マイナーアクチニド添加炉心の核特性評価 - BFS-67 臨界実験の解析 -

(研究報告)

2003年5月

核燃料サイクル開発機構 大洗工学センター 本資料の全部または一部を複写・複製・転載する場合は、下記にお問い合わせください。

〒319 - 1184 茨城県那珂郡東海村村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課 電話:029-282-1122(代表) ファックス:029-282-7980 電子メール:jserv@jnc.go.jp

Inquiries about copyright and reproduction should be addressed to : Technical Cooperation Section, Technology Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184, Japan

€ 核燃料サイクル開発機構

(Japan Nuclear Cycle Development Institute) 2003

マイナーアクチニド添加炉心の核特性評価

- BFS-67 臨界実験の解析 -

(研究報告書)

羽様 平¹⁾、佐藤 若英²⁾、石川 眞¹⁾、庄野 彰¹⁾、

要旨

「多量の Np を種々の臨界集合体に添加したときの炉物理特性の変化に関する研究」としてロシアの物理エネルギー研究所(IPPE)と共同研究を実施している。

その第1報として BFS-67 体系に関する実験情報とサイクル機構(JNC)の解析結果をまとめた。

BFS-67 体系では Np の装荷量や装荷位置を変えた 4 種類の炉心について臨界性、Na ボイド反応度、制御棒価値、反応率比などの核特性が測定されている。BFS-62 臨界実験解析で実績のあるサイクル機構の標準解析手法で解析し、以下の結果を得た。

- Naボイド反応度、制御棒反応度のNpの捕獲断面積に対する感度係数がU-238やPu-239 と同程度に大きいことを確認した。本実験データはNp 装荷炉心の核設計精度の向上 に活用できるものであるといえる。
- 臨界性の解析では炉心の種類によらず同程度の C/E 値 0.995 が得られ、JNC の解析シ ステムで本実験を高精度で解析できることを確認した。
- Na ボイド反応度の解析値は 1cent 以内で実験値と一致しており、Np を装荷した場合でも高精度で解析できることを確認した。

制御棒反応度の解析値は、濃縮 B₄C の制御棒については実験誤差内で一致した。天然 B₄C の制御棒については若干過大評価している。Np の装荷による影響は確認できない。 炉心中心反応率比の解析値は、核分裂反応率比について実験値と 5%以内で一致した。 補獲反応率比については実験値との差異が 10%近く、測定に用いられた放射化箔の位 置を正確に反映させる必要がある。

本報告書の内容は、原子力システム㈱が核燃料サイクル開発機構(機構担当部課室:システム技術 開発部、中性子工学グループ)との契約により実施した業務成果に関するものを含み、核燃料サイク ル開発機構が取りまとめたものである。

^{1):} 大洗工学センター システム技術開発部 中性子工学グループ

^{2):} 原子力システム(株)

Evaluation of Nuclear Characteristics of Minor Actinide Loaded Core - An Analysis of BFS-67 Critical Experiment -

Taira Hazama¹, Wakaei Sato², Makoto Ishikawa¹, Akira Shono¹,

ABSTRACT

Collaboration between Russian Institute of Physics and Power Engineering (IPPE) and Japan Nuclear Cycle Development Institute (JNC) named "Investigation of neutronic-physical characteristics and their change when introducing large quantity of neptunium (Np) at different BFS critical assemblies" is under progress.

This is the first report of the collaboration to describe experimental information and JNC analysis results on BFS-67 critical experiment.

In BFS-67 experiment, nuclear characteristics (criticality, control rod worth, sodium void reactivity, reaction ratio, etc) were measured in 4 different cores with various amounts of Np and locations. JNC analysis was performed based on a JNC standard analysis scheme as in the analyses of BFS-62 critical experiments.

Sensitivity coefficients of Np capture cross section for the sodium void reactivity and control rod worth are large enough and comparable to those of U-238 and Pu-239. This indicates the experimental data can be used to improve design accuracy of Np loaded core.

