0.0	0.0	0.0	0.0	0.0	0.0
Sb	0.0	0.0	0.0	0.0	0.0	0.0
<u> </u>	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0
<u> </u>	1.58E+02	<u>8.77E+01</u>	1.00E+02	1.60E+01	3.60E+01	3.98E+02
一称訂	T:33E+04	9.26E+03	7.73E+03	5.31E+03	1.48E+04	5.04E+04

表2 再処理燃料中各元素の重量組成(kg)

, and shaked a straight the	de la					ditter and the second second
元费	小市心如		外间		径ブラ	平均
儿杀		戦ノフ部	炉心部	一期ノラ部	Contraction of the second	
	UF				DF	DF
<u> </u>	0.405.00		-			
ND	2.400+00	2.998-01	3.63E+00	3.36E-01	2.49E-01	1.12E+00
PU -	7.755 01		1.505.00			
Am	1.75E-01		1.56E+00		<u>∞</u>	1.02E+00
	8.13E-01		1.52E+00	<u>∞</u>	<u>∞</u>	1.03E+00
MATE	8.31E-01	-4.03E-01	<u>1.62E+00</u>	4.20E-01	3.12E-01	1.03E+00
H		0				
C .						
US	00		<u>∞</u>			~~~~
Rb						∞
Be			~~~~			∞
Sr					~~~~	∞
Ba	<u>∞</u>	<u>∞</u>	<u>∞</u>		~~~	∞
Y	<u>1.78E+00</u>	1.83E+01	<u>1.21E+01</u>	<u> </u>		9.84E+00
La	<u>1.78E+00</u>	1.83E+01	<u>1.21E+01</u>	∞		9.84E+00
<u> </u>	1./8E+00	1.83E+01	1.21E+01	<u> </u>	<u> ∞ </u>	9.84E+00
Protect	7.78E+00	1.83E+01	1.21E+01			9.84E+00
Nd	7.78E+00	1.83E+01	1.21E+01			9.84E+00
Pm -	7.78E+00	<u>1.83E+01</u>	1.21E+01			9.84E+00
Sm	7.78E+00	1.83E+01	<u>1.21E+01</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- <u></u>	9.84E+00
Eu	7.78E+00	1.83E+01	1.21E+01		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.84E+00
	7.78E+00	1.83E+01	<u>1.21E+01</u>	<u> </u>		9.84E+00
	7.78E+00	1.83E+01	1.21E+01			9.84E+00
DV	7.78E+00	1.83E+01	1.21E+01			9.84E+00
Ho	7.78E+00	1.83E+01	1.21E+01			9.84E+00
Er Er	7.78E+00	1.83E+01	1.21E+01	<u>∞</u>		9.84E+00
<u> </u>	7.78E+00	1.83E+01	1.21E+01			9.84E+00
10	1.78E+00	1.83E+01	1.21E+01			9.84E+00
Se T						
1 C			~~~~~			
D. State		00	 	00		
D	5 475 100			00	<u> </u>	0.005.00
	5.47E+00	4.10E-01	4.01E+00	1.04E+00	1.04E+00	3.06E+00
	<u>J.47E+00</u>	4.10E-01	4.01E+00	1.04E+00	1.04E+00	3.06E+00
7.	5 475+00	A 165-01	4 615-00	1.045:00		2.005.00
Call	0.472700	<u>4.10⊑−01</u>	<u>4.01E+00</u>	1.04=+00	1.04E+00	3.00E+00
Co.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~	~~~
Δe	<u> </u>	~~~~	~~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Nik			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~
Mo	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~	~
To	<u>~~</u>	~~~~	<u> </u>	~~~~	~~~	~
P.16	5475+00	A 165-01	1615200	1.045.00	1.045+00	2.005.00
Ph	5 17 = 100	4.10C-01	4.01CTUU	1.04E+00	1.045+00	3.000+00
DA	5 47 = 100	4.10C-01	4.010+00	1.045-00	1.04E+00	3.000+00
<u>ک</u>	5 17E+00	4.10E-01	4.01E+00		1.045+00	3.00E+00
The second se		4.100-01	4.010+00	1.04E+00	1.042+00	3.00E+00
C.	~~~			00	00	
- OII	~~~~	~	<u></u>	00		
	<u></u>	<u></u>	00	00	00	00
	~	00	00			00
						0.045.00
	1.10Ctul	1.01C+UU	ST.ZJE+U1	J.805+00	3.80E+UU	8.046+00

表3 再処理プロセス全体を通しての除染係数

(注1)マスバランスが数値による標準管理面であるため、再処理後の重量が"O"であるものに関しては DF を"∞"と表記した。 (注2) DF <1 の元素は、プロセス上他領域の FP が混入するため。 付録 B 金属電解法(Li 還元) F/S フェーズ I 物質収支評価結果(中間結果)

図1 金属電解法(Li還元)のプロセスフロー

China Shin	th /B	いたか	A A	UPD IN	Hanna and	经济研究的中国经济
元素	恒心部	「動ブラ部」	石小到	前ブラショ	径ブラ	合計
	一首量向	督鲁	留墨	「相ノノル」	哲學。	一番岛
12/2014	9 04F+03	8 62E+03		501E+02		
No	9 56E+00	1 105+00	7 205+00	6 725-01	1.41E+04	4.15E+04
PH -	2 12E+03	1.13 <u>L+00</u>	1.505+02	2 20E+02	5.07E+00	4.77E+02
Am	7 88E+01	4.212-02	6 01 E+01	1.67E-01	2 77E-01	4.77E+03
Cm	2 50E+01	2975-04	2 1/E+01	9.20E-05	3.77E-01	1.49E+02
니지수라	1125+04	0.015-04	6 22E+02	5.39E-03	1.465104	4.735+01
	2 83E-03	2015-04	1 005-02	0.275-05	1.40ETU4	5 01E 02
C **	1 125-06	1.01E-04	0.475-07	9.37E-00	1.00F 07	0.21E-03
C _c	1 025+02	1.01E-07	1.20E+02	4.72E-08	1.00E-07	2.62E-06
Dh	1.332+02	0.00E-01	7.565+00	0.39E+00	1.43E+01	3.55E+02
Ro	0.00E_06	5.09E-01	7.30E+00	3.77E-01	8.44E-01	2.10E+01
De	0.00E-00	1.60E+00	1.505.01	2.08E-07	0.00E-07	1.49E-05
- Sr	2.365+01	1.09E+00	1.58E+01	7.89E-01	1.77E+00	4.39E+01
- Da V			D.005-00	1 4 405 01	0.34E+00	1.02E+02
	6 10E+01	9.03E-UI	9.00E+00	4.48E-01	1.00E+00	2.49E+01
		4.40E+00	4.112+01	1 2.05E+00	4.39E+00	1.14E+02
	5.765+01	1.9/E+00	1.43E+U1	<u>3.71E+00</u>	8.32E+00	2.07E+02
Pr	1.00E+01	4.10E+00	3.83E+01	1.91E+00	4.2/E+00	1.06E+02
D~	2 52E+00	1.350-01	1.200+02	0.292+00	1.412+01	3.50E+02
- Pm	2.33E+00	1.80E-01	1.08E+00	8.39E-02	1.88E-01	4.66E+00
5	5.00E+01	4.312+00	4.03E+01	2.01E+00	4.50E+00	1.12E+02
EU	7.03E+00	4.13E-01	3.88E+00	1.93E-01	4.33E-01	1.08E+01
GG Th	1.26E+00	3.18E-01	4.85E+00	2.41E-01	5.41E-01	1.34E+01
<u>10</u>	4.00E-01	2.85E-02	2.005 01	1.33E-02	2.97E-02	7.38E-01
UV US	4.21E-01	5.00E-02	2.80E-01	1.40E-02	3.13E-02	7.76E-01
Er	9.80E-03	0.97E-04	0.02E-03	3.20E-04	1.28E-04	1.81E-02
Tm	0.715-06	9.94 <u></u> -04	9.29E-03	4.03E-04	1.04E-03	2.57E-02
Vb	4 05E-06	2 205-07	2 70E-06	1.24E-07	7.21E-07	7.495-05
Se //	2 10E+00	1/05-01	1.405+00	<u>1.34E-07</u>	3.01E-07	7.485-00
Te	3 43E+01	244E+00	2.28E+01	1 145+00	2.55E+00	3.87E+00
Territoria	1.81E+01	1 29E+00	1 205+01	6.00E-01	2.33E+00	0.33E+01
Br	6.43E-01	4 58E-02	4 28E-01	2 135-02	1.342+00	3.34E+01
76	1 40F+02	997E+00	9.20E 01	4.64E+00	4.78E-02	2.59E+02
CH.	1 19F+01	8 50E-01	7.95E+00	3 96E-01	8.87E-01	2.38E+02
11	2 08E-05	148E-06	1 38E-05	6.89E-07	1.54E-06	2.200-01
<u>7</u> n	2.60E 00	1.40E 00	1 75E-09	8 70F-11	1.04E-00	3.83E-00
Ga	3.33F-07	237E-08	2 22E-07	1 10E-08	2 47E-02	6 14F-07
) Ge	5.84E-02	4 16E-03	3.89E-02	1.10E 00	4 34E-03	1.08E-01
As	1.73F-02	1.23E-03	1 15F-02	572F-04	1 28E-03	3 18E-02
Nb	2 22F-04	1.58E-05	1 48E-04	7.37E-06	1.65E-05	4 10E-04
Mo	1.69E+02	1.20F+01	1 12F+02	5.60F+00	1.05E+01	3 11E+02
Tc	4.10E+01	2.92F+00	2 73F+01	1 36F+00	3.04E+00	7 56E+01
Ru	1.56E+02	1,11F+01	1.04F+02	516F+00	1 16F+01	2 87F+02
Rh	4,49E+01	3.19F+00	2.99F+01	149F+00	3.33E+00	8 27F+01
Pd	1.37E+02	9.73F+00	9.09F+01	4.53F+00	101F+01	2 52F+02
Ag	1.22E+01	8.71F-01	8.14F+00	4 06F-01	9 09F-01	2 26F+01
In In	4.81F-01	343E-02	3 20F-01	1 60F-02	3.58E-02	8 88F-01
Sn	1 02F+01	7 29F-01	6.82E+00	3 40F-01	7.615-01	1 805-01
Sh	2 40F+00	171F-01	1 60F+00	7 965-02	1 785-01	1.03E+01
Kr	1 30F+01	923E-01	8 62E+00	4 30E-01	9.625-01	2 205-01
Ye -	2 42E+02	1725+01	1 61 = 102	8 02ETUU	1 805-01	2.09ETUI
FP_全와	1 265402	1 335103	1-9/1010	6175101	1.0000001	4.40C+UZ
公計	1.31E+04	0 18E+02	7.565402	5 205102	1.30CTUZ	3.43CTU3
CONTRACTOR DI CONTRACTORIA	1.012 07		~1.000 (00)	- リスコレン(いう))	~1 + () [] [] 44	+ 225744