C/E values for the criticality show high accuracy of 0.995 independent of core patterns, indicating accuracy of the calculation is high enough.

Calculated values for the sodium void reactivity agree with experimental values within 1cent and there is no influence of Np loading on calculation accuracy.

Calculated values for the control rod worth agree with experimental values within experimental errors for enriched B_4C control rod. Those for natural B_4C slightly overestimate. An influence of Np loading is not observed.

Calculated values for the reaction ratio agree with experimental values within 5% for fission reactions, whereas those for capture reactions show nearly 10% of differences. Positions of foils used in the measurement should be reflected.

This work was partly performed by Nuclear Engineering System under contract with Japan Nuclear Cycle Development Institute.

^{1):} Reactor Physics Research Group, System Engineering Technology Division,

O-arai Engineering Center, JNC, Japan

^{2):} Nuclear Engineering System Incorporation

第1章 緒言	· 1
第2章 BFS-67臨界実験の概要	3
2.1 BFS-67体系の概要	3
2.2 測定の概要	4
2.2.1 臨界性	4
2.2.2 Naボイド反応度	4
2.2.3 制御棒価値	4
2.2.4 炉中心反応率比	4
2.2.5 微少サンプル反応度 ····································	5
第3章 予備解析(BFS-67R臨界実験の有効性の確認)	11
3.1 評価対象の核特性と炉心	11
3.2 解析手法	11
3.3 解析結果	11
3.3.1 中性子スペクトル	11
3.3.2 臨界性の感度係数	11
3.3.3 Naボイド反応度の感度係数	11
3.3.4 制御棒価値の感度係数	12
第4章 BFS-67臨界実験の解析	21
4.1 解析手法	21
4.1.1 原子個数密度の算出	21
4.1.2 格子計算	21
4.1.3 基準計算	21
4.1.4 補正計算	22
4.2 解析結果	23
4.2.1 中性子スペクトル	23
4.2.2 臨界性	23
4.2.3 Naボイド反応度	23
4.2.4 制御棒価値	24
4.2.5 炉心中心反応率比	24
第5章 結言	37
謝辞	38
参考文献	38

LIST OF TABLES

Table 2.1	反応率比の測定項目 3
Table 2.2	サンプル反応度の測定核種
Table 3.1	70群炉定数と縮約後(18群)のエネルギー群構造
Table 3.2	BFS-67-1Rと-2Rの臨界性に対する感度係数
Table 3.3	BFS-67-1Rと-2RのNaボイド反応度に対する感度係数
Table 3.4	BFS-67-1Rと-2Rの制御棒価値に対する感度係数
Table 3.5	BFS-67-3Rと-3RBの制御棒価値に対する感度係数17
Table 4.1	Np装荷領域(LEZ領域)の均質原子個数密度
Table 4.2	臨界性の解析結果
Table 4.3	Naボイド反応度の解析結果 26
Table 4.4	Naボイド反応度の内訳 26
Table 4.5	制御棒価値の解析結果
Table 4.6	制御棒価値の解析結果(BFS-67-1R)28
Table 4.7	制御棒価値の解析結果(BFS-67-2R)
Table 4.8	制御棒価値の解析結果(BFS-67-3R)
Table 4.9	制御棒価値の解析結果(BFS-67-3BR)
Table 4.10)反応率比の解析結果(BFS-67-1R)
Table 4.11	反応率比の解析結果(BFS-67-2R)
Table 4.12	2 反応率比の解析結果(BFS-67-3BR)

LIST OF FIGURES

BFS-67実験の炉心構成 6
BFS-67-1R,2R,3R,3BRの燃料構成
BFS-67-1R,2R,3R,3BRの燃料セル構成
制御棒の構成と燃料集合体との位置関係
反応率比測定におけるウラン箔の設置位置
Naボイド反応度解析用RZモデル
中性子スペクトルの比較
Np-237とU-238の捕獲断面積の比較
随伴中性子スペクトルの比較 20
集合体に対するプレートストレッチモデルの適用概念図
解析で使用した制御棒モデル ····································
Naボイド反応度の散乱項の炉心間での比較
反応率比C/E値の炉心間の比較 35
Np装荷による反応率比の変化の比較(BFS-67-2R)
Np装荷による反応率比の変化の比較(BFS-67-3BR)