表1 使用済燃料中各元素の重量組成(kg)

	教堂 内相	柜 们,	外侧	炉心。	ターゴー	
元素	炉心部	軸ブラ部	炉心部	軸ブラ部	住ノフ	
	資量	質量。	曾量	質量	曾量	質量
二字 UY 登場	1.09E+04	8.85E+03	5.60E+03	5.11E+03	1.48E+04	4.52E+04
Np	9.37E+00	9.37E-01	8.46E+00	5.41E-01	0.0	1.93E+01
H Pu	2.13E+03	3.18E+02	1.93E+03	1.84E+02	0.0	4.56E+03
Am	7.43E+01	2.37E-01	6.71E+01	1.37E-01	0.0	1.42E+02
Cm	2.37E+01	1.34E-04	2.14E+01	7.76E-05	0.0	4.51E+01
HM合計	1.32E+04	9.17E+03	7.63E+03	5.29E+03	1.48E+04	5.00E+04
A H H	0.0	0.0	0.0	0.0	0.0	0.0
C.	0.0	0.0	0.0	0.0	0.0	0.0
Cs	0.0	0.0	0.0	0.0	0.0	0.0
Rb	0.0	1.50E+00	0.0	8.65E-01	0.0	2.36E+00
Be	0.0	1.07E-06	0.0	6.15E-07	0.0	1.68E-06
Sr	0.0	3.14E+00	0.0	1.81E+00	0.0	4.95E+00
Ba	0.0	1.16E+01	0.0	6.70E+00	0.0	1.83E+01
- Y	2.41E+00	1.78E+00	2.18E+00	1.03E+00	0.0	7.40E+00
La 🤤	1.10E+01	8.16E+00	9.95E+00	4.71E+00	0.0	3.38E+01
Ce	1.99E+01	1.48E+01	1.80E+01	8.53E+00	0.0	6.13E+01
Pr	1.03E+01	7.59E+00	9.26E+00	4.38E+00	0.0	3.15E+01
Nd	3.38E+01	2.50E+01	3.05E+01	1.45E+01	0.0	1.04E+02
Pm	4.50E-01	3.34E-01	4.07E-01	1.93E-01	0.0	1.38E+00
Sm	1.08E+01	7.99E+00	9.75E+00	4.61E+00	0.0	3.31E+01
Eu	1.04E+00	7.69E-01	9.38E-01	4.44E-01	0.0	3.19E+00
Gd	1.30E+00	9.61E-01	1.17E+00	5.55E-01	0.0	3.98E+00
Tb	7.12E-02	5.28E-02	6.44E-02	3.05E-02	0.0	2.19E-01
Dy	7.50E-02	5.55E-02	6.77E-02	3.21E-02	0.0	2.30E-01
Ho	1.75E-03	1.29E-03	1.58E-03	7.46E-04	0.0	5.36E-03
Er	2.49E-03	1.84E-03	2.25E-03	1.06E-03	0.0	7.64E-03
Tm	1.73E-06	1.28E-06	1.56E-06	7.40E-07	0.0	5.31E-06
Yb	7.22E-07	5.35E-07	6.52E-07	3.09E-07	0.0	2.22E-06
Se	0.0	2.77E-01	0.0	1.60E-01	0.0	4.37E-01
Te	0.0	4.53E+00	0.0	2.61E+00	0.0	7.14E+00
la la la marta	0.0	0.0	0.0	0.0	0.0	0.0
Br	0.0	8.48E-02	0.0	4.90E-02	0.0	1.34E-01
Zr	0.0	1.85E+01	0.0	1.07E+01	0.0	2.91E+01
Cd	0.0	1.58E+00	0.0	9.09E-01	0.0	2.48E+00
Li	0.0	2.74E-06	0.0	1.58E-06	0.0	4.33E-06
Zn	0.0	3.46E-10	0.0	2.00E-10	0.0	5.46E-10
Ga	0.0	4.39E-08	0.0	2.54E-08	0.0	6.93E-08
Ge	0.0	7.70E-03	0.0	4.45E-03	0.0	1.22E-02
As	0.0	2.28E-03	0.0	<u>1.31E-03</u>	0.0	3.59E-03
Nb	0.0	2.93E-05	0.0	1.69E-05	0.0	4.62E-05
Mo	0.0	2.23E+01	0.0	1.29E+01	0.0	3.51E+01
IC.	0.0	5.40E+00	0.0	3.12E+00	0.0	8.52E+00
Ru	0.0	0.0	0.0	0.0	0.0	0.0
<u> </u>	0.0	5.92E+00	0.0	3.42E+00	0.0	9.33E+00
P.	0.0	1.80E+01	0.0	1.04E+01	0.0	2.84E+01
Ag	0.0	1.61E+00	0.0	9.32E-01	0.0	2.55E+00
<u>In</u>	0.0	6.35E-02	0.0	3.67E-02	0.0	1.00E-01
Sn	0.0	1.35E+00	0.0	7.80E-01	0.0	2.13E+00
Sb	0.0	<u>3.17E-01</u>	0.0	1.83E-01	0.0	5.00E-01
Kr	0.0	0.0	0.0	0.0	0.0	0.0
Xe	0.0	0.0		0.0	0.0	0.0
12台計-	9.11E+01	1.64E+02	8.23E+01	9.45E+01	0.0	4.32E+02
一一次。	1-1.32E+04	1 9 33E+03	1 1.71E+03	1 5 39E+03	1 1 48F+04	1 5 04E+04

表2 再処理燃料中各元素の重量組成(kg)

and the second second	内側	炉心	外側	炉心	ターゴー	······································
元素	炉心部	軸ブラ部	炉心部	軸ブラ部	「住ノフ	平均
	DF	DF	DF	DF	DF	DF
U U				1 - 0 - 2 - 0 - 8	1 S() + 2 S () (-
Np	1.02E+00	1.27E+00	8.62E-01	1.24E+00	∞	1.05E+00
Pu	<u> </u>	0.6.0. <u>22</u> 0.8.0.			1990 <u>- 2</u> 97 (1990)	
Am	1.06E+00	175E+00	1.03E+00	122E+00		1.05E+00
Cm	1.10F+00	213E+00	9 99E-01	1.08E+00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.05E+00
MATS	1.06E+00	137E+00	101E+00	1 24E+00	- co	1.055+00
н	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.242.00	~	1.032100
C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>∞</u>		<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C.	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>	~~~~~
Bh	8	540E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 35E-01		8 96E+00
Be	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	540E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 35E-01		0.00E+00
Sr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	540E-01		4 35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.07E+00
Ba	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.40E-01	 	4.35E-01	~~~~~	0.07E+00
- Ja V	561E+00	5 30F-01	4 14E+00	4 355-01		2 27E+00
1.2	5.61E+00	5 30F-01	4 14E+00	4 35E_01		3.375+00
Ce	5.61F+00	5.39E-01	4 14E+00	4 355-01		3.37E+00
Pr	5.61E+00	5 30E-01	4.14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.37E+00
NA	5.61E+00	5.30E-01	4 14E+00	4 35E_01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.375-00
Pm	5.61E+00	5 30E-01	4.14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.37E+00
Sm	5.61E+00	5 39E-01	4 14E+00	4.35E-01	<u> </u>	3.375+00
Eu	5.61E+00	5 39E-01	4.14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.375+00
Gd	5.61E+00	5 39E-01	4.14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 27E+00
	5.61E+00	5 30E-01	4.14E+00	4.35E-01	<u> </u>	3.37E+00
	5.61E+00	5 39E-01	4.14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.37E+00
Ho	5.61E+00	5.39E-01	4.14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.375+00
Fr	5.61E+00	5 39E-01	4 14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.375+00
Tm	5.61E+00	5.39E-01	4 14E+00	4.35E-01	 	3.37E+00
Yh	5.61E+00	5 39E-01	4.14E+00	4.35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.375+00
Se	<u>0.012.00</u>	540E-01	<u>4.142.00</u>	4 35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 86E+00
Te	<u>∞</u>	540E-01	8	4 35E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 86E+00
	8	<u>0.102 01</u> ∞		<u>4.00E 01</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>0.00</u> 2.00
Br	8	540F-01	8	4.36E-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 87E+00
7r	∞	540E-01	∞	4 35E-01	00	8 86E+00
Cd	8	540E-01	8	4 35E-01	00	8 86E+00
1 1 1 2 1 1	8	540E-01	8	4 35E-01	~~~~	8.86E+00
Zn	8	5.40E-01	8	4.35F-01	∞	8.86F+00
Ga Ga	⁰ 00	5.40E-01	8	4.35F-01	00	8 86F+00
Ge	00	5.40E-01	8	4.35F-01	8	8 86F+00
As	8	5.40E-01	8	4.35E-01	∞	8.86F+00
Nb	8	5.40E-01	8	4.35E-01	8	8.86F+00
Mo	8	5.40E-01	8	4.35E-01	∞	8.86F+00
Tc	8	5.40E-01	00	4.35E-01	∞	8.86F+00
Ru	8	∞	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	0.002.00
Rh	ø	5.40F-01	∞	4.35F-01	8	8 86F+00
Pd	∞	5.40F-01	8	4 35F-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8.86F+00
Ασ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	540F-01	8	4.35E-01	<u>~</u>	8.86E+00
in in	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	540F-01	00	4.35E-01	00	8 86F+00
Sn	 ∞	540F-01		4 35E-01		8 86ETUU
A Sha	00	5.40E_01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 35E_01	<u> </u>	0.00ET00
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~	H.JJE-01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.000700
V. Maria	~~~~	~	~			
<u> </u>	2 04E±01*	010E-01	4 505104	6 525 01		7.065.00
TO	12. J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1 Sec. 14 Sec. 16 The table 16 The Sec.	CAN DE MARKET AND SAL	1	and a strategy of the state of the state	NAME OF COMPANY OF STREET, S

表3 再処理プロセス全体を通しての除染係数

(注1)マスバランスが数値による標準に対応であるため、再処理後の重量が"O"であるものに関しては DF を"∞"と表記した。 (注2) DF <1の元素は、プロセス上他領域の FP が混入するため。 付録 C 金属電解法(塩溶塩素化) F/Sフェーズ | 物質収支評価結果(中間結果)



図1 金属電解法(塩浴塩素化)のプロセスフロー

" WARD A ARTICLE	th /Bil		M BI		Part of the Medicine Lay	interest abording
元安	百六县	「声中ユニーマー	行心知		径ブラ	合計
<b>7</b> 6 <del>5</del> 7	「一方」で引き	相とうか	一世界	虹ノノか	断里	用雪雪
1 Shines		日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	月里	5.015.02		
No	9.042+03	1.02E+0.00	4.72E+03	6 72E-01	1.41E+04	4.150+04
NU DU	9.30E+00	1.19E+00	1.292+00	0.72E-01	<u>1.49E+00</u>	2.02E+01
PU	2.12E+03	4.21E+02	6.01E+03	1.67E 01	<u>5.07E+02</u>	4.77E+03
Am	7.00E+U1	4.15E-01	0.916+01	1.0/E-01	3.7/E-01	1.49E+02
	1.10E+01	2.875-04	2.14E+U1	8.39E-05	2.146-04	<u>4.73E+01</u>
	1.13ETU4	9.04E+03	0.32E+03	0.23E+03	0.10E-04	4.05E+04
	2.83E-03	2.01E-04	1.885-03	9.37E-05	2.10E-04	5.21E-03
<u> </u>	1.42E-00	1.012-07	9.47E-07	4.72E-08	1.06E-07	2.62E-06
US	1.93E+02	1.3/E+01	1.28E+02	0.39E+00	1.43E+01	3.55E+02
RD		8.09E-01	7.56E+00	3.77E-01	8.44E-01	2.10E+01
Be	8.08E-06	5.75E-07	5.38E-06	2.68E-07	6.00E-07	1.49E-05
<u>Sr</u>	2.38E+01	1.69E+00	1.58E+01	7.89E-01	1.//E+00	4.39E+01
<u> </u>	8.80E+01	0.205-01	5.86E+01	2.922+00	0.54E+00	1.62E+02
i dan Yerdina Katalar	1,35E+U1	9.035-01	9.00E+00	4.48E-01	1.00E+00	2.49E+01
La	0.18±+01	4.40E+00	4.11E+01	2.05E+00	4.59E+00	1.14E+02
	1.12E+U2	1.9/6+00	1.45E+01	<u>3./1E+00</u>	8.32E+00	2.0/E+02
Pr	5.76E+01	4.10E+00	3.83E+01	1.91E+00	4.27E+00	1.06E+02
	1.900+02	1.335+01	1.205+02	0.295+00	1.41E+01	3.50E+02
- Pm	2.53E+00	1.80E-01	1.68E+00	8.39E-02	1.88E-01	4.66E+00
Sm	6.06E+01	4.31E+00	4.03E+01	2.01E+00	4.50E+00	1.12E+02
EU	5.83E+00	4.15E-01	3.88E+00	1.93E-01	4.33E-01	1.08E+01
	7.28E+00	5.18E-01	4.85E+00	2.41E-01	5.41E-01	1.34E+01
	4.00E-01	2.85E-02	2.00E-01	1.33E-02	2.97E-02	7.38E-01
	4.21E-01	3.00E-02	2.80E-01	1.40E-02	3.13E-02	1./6E-01
HO E	9.60E-03	0.97E-04	0.020-03	3.25E-04	1.28E-04	1.81E-02
Tm	0.71E-06	9.94E-04	9.295-03	4.03E-04	<u>1.04E-03</u>	2.5/E-02
Vh	4.05E-06	2 805-07	2 70E-06	1245-07	7.21E-07	1./9E-05
LD Co	2 10E+00	1.09E-01	2.70E-00	6.06E-02	<u>3.01E-07</u>	2.075.00
Te	3 43E+01	244E+00	2 28E+01	1.30E - 02	2.55E+00	5.07ETUU
1	1.81E+01	1 29E+00	1 20E+01	6.00E-01	1.34E+00	2 245+01
Br	6.43E-01	4 58E-02	4 28E-01	2 13E-02	1.34E+00	1 10
111 7 r	1 40E+02	997E+00	9.32E+01	4.64E+00	$\frac{4.78 \pm 02}{1.04 \pm 01}$	2.585+02
Cd	1 19F+01	850E-01	7 95E+00	3 96E-01	8.87E-01	2.000+02
(i)	2.08E-05	148E-06	1 38E-05	6 89F-07	1.5/E-06	2.20L-01
70	2.62E-09	1.40E 00	1 75E-09	8 70E-11	1.042 00	1 94E-00
Ga	3.33F-07	2 37F-08	2 22F-07	1 10F-08	247F-02	614F-07
Ge	5.84F-02	4.16F-03	3 89F-02	1.94F-03	4 34F-03	1 08E-01
As	1.73E-02	1.23F-03	1.15F-02	572F-04	1 28F-02	3 18F-02
Nb	2 22E-04	1.58E-05	1 48E-04	7 37E-06	1.655-05	4 10E-04
Mo	1.69F+02	1 20E+01	1 12E+02	5.60E+00	1.00E 00	3 11E+02
Tc	4.10E+01	2.92F+00	2.73F+01	1.36F+00	3.04F+00	7.56F+01
Ri	1.56F+02	1.11F+01	1 04F+02	516F+00	1 16F+01	2 87F+02
Rh	4.49F+01	3.19F+00	2 99F+01	149F+00	3 33E+00	8 27F+01
Pd	1.37F+02	9.73F+00	9.09F+01	4 53E+00	1 01F+01	2.52F+02
Ασ	1.22F+01	871F-01	8 14F+00	4 06F-01	9 09E-01	2.02L-02
in	4.81F-01	3.43F-02	3 20F-01	1 60F-02	3 58E-02	8 885-01
Snitt	1.07E 01	7 29 -01	6 82F+00	3405-01	7.61E_01	1 805-01
Sh	2 40F+00	171F-01	1 60F+00	7 965-02	1 78 -01	1.000000
Kr	1 30E+01	922E-01	8 62 - + 00	1 30E-01	9.625-01	9 30E+01
Yo	2 42 =+02	1 70	1.615+00	8 UJETUL	1 205-01	1 ARE+00
	1 865+02	1.725-01	1.010702	6 17E101	1.000000	4.40C+UZ
公司	1 31 5+03	0 18E±02	7 565103	5.20E±02	1.000002	3.43E+U3
1 - HACK # 1.5HGAGE		0.102-003	-7.JUCTU3	J.235703	IN1.40C7U4	4.395704

表1 使用済燃料中各元素の重量組成(kg)