第1章 緒言

1.1. 研究の背景

JNC(サイクル機構)では現在実用化戦略調査研究を実施している。そのフェーズ1(~2001年3月)では、革新的技術の導入と広範な技術オプションのレビューによって実現可能性の高い候補概念を抽出してきた。続くフェーズ (2001年4月から約5年間)においてもユニークで創造的なアイデアを集めるため、JNC は革新的技術研究として魅力的な研究項目を国内のみならず国外からも募集している。

IPPE(ロシア物理エネルギー研究所)は、マイナーアクチニド(MA)を装荷した高速 炉炉心の核特性評価に関してその解析手法と核データの妥当性を確認するための「多量 のNpを種々の臨界集合体に添加したときの炉物理特性の変化に関する研究」を提案した。

環境負荷低減の観点から将来の FBR サイクルシステムでは MA 燃焼は最も重要な技術の 一つであること、主要 MA の1つである Np 装荷炉心の臨界実験の詳細データを入手し、 JNC の高速炉核特性解析システムの MA 装荷炉心に対する検証、精度向上を図ることは非 常に有意義であると判断し、共同研究を実施することとなった。

1.2. 研究の目的

Np 装荷炉心の臨界実験解析を行って、その予測精度を確認し、Np 装荷炉心の核設計精度の向上に反映する。

1.3. 実施項目とスケジュール

共同研究は3カ年(平成13年度~15年度)の予定で実施している。平成15年度の契約は追加実験を実施する場合に成立する。

第1期(平成13年度)では、Npを装荷した臨界実験体系(BFS-67体系)での実験及び解析結果に関する報告書を IPPE 側から入手する。

第2期(平成14年度)では、JNC側で第1期の情報を基にBFS-67体系の解析評価を実施するとともに、IPPE側から異なるPu富化度の炉心(BFS-69体系)についての実験及び解析結果に関する報告書を入手する。

第3期(平成15年度)では、第1期及び第2期の情報を基にJNC側で解析評価を実施 する。JNCとIPPE間で協議し合意が得られた場合には追加実験を実施する。

現在(平成15年4月)までの進捗は以下の通りである。

BFS-67 体系の実験解析に関する報告書を IPPE から入手(平成 14 年 2 月)。
BFS-67 体系に関する情報交換をロシアで実施(平成 14 年 9 月)。
BFS-69 体系の実験解析に関する報告書を IPPE から入手(平成 15 年 2 月)。
BFS-67 体系の解析を JNC 側で実施。(平成 14 年度から継続中)。

本報では第1期の契約で入手した BFS-67 体系に関する実験情報とそれを基に JNC で実施した解析結果を報告する。

第2章 BFS-67 臨界実験の概要

本章では BFS-67 臨界実験の概要を述べる。

2.1 BFS-67 体系の概要

BFS-67 臨界実験は IPPE の臨界実験装置 BFS-1 で実施された。燃料集合体はステンレス TUBE(外径約 5cm)内に燃料やナトリウムなどのペレットを一定のパターン(1つのパター ンをセルと称す)で積み重ねることによって構成され、炉心はその集合体を 5.1cm ピッチ で六角格子状に配置することによって構成されている。

炉心は径方向中心から順に Pu 領域(LEZ 領域、富化度 19wt%)、U 領域(HEZ 領域、濃縮度 21wt%)、ブランケット領域の 3 領域からなる。プランケット領域は LEZ 領域及び HEZ 領域 の上下にも設置されている。燃料ペレットには金属 Pu ペレット(Pu-239 94wt%)、金属 U ペレット(濃縮度 90wt%)、UO₂ペレット(濃縮度 0.4wt%)が使用されている。本実験はフラ ンスとロシアの共同研究で実施された^[1]ものであり、炉心は SUPERPHENIX の内側炉心を模し ている。