	内相	恒心	小個	地中心	Marine Marine	
元素	炉心部	軸ブラ部	炉心部	軸ブラ部	径フフ	一合計
	質量	管量	質量量	首畫	·治·智 晶带	督鲁
	1.09E+04	8.85E+03	5.60E+03	5.11E+03	1.48E+04	4 52E+04
Np	9.36E+00	9.37E-01	8.46E+00	5.41E-01	0.0	1.93E+01
Pure	2.13E+03	3.18E+02	1.93E+03	1.84E+02	0.0	4 56E+03
Am	7.43E+01	2.37E-01	6.71E+01	1.37E-01	0.0	1 42E+02
Cm	2.37E+01	1.34E-04	2.14E+01	7.76E-05	0.0	4 51F+01
HM合計	1.32E+04	9.17E+03	7.63E+03	5.29E+03	148F+04	5 00E+04
H H	0.0	0.0	0.0	0.0	00	0.0
Charles Charles	0.0	0.0	0.0	0.0	0.0	0.0
Cs	0.0	0.0	0.0	0.0	0.0	0.0
Rb	0.0	5.29E-01	0.0	3.06E-01	0.0	835E-01
Be	0.0	3.76E-07	0.0	2.17E-07	0.0	594E-07
Sr	0.0	1.11E+00	0.0	6.40E-01	0.0	1 75E+00
Ва	0.0	4.10E+00	0.0	2.37E+00	0.0	646E+00
Ý	2.40E+00	6.30E-01	2.17E+00	3.64E-01	0.0	5.57F+00
La	1.10E+01	2.88E+00	9.92E+00	1.66E+00	0.0	2.54E+01
Ce	1.99E+01	5.22E+00	1.80E+01	3.01E+00	0.0	4.61E+01
Pr	1.02E+01	2.68E+00	9.24E+00	1.55E+00	0.0	2.37E+01
Nd	<u>3.37E+01</u>	8.84E+00	3.05E+01	5.11E+00	0.0	7.81E+01
Pm	4.49E-01	1.18E-01	4.06E-01	6.80E-02	0.0	1.04E+00
Sm	1.08E+01	2.82E+00	9.72E+00	1.63E+00	0.0	2.49E+01
Eu	1.04E+00	2.72E-01	9.36E-01	1.57E-01	0.0	2.40E+00
Gd	1.29E+00	3.39E-01	1.17E+00	1.96E-01	0.0	3.00E+00
ТЬ	7.11E-02	1.86E-02	6.42E-02	1.08E-02	0.0	1.65E-01
Dy	7.48E-02	1.96E-02	6.75E-02	1.13E-02	0:0	1.73E-01
Ho	1.74E-03	4.57E-04	1.57E-03	2.64E-04	0.0	4.03E-03
Er	2.48E-03	6.50E-04	2.24E-03	3.75E-04	0.0	5.75E-03
Tm	1.73E-06	4.53E-07	1.56E-06	2.61E-07	0.0	4.00E-06
Yb.	7.20E-07	1.89E-07	6.51E-07	1.09E-07	0.0	1.67E-06
Se	0.0	9.78E-02	0.0	5.64E-02	0.0	1.54E-01
le	0.0	1.60E+00	0.0	9.23E-01	0.0	2.52E+00
<b>D</b>	0.0	0.0	0.0	0.0	0.0	0.0
Br	0.0	3.00E-02	0.0	<u>1.73E-02</u>	0.0	4.73E-02
<u>2r</u>	9.44E+00	6.53E+00	<u>3.97E+00</u>	3.77E+00	1.10E+01	3.47E+01
	0.0	5.5/E-01	0.0	<u>3.21E-01</u>	0.0	8.78E-01
<u> </u>	0.0	9.69E-07	0.0	5.59E-07	0.0	1.53E-06
<u>2n</u>	0.0	1.22E-10	0.0	7.06E-11	0.0	1.93E-10
Ga	0.0	1.55E-08	0.0	8.95E-09	0.0	2.45E-08
Ge	0.0	2.72E-03	0.0	1.57E-03	0.0	4.29E-03
AS	0.0	8.04E-04	0.0	4.64E-04	0.0	<u>1.27E-03</u>
Mo	0.0	7.000-00	0.0	3.9/E-06	0.0	1.63E-05
Te	0.0	1.01E+00	0.0	4.54E+00	0.0	<u>1.24E+01</u>
Pu Pu	0.0	1.91E+00	0.0	1.10E+00	0.0	<u>3.01E+00</u>
Rh	0.0	2.005+00	0.0	1.015,00	0.0	0.0
PA	0.0	6.27E+00	0.0	1.21E+00	0.0	3.30E+00
Δσ	0.0	5 705-01	0.0	3.0/E+00	0	1.00E+01
In I	0.0	2245-02	0.0	1 205 00	0.0	8.99E-01
Sn	0.0	A 77E_01	0.0	1.29E-02	0.0	3.54E-02
Sh	0.0	1125-01	0.0	2.10E-UI	0.0	1.53E-01
Kr	0.0	0.0	0.0	0.40=-02	0.0	1./6E-01
Ya	0.0	0.0	0.0	0.0	0.0	0.0
FP全計	1.005+02	5 78E±01	9.61E+01	2245:01		0.0
一般社	1 335+04	0.705+01	7715102	5.040100	1.102+01	2.89E+02
1902 11	1.00L -04	J.20E7U3	1.110703	J.JJE+UJ	1.48E+04	3.03E+04

表2 再処理燃料中各元素の重量組成(kg)

$\overline{\tau_{c}}$ $\tau_{$	$(\gamma_{Ta}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_{T}^{*})_{Ta}^{*}(\gamma_$					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the back way to see 14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2011年1月1日 二年	人間		タト(目)		径ブラ	平均
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	儿条	炉心部	一期ノフ部	炉心部	朝フラ部	T The second second	ing transfer spirite
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and the second second second		DF	DF	MAC DF	DF	DF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$q \rightarrow 0/\pi dp q$			10× <del>, 1</del> 00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Np	1.02E+00	1.27E+00	8.62E-01	<u>1.24E+00</u>	∞	1.05E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pu			10-1 <del>2-</del> 11-1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Am	1.06E+00	1.75E+00	1.03E+00	1.22E+00		1.05E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cm	<u>1.10E+00</u>	2.13E+00	1.00E+00	1.08E+00	<u>∞</u>	1.05E+00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MA平均	1.07E+00	1.37E+00	1.01E+00	1.24E+00	∞ · · · ·	1.05E+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	H - A					∞	∞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C					∞	$\infty$
Rb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ba $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ba $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Y         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           La         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Cc         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Pr         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Sm         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Gd         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Dv         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Dv         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00	Cs		∞		∞	∞	∞
Be $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ba $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Y         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           La         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Ce         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Pr         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Sm         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Gd         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Gd         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Dy         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ 4.48E+00           Dy         5.63E+00         1.53E+00         4.15E+00         1.23E+00 $\infty$ <t< th=""><th>Rb</th><th></th><th>1.53E+00</th><th></th><th>1.23E+00</th><th>∞</th><th>2.51E+01</th></t<>	Rb		1.53E+00		1.23E+00	∞	2.51E+01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Be		1.53E+00	∞	1.23E+00	<u>∞</u>	2.51E+01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sr	∞	1.53E+00		1.23E+00	8	2.51E+01
Y       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Ce       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Pr       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Nd       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Pm       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Sm       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Gd       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Di       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Di       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Di       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Fi       5.63E+00       1.53E+00       4.15E+00       1.23E+00       ∞       4.48E+00         Tm       5.63E+00       1.53E+00       ∞       1.23E+00	Ba	00	1.53E+00	∞	1.23E+00	<u>∞</u>	2.51E+01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y	5.63E+00	1.53E+00	4.15E+00	1.23E+00	∞	4.48E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	La	5.63E+00	1.53E+00	4.15E+00	1.23E+00	∞	4.48E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce	5.63E+00	1.53E+00	4.15E+00	1.23E+00	∞	4.48E+00
Nd $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Sm $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Eu $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Gd $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Dv $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Dv $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Ho $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Tm $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Se $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Tm $5.63E+00$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1$	Pr	5.63E+00	1.53E+00	4.15E+00	1.23E+00	<u> </u>	4.48E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nd	5.63E+00	1.53E+00	4.15E+00	1.23E+00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.48E+00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pm	5.63E+00	1.53E+00	4.15E+00	1.23E+00	8	4.48E+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm	5.63E+00	1.53E+00	4.15E+00	1.23E+00	~~~~	4.48E+00
Gd $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Tb $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Ho $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Er $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Tm $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Se $\infty$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Se $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mo $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mo $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mo $\infty$ <td< th=""><th>Eu</th><th>5.63E+00</th><th>1.53E+00</th><th>4.15E+00</th><th>1.23E+00</th><th>8</th><th>4.48E+00</th></td<>	Eu	5.63E+00	1.53E+00	4.15E+00	1.23E+00	8	4.48E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gd	5.63E+00	1.53E+00	4.15E+00	1.23E+00	∞	4.48E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ТБ	5.63E+00	1.53E+00	4.15E+00	1.23E+00	∞ .	4.48E+00
Ho $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Tm $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Yb $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Se $\infty$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Se $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ze $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zn $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mo $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mo $0.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ <th>Dy</th> <th>5.63E+00</th> <th>1.53E+00</th> <th>4.15E+00</th> <th>1.23E+00</th> <th>∞</th> <th>4.48E+00</th>	Dy	5.63E+00	1.53E+00	4.15E+00	1.23E+00	∞	4.48E+00
Er $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Yb $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Se $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zn $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mb $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$	Ho	5.63E+00	1.53E+00	4.15E+00	1.23E+00	∞	4.48E+00
Tm $5.63E+00$ $1.53E+00$ $4.15E+00$ $1.23E+00$ $\infty$ $4.48E+00$ Yb $5.63E+00$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $4.48E+00$ Se $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ I $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ I $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Li $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mb $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ <	Er	5.63E+00	1.53E+00	4.15E+00	1.23E+00	8	4.48E+00
Yb $5.63E+00$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ I $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Br $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Li $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zn $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mb $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mc $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ <th>Tm</th> <th>5.63E+00</th> <th>1.53E+00</th> <th>4.15E+00</th> <th>1.23E+00</th> <th>8</th> <th>4.48E+00</th>	Tm	5.63E+00	1.53E+00	4.15E+00	1.23E+00	8	4.48E+00
Se $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Te $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           I $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Bi $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Zr         1.48E+01         1.53E+00 $2.34E+01$ 1.23E+00 $9.43E-01$ 7.43E+00           Cd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Lj $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Zn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ga $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           As $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ru <t< th=""><th>Yb</th><th>5.63E+00</th><th>1.53E+00</th><th>4.15E+00</th><th>1.23E+00</th><th>8</th><th>4.48E+00</th></t<>	Yb	5.63E+00	1.53E+00	4.15E+00	1.23E+00	8	4.48E+00
Te $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ I $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Br $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zr $1.48E+01$ $1.53E+00$ $2.34E+01$ $1.23E+00$ $9.43E-01$ $7.43E+00$ Cd $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Li $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Zn $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ga $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ As $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mo $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Mo $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.$	Se -	∞	1.53E+00	8	1.23E+00	8	2.51E+01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Te	∞	1.53E+00	8	1.23E+00	8	2.51E+01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		~~~~	∞	8	8	8	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Br	∞	1.53E+00	8	1.23E+00	8	2.51E+01
Cd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Li $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Zn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ga $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ge $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ge $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           As $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ru $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Rd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ag $\infty$ 1	Zr	1.48E+01	1.53E+00	2.34E+01	1.23E+00 9.43E-01		7.43E+00
Li $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ga $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ga $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ge $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           As $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           As $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Nb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Pd $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Sh $\infty$ <	60		1.53E+00	8	1.23E+00	8	2.51E+01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S. Comment		1.53E+00	$\infty$	1.23E+00	8	2.51E+01
Ga $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ge $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           As $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Nb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Tc $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ 1.53E+00 $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Pd $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Sh $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Sh	Zn	∞	1.53E+00	∞	1.23E+00	000	2.51E+01
Ge $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           As $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Nb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Tc $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Pd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$	Ga	∞	1.53E+00	∞	1.23E+00	⁰ 00	2.51E+01
As $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Nb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Tc $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Ru $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Pd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         In $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Sh $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Sh $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01         Sh	Ge	8	1.53E+00	8	1.23E+00	∞	2.51E+01
Nb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Tc $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ $2.51E+01$ Pd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Kr $\infty$	As As	8	1.53E+00	∞	1.23E+00	[∞]	2.51E+01
Mo $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Tc $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Pd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Kr $\infty$ <th>Nb</th> <th>∞</th> <th>1.53E+00</th> <th>- 00</th> <th>1.23E+00</th> <th>œ</th> <th>2.51E+01</th>	Nb	∞	1.53E+00	- 00	1.23E+00	œ	2.51E+01
Tc $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Pd $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ag $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ In $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Sh $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Sb $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Xe $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ FP3H51 $1.86E+01$ $2.29E+00$ $1.44E+01$ $1.95E+00$ $1.25E+01$ $1.40E-01$	Mo	8	1.53E+00	∞	1.23E+00	8	2.51E+01
Ru $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Rh $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Pd $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Ag $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ In $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Sn $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Sb $\infty$ $1.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Kr $\infty$ $0.53E+00$ $\infty$ $1.23E+00$ $\infty$ $2.51E+01$ Kr $\infty$ $0.53E+00$ $\infty$ $0.52E+00$ $\infty$ $\infty$ Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Xe $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ FP3F(5)         1.86E+01	Tc	∞	1.53E+00	000	1.23E+00	00	2.51E+01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ru	8	∞	00	8	00	8
Pd $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           In $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ 2.51E+01           Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $2.51E+01$ Ke $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Xe $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ FE3H51         1.86E+01         2.29E+00         1.44E+01         1.85E+00         1.44E+01         1.44E+01	Rh	8	1.53E+00	8	1.23E+00	8	2.51E+01
Ag $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           In $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01           Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Xe $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ FP3F151         1.86E+01         2.29E+00         1.44E+01         1.85E+00         1.25E+01         1.40E	Pd	8	1.53E+00	œ	1.23E+00	8	2.51E+01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ag	8	1.53E+00	8	1.23E+00	8	2.51E+01
Sn $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Xe $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ EP3E1511.86E+012.29E+001.44E+011.85E+001.25E+01	St In Mar	8	1.53E+00	8	1.23E+00	00	2.51E+01
Sb $\infty$ 1.53E+00 $\infty$ 1.23E+00 $\infty$ 2.51E+01Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Xe $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ TBRENDI1.86E+012.29E+001.44E+011.86E+001.25E+01	Sn	8	1.53E+00	œ	1.23E+00	00	2.51F+01
Kr $\infty$ $\infty$ $\infty$ $\infty$ $\infty$ Xe $\infty$ $\infty$ $\infty$ $\infty$ FP-With     1.86E+01     2.29E+00     1.44E+01     1.86E+00     1.25E+01	Sb	8	1.53E+00	000	1.23E+00	~~~~	2 51F+01
Xe $\infty$ $\infty$ $\infty$ FP $\Psi$ 1 86F+01 2 29F+00 -1 44F+01 1 955+00 1 255+01 -1 105	Kr	000	00	8	00	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FPT 1 86F+01 229F+00 14/F+01 1955+00 1255+01 1100	Xe	00	00	00	00	00	 
	FP亚也	1.86F+01	2 29F+00	144F+01	1856+00	1255+01	1105+01