Npの装荷はLEZ領域のUO2ペレットをNpO2ペレットに置換することによって実施される。 Npの装荷量は最大10kgで装荷量や装荷位置によって以下の4種類の炉心が構成され、それ ぞれの炉心について同様な核特性(臨界性、制御棒価値、ボイド反応度など)が測定され ている。各炉心の炉心構成、LEZ 領域とHEZ 領域のセル構成、燃料セルのペレット構成を Fig.2.1~2.3 に示す。

BFS-67-1R (BFS-67 炉心シリーズの基準炉心、Np 装荷なし)

LEZ 領域(集合体 169 体) HEZ 領域(集合体 417 体) 径ブランケット(集合体 688 体)で構成される。

BFS-67-2R (Np 装荷量 10kg)

BFS-67-1R の炉心中心燃料 31 体について、それぞれ 1 体中に含まれる 8 燃料セルの内、中心部 4 燃料セルの UO₂ペレット(2 カ所)を NpO₂ペレットに置換した炉心である。燃料に占める Np の割合は 13.1%、装荷総重量は 10kg である。Np 装荷による反応度低下を補償するために、HEZ 領域の燃料が 5 体追加されている。 BFS-67-3R (Np 装荷量 5kg)

Np を装荷する燃料体の数は BFS-67-2R と同様 31 体であるが、セル中の NpO₂ペレットが BFS-67-2R の半分(1 カ所)のみに装荷される。燃料セル中の Np の割合は BFS-67-2R と比べ半分の 6.5%になり、装荷総重量も半分の 5kg になる。また、HEZ 領域の燃料も BFS-67-1R より 1 体多いだけの 418 体である。

BFS-67-3BR(Np 装荷量 10kg、装荷集合体数は BFS-67-2R の約2倍)

Np を装荷する燃料体の数が BFS-67-3R の約2倍の61体である。従って、Np の濃縮

度はBFS-67-3R と同じ6.5%であるが、Npの装荷総重量はBFS-67-3Rの2倍、BFS-67-2R と同じ10kgである。HEZ 領域の燃料はBFS-67-1Rより4体多い421体である。

2.2 測定の概要

BFS-67 体系で測定された核特性(臨界性、Na ボイド反応度、制御棒価値、炉中心反応率 比、サンプル物質反応度)について概要を述べる。

2.2.1 臨界性

臨界性(過剰反応度)は実験装置の運転制御用の制御棒を引き抜いた際のペリオド測定 によって評価された。

2.2.2 Na ボイド反応度

測定は BFS-67-1R、BFS-67-2R の 2 炉心で実施され、炉心中心燃料 31 体、軸高さ 38cm(炉 心中心領域 4 セルに対応)の全 Na ペレット 16 枚を SUS 缶に置換し、置換前後の過剰反応 度の差異によって Na ボイド反応度が評価されている。Na 除去量の合計は 6.9kg である。

なお、その他にも5種類の測定データが IPPE の報告書には提示されているが、Naの置換量が少ないため反応度が1¢以下と小さく、有意な解析結果が期待できないため評価の対象外とした。

2.2.3 制御棒価値

4 種類全ての炉心について実施された。測定は炉心中心の集合体 1 体に制御棒置換することによって実施された。制御棒には Fig.2.4 に示すような "Long rod "という B₄C 吸収体を Na で挟んだものが使用される。吸収体には天然 B₄C と濃縮 B₄C (B-10:81.7%)の 2 種類が 使用される。 "Long rod "中の吸収体サイズも 2 種類存在し、それらの組み合わせからな る 4 種類の制御棒について反応度が測定された。