表3 再処理プロセス全体を通しての除染係数

(注1)マスバランスが数値による標準審判価であるため、再処理後の重量が"O"であるものに関しては DFを"∞"と表記した。 (注2)DF<1の元素は、プロセス上他領域の FP が混入するため。 付録 D フッ化物揮発法 F/S フェーズ | 物質収支 評価結果(中間結果)



#### 図1 フッ化物揮発法のプロセスフロー

$c_{k} = b_{k} + b_{k}$	内側	tory .	从御		The production started	A Statistics of the second
元素	恒心部	軸ブラ部	恒心部	「軸ブラ部	径フラ	合計
	首番	留雷	留暑	留景	「相魯」	留墨
624711	9 04F+03	8.62E+03	4 72E+03	501E+03	141E+04	4 155+04
Nn	9.56E+00	1 19F+00	7 29E+00	6 72E-01	1.49E+00	2 02E+01
Pu	2 12E+03	4 21E+02	1 50E+03	2 20E+02	5.07E+02	A 775+02
Am	7.88F+01	4.21E-02	6.91E+01	1.675-01	3.775-01	1 40E+02
Cm	2 59E+01	2875-04	2 1/E+01	9 20E-05	2145-04	1.490+02
비지승計	1135+04	9:04E+03	6 32E+03	5.235+03	1 165+04	4.752+01
H	283E-03	201E-04	1.88E-03	9.37E-05	2 10E-04	5.21E-02
Ċ	1/25-06	1.015-07	9.475-07	4.725-09	1.065-07	2.625-06
Ce	1935+02	1.01E 07	1 28E+02	6 30E+00	1.000-07	2.02E-00
Bb	1 14F+01	8 09E-01	7.565+00	3 77E-01	9 44E-01	2 10E+01
Re	8 08E-06	5 75E-07	5 38E-06	2.68E-07	6.00E-07	1.405-05
Cr.	2 38E+01	1 695+00	1 58E+01	7 905-01	1.775+00	1.49E-03
Ba	2.30E+01	6.26E+00	5.965+01	2.025+00	6.545+00	4.39E+01
	1.255+01	0.20L+00	9.00E+00	1 49E-01	1.00E+00	2.405+01
1.2	6 18E+01	4 40E+00	4 11E±01	2 05=+00	1.00ETUU	1 1/E+02
	1 125+02		7 45 =+01	2.00ET00	9 37ETOO	1.14E+UZ
De	5 765+01	1.972+00	2 92E+01	3.71E+00	0.32E+00	2.07E+02
Na	1 905+02	1 35F+01	1 265+02	6 20E+00	1 /1 E+01	2 50E±02
Pm	2 53 5400	1.352-01	1.200-02	0.29E+00	1.415-01	3.50E+02
- 111 Sm	6.06E+01	1.00L 01	1.082+00	2.01E+00	1.000-01	4.00E+00
- Olli Fir	5.83E+00	4.512-00	2 99E+00	1.02E-01	4.30E+00	1.095+01
Gd	7.28E+00	5 19E-01	3.88E+00	2 41E-01	4.33E-01	1.085+01
Th	1.28E+00	2.855-02	2 66E-01	1 225-02	2.07E-02	7.29E-01
	4.000-01	2.005-02	2.000-01	1.33E-02	2.97E-02	7.365-01
Ho	9.80E-03	6.97E-04	6.52E-03	3 255-04	7 295-04	1.700-01
Er	140E-02	994E-04	0.32E 03	A 63E-04	1.20E-04	2.57E-02
Tm	9715-06	6 91 E-07	6.46E-06	3.22E-07	7.04E-03	1.705-05
Yh	4.05E-06	2.89E-07	2 70E-06	1.34E-07	3.01E-07	7/85-06
Se	2 10E+00	1 49E-01	140E+00	6 96E-02	1.56E-01	3.87E+00
Te	343E+01	2 44E+00	2 28E+01	1 14F+00	2 55E+00	6.33E+01
1	1 81F+01	1 29E+00	1 20E+01	6.00F-01	1 34F+00	3 34E+01
Br	6.43E-01	4.58E-02	4 28E-01	2 13E-02	4 78E-02	1 19E+00
7r	1 40F+02	9.97E+00	9.32E+01	4 64F+00	1.04F+01	2 58E+02
Cd	1 19F+01	8 50F-01	7 95E+00	3.96E-01	8.87E-01	2.00E+02
and i and	2 08E-05	1 48E-06	1.38E-05	6.89E-07	1.54E-06	3.83E-05
Zn	2.62E-09	1.87E-10	1 75E-09	8 70E-11	1.95E-10	4 84E-09
Ga	3.33E-07	2.37E-08	2 22E-07	1 10E-08	247E-08	6 14E-07
Ge	5.84E-02	4 16E-03	3 89F-02	1.10E 03	4 34F-03	1.08E-01
As	1 73E-02	1.10E 00	1 15E-02	5 72E-04	1.28E-03	3 18E-02
Nb	2 22E-04	1.58E-05	1.10E 02	7 37E-06	1.20C 05	4 10E-04
Mo	1.69E+02	1.00E 00	1 12E+02	5.60E+00	1.05E - 0.001	3 11E+02
TARKA	4 10F+01	2 92E+00	2 73F+01	1 36E+00	3 0/ E+00	7.56E±01
Pin	1.56E+02	1 11F+01	1 04E+02	5 16E+00	1 16F+01	287E+02
Rh	4 49E+01	3 19E+00	2 99E+01	1 495+00	3 33ETUU	2.07E+02
PA	1.37E+02	9 73E+00	9 09E+01	1.70LTUU	1.01E±01	0.2/E+U1
Δσ	1.070-02	871F-01	8 11 F+00	1 06E-01	0.00E-01	2.02E+02
7 <u>6</u>	1.222 -01	3 12 -01	3 20E-01	1 60E. 00	2 50E 00	2.20E+UI
UI CL	1.01E-01	7.205-01	6 02E+00	2 405 01	3.30E-UZ	0.00E-UI
CL TO CL	2 1025701	1.29E-UI	1.605-00	3.40E-01		1.095+01
SD SD	1 205-01	1./IE-UI		1.90E-U2	1.785-01	4.43E+00
<u>N</u>	1.300+01	9.23E-UI	0.02E+00	4.30E-01	9.03E-01	2.392+01
	2.42E+U2	1.725+01	1.012+02	8.02E+00	1.805+01	4.46E+02
	1.000+03	1.335+02	1.245+03	0.1/E+01	1.38E+02	3.43E+03
1 155.6下涨的	1.31±+04	19.18E+03	1.56E+U31	1 5.296403*	48++()4	4 99F+04

表1 使用済燃料中各元素の重量組成(kg)

内側短いの小側短いのよう								
元素	炉心部	軸ブラ部	炉心部	軸ブラ部	住ノフ	合訂。		
	會督量法	督量	如 <b>督 </b> 量 ⁽¹⁾	當量影	皆量常	点" <b>笛</b> 鲁声:		
- US	1.10E+04	9.17E+03	5.68E+03	5.29E+03	1.48E+04	4.59E+04		
Ňn	4.34F+00	8 86F-01	3.95F+00	5.12E-01	1 43F+00	1 11F+01		
Pn	2 14E+03	0.0	194F+03	00	0.0	4 08F+03		
Δm	0.0	0.0	00	0.0	0.0	0.0		
Cm	0.0	0.0	0.0	0.0	0.0	0.0		
니서승計	1325+04	9175+03	7 635+03	5 295+03		5 005+04		
L L	0.0	0.0	0.0	0.202.00	00	0.002.04		
6	0.0	0.0	0.0	0.0	0.0	0.0		
Ce.	0.0	0.0	0.0	0.0	0.0	0.0		
Bh -	0.0	0.0	0.0	0.0	0.0	0.0		
Be	0.0	0.0	0.0	0.0	0.0	0.0		
Sr.	0.0	0.0	0.0	0.0	0.0	0.0		
Ba	0.0	0.0	0.0	0.0	0.0	0.0		
<u> </u>	0.0	0.0	0.0	0.0	0.0	0.0		
	0.0	0.0	0.0	0.0	0.0	0.0		
Ce	0.0	0.0	0.0	0.0	0.0	0.0		
Dr	0.0	0.0	0.0	0.0	0.0	0.0		
N.a.	0.0	0.0	0.0	0.0	0.0	0.0		
Dm	0.0	0.0	0.0	0.0	0.0	0.0		
Sm	0.0	0.0	0.0	0.0	0.0	0.0		
Fu	0.0	0.0	0.0	0.0	0.0	0.0		
Gd	0.0	0.0	0.0	0.0	0.0	0.0		
	0.0	0.0	0.0	0.0	0.0	0.0		
	0.0	0.0	0.0	0.0	0.0	0.0		
Ho	0.0	0.0	0.0	0.0	0.0	0.0		
Fr.	0.0	0.0	0.0	0.0	0.0	0.0		
Tm	0.0	0.0	0.0	0.0	0.0	0.0		
Yh	0.0	0.0	0.0	0.0	0.0	0.0		
Se	0.0	0.0	0.0	0.0	0.0	0.0		
Te	6 26E-16	0.0	5.69E-16	0.0	0.0	1 20E-15		
1	0.0	0.0	0.000	0.0	0.0	0.0		
Br	0.0	0.0	0.0	0.0	0.0	0.0		
Zr .	0.0	0.0	0.0	0.0	0.0	0.0		
C.4	0.0	0.0	0.0	0.0	0.0	0.0		
11	0.0	0.0	0.0	0.0	0.0	0.0		
7n	0.0	0.0	0.0	0.0	0.0	0.0		
Ga	0.0	0.0	0.0	0.0	0.0	0.0		
Ge	0.0	0.0	0.0	0.0	0.0	0.0		
As	0.0	0.0	0.0	0.0	0.0	0.0		
Nb	1.90E-05	1.38E-09	1.72E-05	7.94F-10	2 21F-09	3.62E-05		
Mo	1.08E+01	8 32E+01	1 00F+01	4 80E+01	1.34F+02	2 86E+02		
Te	3.13F+00	00	2.86F+00	00	00	5.99F+00		
Ru	2 51E+01	741F-02	2 28F+01	4 27E-02	1 19E01	4.81E+01		
Rh	0.0	00	00	00	00	00		
Pd	0.0	0.0	0.0	0.0	0.0	0.0		
Åσ	0.0	0.0	0.0	0.0	0.0	0.0		
In	0.0	0.0	0.0	0.0	0.0	0.0		
Sn	0.0	0.0	0.0	0.0	0.0	0.0		
Sh	0.0	00	0.0	0.0	0.0	0.0		
Kr	00	0.0	0.0	0.0	0.0	0.0		
Yo T	0.0	0.0	0.0	0.0	0.0	0.0		
FP会针	391F+01	8335+01	3 56F+01	4 81F+01	1 34F+02	3405+02		
201	1 32E+04	0.25E+02	7.66E+03	5 34E+03	1 105+02	5.035+04		

表2 再処理燃料中各元素の重量組成(kg)

AN THE COMPANY STREET, SHOWING	いい ゴルモノー こいエアに通じてい 家太 床以							
	一個	恒心	外側	垣心	径ブラ	平均		
元索		軸フラ部	炉心部	軸ブラ部	· · · · · ·	a distance of		
$(A_{1},A_{1}) \in \mathcal{A}_{1} \cap \mathcal{A}_{2}$	DF	DF	DF	DF	DF	DF		
<u> </u>	100 <del>- 1</del> 85	<u> 2005 <del>-</del> 200</u>						
Np	2.20E+00	1.34E+00	1.85E+00	1.31E+00	1.05E+00	1.82E+00		
Pu			1042-04-1		New Grand			
Am	8	∞	∞			8		
Cm	∞			<u>∞</u>	∞			
TRU平均	2.63E+01	1.81E+00	2.48E+01	1.64E+00	1.31E+00	1.95E+01		
H	8	∞			∞	∞		
C	~~~~	∞	∞	∞	~~~~			
Ċs	8	∞	∞	∞	8	8		
Rb	8	∞	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	8		
Be	8	∞		~~~~	∞	8		
Sr	∞	∞	∞	œ	8	8		
Ba	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\infty$	$\infty$	$\infty$	8		
$\gamma \sim \gamma$	∞	∞	∞	∞	8	8		
La	∞	∞	~	~	∞	8		
Ce	∞	8	$\infty$	8	8	∞		
Pr	œ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8		
Nd	œ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	8	8	8		
Pm	8	∞	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8		
Sm	œ	8	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	8		
Eu	∞ .	8	8	000	∞	8		
Gd	~~~~	8	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	8		
ТЬ	œ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	00	- 00	8		
Dy -	∞	∞ .	്യ	8	- 00	8		
Ho	∞	8	⁰ ∞	8	8	8		
Er	∞	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	∞	8		
Tm	∞	8	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	8		
Yb	8	<u>∞</u>	8	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8		
Se	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	8	8	8		
Te	5.48E+16	8	4.02E+16	∞	8	5.30E+16		
1	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	8	8	8		
Br	$\infty$	8	~ ~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	8		
Zr	$\infty$	8	8	8	8	8		
Cd	∞	$\infty$	8	S ∞	8	8		
增适 Li愈音。	$\infty$	$\infty$	$\infty$	8	∞	8		
Zn	∞	8	8	8	8	Ø		
Ga	8	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	$\infty$	ø		
Ge	$\infty$	∞	00	∞	$\infty$	8		
As	8	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	8	∞		
Nb Nb	1.17E+01	1.15E+04	8.59E+00	9.28E+03	7.45E+03	1.13E+01		
Mo	1.56E+01	1.44E-01	1.12E+01	1.16E-01	9.36E-02	1.09E+00		
Tc	1.31E+01	$\infty$	9.53E+00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	1.26E+01		
Ru	6.21E+00	1.50E+02	4.55E+00	1.21E+02	9.70E+01	5.97E+00		
Rh	∞	00	∞	∞	~~~~	∞		
Pd	00	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	0	8		
Ag	8	00	∞	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞		
in in	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	00	∞	∞	8		
Sn	∞		∞	∞	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Sh	∞	00	∞	∞	00			
Kr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	00	00	00	00		
Xe	00	<u>~~</u>	 00	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 		
FDIA	4 775+01	1 505+00	3 185+01	1 28=+00	1.035+00	101=101		
الميانية ومغوطة المراجع ومترك المراجع المحاج	1 7.116701	1.005-700	I-U.TULTUIS	I I.LULTUU	1 1.006700	ィー・レートレーマリー		

表3 再処理プロセス全体を通しての除染係数

(注1)マスバランスが数値による標準管理であるため、再処理後の重量が"O"であるものに関しては DF を"∞"と表記した。 (注2) DF <1の元素は、プロセス上他領域の FP が混入するため。 付録 E 湿式再処理法 F/S フェーズ | 物質収支評価結果