Fig.2.4 のように制御棒引き抜き状態 (Long rod の下部を炉心に挿入した状態)では炉 心及びブランケット領域に対応する位置には Na のみが存在し、制御棒挿入時 (Long rod の 上部を炉心に挿入した状態)には吸収体部の中心が炉心中心に位置する。制御棒引き抜き 状態ではわずかに超過臨界である。測定は、制御棒引き抜き状態で出力を上昇させ必要な 計数率を得た後、制御棒を挿入し、出力の時間変化から制御棒価値の求めることによって 実施された。

2.2.4 炉中心反応率比

BFS-67-1R、BFS-67-2R、BFS-67-3BRの3炉心について、Table 2.1 に示す14種類の反応率比が測定されている。測定には核分裂反応率比については小型核分裂計数管が、捕獲反応を含む反応率比については放射化箔が使用された。小型核分裂計数管を用いた場合は、

計数管を中心集合体の周囲の隙間に挿入し、軸方向中心のセルについてセル平均値が得ら れるように 1cm 間隔でずらした複数点の平均値で反応率比を評価している。捕獲反応を含 む反応率比の測定についてはウラン箔(濃縮度 37wt%、厚さ 0.1mm)が用いられている。ウ ラン箔は縦に 2 分割した UO₂ペレット間及び軸方向ペレット間に同時に設置され(Fig.2.5)、 それらの平均値から反応率比が評価されている。

2.2.5 微少サンプル反応度

BFS-67-1R、BFS-67-2R、BFS-67-3BR の 3 炉心について、Table 2.2 に示す 8 種類の物質 の微少サンプル反応度が測定されている。測定にはオシレーター法(サンプルを周期的に 出し入れしたときの炉出力の振動を解析することによって反応度を評価する方法)が用い られている。報告書にはサンプルサイズをゼロに補正した結果が記載されている。

No.	略称	反応率比の種類
1	F28/F25	U238 と U235 の核分裂反応率の比
2	F49/F25	Pu239 と U235 の核分裂反応率の比
3	F37/F49	Np237 と Pu239 の核分裂反応率の比
4	F48/F49	Pu238 と Pu239 の核分裂反応率の比
5	F40/F49	Pu240 と Pu239 の核分裂反応率の比
6	F41/F49	Pu241 と Pu239 の核分裂反応率の比
7	F42/F49	Pu242 と Pu239 の核分裂反応率の比
8	F51/F49	Am241 と Pu239 の核分裂反応率の比
9	F53/F49	Am243 と Pu239 の核分裂反応率の比
10	F64/F49	Cm244 と Pu239 の核分裂反応率の比
11	C28/F25	U238の捕獲反応率とU235の核分裂反応率の比
12	C97/F25	Au237の捕獲反応率とU235の核分裂反応率の比
13	C37/C28	Np237 と U238 の捕獲反応率の比
14	C37/F25	Np237の捕獲反応率と U235の核分裂反応率の比

Table 2.1 反応率比の測定項目

Table 2.2	サンプル反応度の測定核種

No.	核種
1	U238
2	B10
3	C12
4	Н
5	Pu239
6	Np237
7	Am241
8	Na

Fig.2.1 BFS-67 実験の炉心構成 (BFS-67-1R は Np 置換無し)

			1			
39 pellets UO2	↑ 380.3 ↓	39 pellets UO2	↑ 380.3 ↓		39 pellets UO ₂	↑ 380.3 ↓
8 cells LEZ-67-1R	↑ 761 ↓	9 cells HEZ-67-1R,2R,3BR	↑ 762 ↓		2 cells LEZ-67-1R+4 cells LEZ-67-2R,3R,3BR+2 cells LEZ-67-1R	↑ 761 ↓
40 pellets UO2	↑ 390 ↓	40 pellets UO ₂	↑ 390 ↓		40 pellets UO ₂	↑ 390 ↓
Steel pellet	10	Steel pellet	10		Steel pellet	10
Steel support	↑ 250 ↓	Steel support	↑ 270 ↓		Steel support	↑ 270 ↓
Steel pellet	10	Steel pellet	10	-	Steel pellet	10
Fuel Rod LEZ-67-1R		Fu HI 1R,2F	el Rod EZ-67- R,3R,3BR	Fue LE 2R,3	el Rod Z-67- R,3BR	