# 表1 新燃料重金属1tあたりのFP不純物量(単位:g)

初期重量	WELLEN (	PUREX	201202	PUREX+TRU	X	PUREX+SETF	ICS	PUREX+SETF	ICS+IE
<u>核種</u>	[1] 質量 [q]	移行率	不純物量	移行率	不純物量	移行率	不純物量	移行率	不純物量
Н 3	1.462E-01	0.200-000	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
GE 72	2.149E-01	0.001	2.149E-04	0.001	2.149E-04	0.001	2.149E-04	0.001	2.149E-04
GE 73	3.094E-01	0.001	3.094E-04	0.001	3.094E-04	0.001	3.094E-04	0.001	3.094E-04
GE 74	5.960E-01	0.001	5.960E-04	0.001	5.960E-04	0.001	5.960E-04	0.001	5.960E-04
GE 76	1.937E+00	0.001	1.937E-03	0.001	1.937E-03	0.001	1.937E-03	0.001	1.937E-03
AS 75	9.024E-01	0.001	9.024E-04	0.001	9.024E-04	0.001	9.024E-04	0.001	9.0245-04
SE 76	9.350E-02	0.001	9.350E-05	0.001	9.350E-05	0.001	9.350E-05	0.001	9.350E-05
SE 77	3.457E+00	0.001	3.457E-03	0.001	3.457E-03	0.001	3.457E-03	0.001	3.457E-03
SE 78	7.250E+00	0.001	7.250E-03	0.001	7.250E-03	0.001	7.250E-03	0.001	7.250E-03
SE 79	1.509E+01	0.001	1.509E-02	0.001	1.509E-02	0.001	1.509E-02	0.001	1.509E-02
SE 80	2.386E+01	0.001	2.386E-02	0.001	2.386E-02	0.001	2.386E-02	0.001	2.386E-02
SE 82	5.888E+01	0.001	5.888E-02	0.001	5.888E-02	0.001	5.888E-02	0.001	5.888E-02
BR 81	3.322E+01	0.001	3.322E-02	0.001	3.322E-02	0.001	3.322E-02	0.001	3.322E-02
KR 82	4.147E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
KR 83	1.072E+02	0 566 0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
KR 84	2.085E+02	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
KR 85	3.051E+01	0	0.000E+00	0	0.000E+00	0 555 - 1855	0.000E+00	0	0.000E+00
KR 86	3.164E+02	<u> 1988 - 1988</u> 0	0.000E+00	<u>1999 - 1997 - 1997 - 1</u> 0	0.000E+00	0	0.000E+00	0	0.000E+00
RB 85	1.805E+02	0.001	1.805E-01	0.001	1.805E-01	0.001	1.805E-01	0.001	1.805E-01
RB 87	4.043E+02	0.001	4.043E-01	0.001	4.043E-01	0.001	4.043E-01	0.001	4.043E-01
SR 86	1.028E+01	0.001	1.028E-02	0.001	1.028E-02	0.001	1.028E-02	0.001	1.028E-02
SR 87	1.534E-01	0.001	1.534E-04	0.001	1.534E-04	0.001	1.534E-04	0.001	1.534E-04
SR 88	5.326E+02	0.001	5.326E-01	0.001	5.326E-01	0.001	5.326E-01	0.001	5.326E-01
SR 90	6.781E+02	0.001	6.781E-01	0.001	6.781E-01	0.001	6.781E-01	0.001	6.781E-01
Y 89	6.924E+02	0.001	6.924E-01	i .c. 1	6.924E+02	1985 - 36.675 <b>1</b>	6.924E+02	0.1	6.924E+01
Y 90	1.700E-01	0.001	1.700E-04	1	1.700E-01	<u>[] (0.3855</u> ]	1.700E-01	0.1	1.700E-02
ZR 90	1.397E+02	0.001	1.397E-01	0.001	1.397E-01	0.001	1.397E-01	0.001	1.397E-01
ZR 91	9.480E+02	0.001	9.480E-01	0.001	9.480E-01	0.001	9.480E-01	0.001	9.480E-01
ZR 92	1.174E+03	0.001	1.174E+00	0.001	1.174E+00	0.001	1.174E+00	0.001	1.174E+00
ZR 93	1.447E+03	0.001	1.44/E+00	0.001	1.44/2+00	0.001	1.44/£+00	0.001	1.44/E+00
ZR 94	1.607E+03	0.001	1.60/E+00	0.001	1.60/E+00	0.001	1.60/E+00	0.001	1.60/E+00
ZR 96	1.914E+03	0.001	1.914±+00	0.001	1.914E+00	0.001	1.9142+00	0.001	1.914E+00
MO 95	1.861E+03	0.001	1.861E+00	0.001	1.861E+00	0.001	1.861E+00	0.001	1.861E+00
MO 96	1.4/5E+02	0.001	1.4/5E-01	0.001	1.4/5E-01	0.001	1.4/52-01	0.001	1.4/5E-01
MO 97	1.92/E+03	0.001	1.92/E+00	0.001	1.92/E+00	ע <u>ווע 10.001</u>	1.92/E+00	0.001	1.92/2+00
80 OM	2.309E+03	0.001	2.309E+00	0.00	2.309E+00	0.001	2.309E+00	0.001	2.3091+00
M0100	2.558E+0.	0.001	2.558E+00	0.00	2.338E+00	0.001	2.338E+00	0.001	2.3382+00
10 98	1.125E-01	0.001	1.125E-04	0.00	1.1232-04	+ 0.001	1.123E-04	0.001	1.123E-04
HC 99	1 2.131E+03	0.001	1 2.1312+00	1 0.00	: 2.131E+00	JI U.UU	: 2.131L+UL	л <u>0.001</u>	: 2.131E+00

-99-

#### 表1 新燃料重金属1tあたりのFP不純物量(単位:g)

(2/4)

初期重量		PUREX		PUREX+TRUE	X	PUREX+SETF	ICS	PUREX+SETF	ICS+IE
核種	質量 [q]	移行率	不純物量	移行率	不純物量	移行率	不純物量	移行率	不純物量
RU100	2.810E+02	0.001	2.810E-01	0.001	2.810E-01	0.001	2.810E-01	0.001	2.810E-01
RU101	2.347E+03	0.001	2.347E+00	0.001	2.347E+00	0.001	2.347E+00	0.001	2.347E+00
RU102	2.904E+03	0.001	2.904E+00	0.001	2.904E+00	0.001	2.904E+00	0.001	2.904E+00
RU104	2.582E+03	0.001	2.582E+00	0.001	2.582E+00	0.001	2.582E+00	0.001	2.582E+00
RU106	2.335E+01	0.001	2.335E-02	0.001	2.335E-02	0.001	2.335E-02	0.001	2.335E-02
RH103	2.356E+03	0.001	2.356E+00	0.001	2.356E+00	0.001	2.356E+00	0.001	2.356E+00
PD104	5.125E+02	0.001	5.125E-01	0.001	5.125E-01	0.001	5.125E-01	0.001	5.125E-01
PD105	1.820E+03	0.001	1.820E+00	0.001	1.820E+00	0.001	1.820E+00	0.001	1.820E+00
PD106	2.230E+03	0.001	2.230E+00	0.001	2.230E+00	0.001	2.230E+00	0.001	2.230E+00
PD107	1.251E+03	0.001	1.251E+00	0.001	1.251E+00	0.001	1.251E+00	0.001	1.25.1E+00
PD108	1.138E+03	0.001	1.138E+00	0.001	1.138E+00	0.001	1.138E+00	0.001	1.138E+00
PD110	3.125E+02	0.001	3.125E-01	0.001	3.125E-01	0.001	3.125E-01	0.001	3.125E-01
AG109	6.637E+02	0.001	6.637E-01	0.001	6.637E-01	0.001	6.637E-01	0.001	6.637E-01
AGIIOM	8.541E-02	0.001	8.541E-05	0.001	8.541E-05	0.001	8.541E-05	0.001	8.541E-05
CD110	1.064E+02	0.001	1.064E-01	0.001	1.064E-01	0.001	1.064E-01	0.001	1.064E-01
CD111	1.912E+02	0.001	1.912E-01	0.001	1.912E-01	0.001	1.912E-01	0.001	1.912E-01
CD112	1.335E+02	0.001	1.335E-01	0.001	1.335E-01	0.001	1.335E-01	0.001	1.335E-01
CD113	8.665E+01	0.001	8.665E-02	0.001	8.665E-02	0.001	8.665E-02	0.001	8.665E-02
CD114	6.970E+01	0.001	6.970E-02	0.001	6.970E-02	0.001	6.970E-02	0.001	6.970E-02
CD116	4.840E+01	0.001	4.840E-02	0.001	4.840E-02	0.001	4.840E-02	0.001	4.840E-02
IN113	5.923E-01	0.001	5.923E-04	0.001	5.923E-04	0.001	5.923E-04	0.001	5.923E-04
IN115	2.547E+01	0.001	2.547E-02	0.001	2.547E-02	0.001	2.547E-02	0.001	2.547E-02
SN115	2.371E+00	0.001	2.371E-03	0.001	2.371E-03	0.001	2.371E-03	0.001	2.371E-03
SN116	4.276E+01	0.001	4.276E-02	0.001	4.276E-02	0.001	4.276E-02	0.001	4.276E-02
SN117	4.853E+01	0.001	4.853E-02	0.001	4.853E-02	0.001	4.853E-02	0.001	4.853E-02
SN118	5.118E+01	0.001	5.118E-02	0.001	5.118E-02	0.001	5.118E-02	0.001	5.118E-02
SN119	5.163E+01	0.001	5.163E-02	0.001	5.163E-02	0.001	5.163E-02	0.001	5.163E-02
SN120	5.091E+01	0.001	5.091E-02	0.001	5.091E-02	0.001	5.091E-02	0.001	5.091E-02
SN122	5.414E+01	0.001	5.414E-02	0.001	5.414E-02	0.001	5.414E-02	0.001	5.414E-02
ISN124	7.439E+01	0.001	7.439E-02	0.001	7.439E-02	0.001	7.439E-02	0.001	7.439E-02
ISN126	1.518E+02	0.001	1.518E-01	0.001	1.5182-01	0.001	1.5182-01	0.001	1.518E-01
SB121	4.662E+01	0.001	4.002E-02	0.001	4.002E-02	0.001	4.002E-02	0.001	4.662E-02
SB123	5.8/6E+01	0.001	5.8/6E-02	0.001	5.8/6E-02	0.001	5.8/6E-02	0.001	5.8/61-02
128122	1.809E+01	0.001	1.009E-02	0.001	1.809E-02	0.001	1.809E-02	0.001	1.8095-02
11123	3.955E-01	0.001	J.YDDL-04	0.001	J.9031-04	0.001	3.955E-04	0.001	J.905E-04
112120	0.0091+01	0.001	0.009E-02	0.001	0.0034E-02	0.001	0.009L-02	0.001	0.009t-02
HEIZOM	2.330E-01	0.001	2.33UE-04	0.001	2.33UE-04	0.001	2.33UL-04	0.001	2.33UL-04
110120	1.204E+01	0.001	1.204E-02	0.001	1.204E-UZ	0.001	1.204E-02	0.001	1.2045-02
110120	+.J04E+U2		+.J04E-UI		4.0040-01		+.J04E-UI	0.001	4.3042-01
115130	: 1.200E+03	0.001	: 1.230E+UU	0.001	: 1.230E+UU	1 0.001	: 1.230E+00	0.001	: 1.230E+00
表1 新燃料重金属1tあたりのFP 不純物量(単位:g)

初期重量		PUREX		PUREX+TRUEX		PUREX+SETFICS		PUREX+SETFICS+IE	
核種	質量 [q]	移行率	不純物量	移行率	不純物量	移行率	不純物量	移行率	不純物量
1127	2.560E+02	0.001	2.560E-01	0.001	2.560E-01	0.001	2.560E-01	0.001	2.560E-01
1129	6.879E+02	0.001	6.879E-01	0.001	6.879E-01	0.001	6.879E-01	0.001	6.879E-01
XE128	3.539E+01	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
XE129	1.069E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
XE130	8.085E+01	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
XE131	1.960E+03	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
XE132	2.877E+03	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
XE134	3.937E+03	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
XE136	3.774E+03	0	0.000E+00	0	0.000E+00	0	0.000E+00	0	0.000E+00
CS133	3.187E+03	0.001	3.187E+00	0.001	3.187E+00	0.001	3.187E+00	0.001	3.187E+00
CS134	6.064E+01	0.001	6.064E-02	0.001	6.064E-02	0.001	6.064E-02	0.001	6.064E-02
CS135	3.922E+03	0.001	3.922E+00	0.001	3.922E+00	0.001	3.922E+00	0.001	3.922E+00
CS137	2.909E+03	0.001	2.909E+00	0.001	2.909E+00	0.001	2.909E+00	0.001	2.909E+00
BA134	3.964E+02	0.001	3.964E-01	0.001	3.964E-01	0.001	3.964E-01	0.001	3.964E-01
BA135	3.786E+00	0.001	3.786E-03	0.001	3.786E-03	0.001	3.786E-03	0.001	3.786E-03
BA136	1.364E+02	0.001	1.364E-01	0.001	1.364E-01	0.001	1.364E-01	0.001	1.364E-01
BA137	5.626E+02	0.001	5.626E-01	0.001	5.626E-01	0.001	5.626E-01	0.001	5.626E-01
BA138	3.486E+03	0.001	3.486E+00	0.001	3.486E+00	0.001	3.486E+00	0.001	3.486E+00
LA139	3.238E+03	0.001	3.238E+00	1	3.238E+03	0.001	3.238E+00	0.001	3.238E+00
CE140	3.079E+03	0.001	3.079E+00	1	3.079E+03	0.001	3.079E+00	0.001	3.079E+00
CE142	2.759E+03	0.001	2.759E+00	1	2.759E+03	0.001	2.759E+00	0.001	2.759E+00
CE144	9.369E+00	0.001	9.369E-03	1	9.369E+00	0.001	9.369E-03	0.001	9.369E-03
PR141	2.999E+03	0.001	2.999E+00	1	: 2.999E+03	0.001	2.999E+00	0.001	2.999E+00
ND142	·1.341E+02	0.001	1.341E-01	1	1.341E+02	0.001	1.341E-01	0.001	1.341E-01
ND143	2.389E+03	0.001	2.389E+00	1	2.389E+03	0.001	2.389E+00	0.001	2.389E+00
ND144	2.354E+03	0.001	2.354E+00	1	2.354E+03	0.001	2.354E+00	0.001	2.354E+00
ND145	1.729E+03	0.001	1.729E+00	1	1.729E+03	0.001	1.729E+00	• 0.001	1.729E+00
ND146	1.670E+03	0.001	1.670E+00	1	1.670E+03	0.001	1.670E+00	0.001	1.670E+00
ND148	1.023E+03	0.001	1.023E+00	1	1.023E+03	0.001	1.023E+00	0.001	1.023E+00
ND150	6.114E+02	0.001	6.114E-01	1	6.114E+02	0.001	6.114E-01	0.001	6.114E-01
PM:47	1.310E+02	0.001	1.310E-01	1	1.310E+02	0.1	1.310E+01	0.01	1.310E+00
SM146	2.768E-01	0.001	2.768E-04	1	2.768E-01	0.3	8.305E-02	0.03	8.305E-03
SM147	6.963E+02	0.001	6.963E-01		6.963E+02	0.3	2.089E+02	0.03	2.089E+01
SM148	4.851E+02	0.001	4.851E-01		4.851E+02	0.3	1.449E+02	0.03	1.449E+0
SM149	6.468E+02	0.001	6.468E-01	1	6.468E+02	0.3	1.941E+02	0.03	1.9412+01
ISM150	2.564E+02	0.001	2.564E-01		2.564L+02	0.3	7.695E+01	0.03	7.693E+00
SM151	3.205E+02	0.001	J.205E-01		3.205E+02	0.3	9.616E+01	0.03	9.5162+00
SM152	5.737E+02	0.001	5./J/E-01		5./5/E+02	( 0.3	1.721E+02	0.03	1./212+01
ISM154	: 1.829E+02	0.001	: 1.829E-01	1	: 1.829E+02	0.3	5.487E+01	0.03	: 5.48/E+00

-101-

	表1	新燃料重金属	1tあたりのFP 不純物量	(単位:g)
--	----	--------	---------------	--------

(4/4)

核種 質量 [g]]移行马 EU151 1.462E+01 EU152 1.698E+00 FU153 1.940E+02	▲ 不純物量 0.001 1.462E-02 0.001 1.698E-03 0.001 1.940E-01	移行率 不純物量 1 1.462E+01 1 1.698E+00 1 1.940E+02	移行率 7 0.7 0.7	托纳量 1.024E+01 1.1905+00	移行率 0.07	不純物量 1024F+00
EU151 1.462E+01 EU152 1.698E+00 EU153 1.940E+02	0.001 1.462E-02 0.001 1.698E-03 0.001 1.940E-01	1 1.462E+01 1 1.698E+00 1 1.940E+02	0.7 0.7	1.024E+01	0.07	1.024F+00
EU152 1.698E+00 EU153 1.940E+02	0.001 1.698E-03 0.001 1.940E-01	1 1.698E+00	0.7	1 1005 .00		
FU153 1 940F+02	0.001 1.940E-01	1: 1 940F+02	•	1.1090 +00	0.07	1.189E-01
	0.001 F 0215 00	1.0406102	0.7	1.358E+02	0.07	1.358E+01
EU154 5.231E+01	0.001: 5.231E-02	3.4 SAME 1 5.231E+01	0.7	3.662E+01	0.07	3.662E+00
EU155 4.512E+01	0.001 4.512E-02	1 4.512E+01	0.7	3.158E+01	0.07	3.158E+00
GD152 9.747E-01	0.001 9.747E-04	1 9.747E-01	1.9	9.747E-01	0.1	9.747E-02
GD154 3.475E+01	0.001 3.475E-02	1: 3.475E+01	100-300 a d	3.475E+01	0.1	3.475E+00
GD155 2000 6.735E+01 0006	0.001 6.735E-02	6.735E+01	160x 300331 - 7	6.735E+01	0.1	6.735E+00
GD156 1.493E+02	0.001 1.493E-01	1 1.493E+02	1994 - 1996 <b>a</b> a	1.493E+02	0.1	1.493E+01
GD157 3.786E+01	0.001 3.786E-02	1.786E+01	S. 4968 1 . 3	3.786E+01	0.1	3.786E+00
GD158 7.954E+01	0.001 7.954E-02	1 7.954E+01	2004 - SAD <b>A</b> 16	7.954E+01	0.1	7.954E+00
GD160 1.382E+01	0.001 1.382E-02	1: 1.382E+01	ga (190 <b>1</b> -1	1.382E+01	0.1	1.382E+00
TB159 2.177E+01	D.001 2.177E-02	1: 2.177E+01	1: 2	2.177E+01	0.1	2.177E+00
DY161 6.292E+00	0.001 6.292E-03	1: 6.292E+00	1: 6	5.292E+00	0.1	6.292E-01
DY162 6.035E+00	0.001 6.035E-03	1 6.035E+00		5.035E+00	0.1	6.035E-01
DY163 2.297E+00	D.001 2.297E-03	1 2.297E+00	1 - 9 Stat 1 - 2	2.297E+00	15. 13 an Ann <b>a 1</b> . <b>0. 1</b>	2.297E-01
DY164 1.268E+00	D.001: 1.268E-03	1: 1.268E+00	1	1.268E+00	0.1	1.268E-01
H0165 4.994E-01	0.001: 4.994E-04	1: 4.994E-01	1: 2	4.994E-01	0.1:	4.994E-02
ER166 5.019E-01	D.001: 5.019E-04	1: 5.019E-01		5.019E-01	0.1	5.019E-02
ER167 1.627E-01	0.001: 1.627E-04	1: 1.627E-01		1.627E-01	0.1	1.627E-02
SUM : 9.729E+04	SUM: 8.396E+01	SUM: 2.677E+04	SUM: 2	2.371E+03	SUM:	3.084E+02

## 付録 F PUREX + SETFICS の除染性能向上検討のための 移行率パラメータ設定

	PUREX+			
	SETFICS			
FP	(フェーズ1)	ケース1	ケース2	ケース3
元素	移行率	移行半	移行率	移行率
H	0	0	0	· 0
GE	0.001	• 0.001	0.001	0. 001
AS	0.001	0. 001	0.001	0.001
SE	0.001	0. 001	0. 001	0. 001
BR	0.001	0. 001	0. 001	0. 001
KR	0	0	0	0
RB	0.001	0.001	0.001	0. 001
SR	0.001	0.001	0. 001	0.001
Υ		- 0.1	0.7	0.5
ZR	0.001	0.001	0. 001	0.001
MO	0, 001	0. 001	0.001	0.001
TC	0.001	0. 001	0.001	0.001
RU	0. 001	0.001	0. 001	0.001
RH	0.001	0.001	0.001	0.001
PD	0.001	0.001	0.001	0.001
AG	0.001	0.001	0. 001	0. 001
CD	0. 001	0.001	0. 001	0.001
IN	0.001	0.001	0.001	0.001
SN	0. 001	0.001	0.001	0. 001
SB	0.001	0.001	0. 001	0. 001
TE	0.001	0.001	0.001	0.001
1	0.001	0.001	0. 001	0.001
XE	0	0	0	0
CS	0.001	0.001	0.001	0. 001
BA	0.001	0.001	0.001	0. 001
LA	0.001	0.1	0.001	0. 001
CE	0.001	0.1	0.001	0.001
PR	0.001	0.1	0.001	0. 001
ND	0.001	0.1	0.001	0.001
PM	0.1	0.1	0.1	0.1
SM	0.3	0.1	0.2	0. 2
EU	0.7	0.1	0.5	0.4
GD	1	0.1	0.8	0.4
TB	1	0, 1	1	0. 2
DY	1	0.1	1	0.1
HO	1	0.1	1	0.001
ER	1	0.1	1	0.001