Fig.2.2 BFS-67-1R,2R,3R,3BRの燃料構成 (unit:mm)

Fig.2.3 BFS-67-1R,2R,3R,3BRの燃料セル構成

Fig.2.4 制御棒の構成と燃料集合体との位置関係

Fig.2.5 反応率比測定におけるウラン箔の設置位置 (BFS-67-2RのLEZ セル)

第3章 予備解析 (BFS-67R 臨界実験の有効性の確認)

本実験結果を Np 装荷炉心の核特性設計精度の向上に反映するためには、測定された核特性に Np の装荷による変化が現れている必要がある。そこで本格的な解析に先んじて Np の 装荷による核特性の変化を感度解析によって暫定評価した。ここで「暫定」とは解析情報の一部に推定値を使用していることを意味する。

3.1 評価対象の核特性と炉心

2.2 節で述べた核特性の中から主要なものとして、BFS-67-1R と-2R の臨界性、BFS-67-1R と-2R の Na ボイド反応度及び制御棒価値を採り上げた。

3.2 解析手法

解析は2次元 RZ 体系モデルを用いて実施した。例として Na ボイド反応度解析時の体系 モデルを Fig.3.1 に示す。炉定数には JFS-3-J3.2R^[2]を用いた。格子計算は SLAROM^[3]を用い た均質計算とし、その際に用いる原子数密度は IPPE の報告書に記載されているペレットの 重量、組成比、セル内のペレット枚数の情報から算出した。体系計算は拡散計算コード CITATION-FBR^[3]を用いたエネルギー70 群の2次元 RZ 拡散計算で行い、エネルギー群数を 70 群から 18 群に縮約した後、改めて 18 群の2次元 RZ 拡散計算を実施し、感度係数計算コー ド SAGEP^[3]を用いて感度係数を評価した。70 群及び 18 群のエネルギー群構造を Table 3.1 に示す。

3.3 解析結果

3.3.1 中性子スペクトル

炉心中心における中性子スペクトルの比較を Fig.3.2 に示す。Np を装荷しない BFS-67-1R 炉心、Np を 10kg 装荷した BFS-67-2R 炉心に加え、同様に BFS 臨界実験装置で構成された MOX 炉心である BFS-62-5 炉心について比較した。Np を装荷すると中性子スペクトルが硬く なることが確認できる。次章の Table 4.1 に示すが Np を装荷した分は U-238 の原子個数密 度の減少となるため、スペクトルの変化は U-238 と Np-237 の断面積の差異によって生じて いるといえる。Fig.3.3 には Np-237 と U-238 の捕獲断面積(JFS-3-J3.2R の 70 群無限希釈 断面積)を示すが、Np-237 は低エネルギーの中性子をより多く吸収するためスペクトルが硬 くなることが理解できる。BFS-62-5 炉心は BFS-67-1R,-2R 炉心に比べてスペクトルが軟ら かいが炉心体積が BFS-62-5 炉心の約 1/4 と小さいことが原因である。

Fig.3.4 には随伴中性子スペクトルを示す。中性子スペクトルと同様にエネルギー10keV を境界に大小関係が逆転しており、Np 装荷の影響が表れている。

3.3.2 臨界性の感度係数

寄与の比較的大きな核種の感度係数を Table 3.2 に示す。臨界性に対して大きな感度を

示す核種・反応は、BFS-67-1R、-2R 炉心ともに、U-235、Pu-239、U-238 の核分裂あたりの 発生中性子数(NU)、核分裂反応(FISSION)、U-238 の捕獲反応(CAPTURE)である。 BFS-67-2R に装荷されている Np-237 の感度は無視できるほど小さい。

3.3.3 Na ボイド反応度の感度係数

寄与の比較的大きな核種の感度係数を Table 3.3 に示す。

BFS-67-1R 炉心では U-238 および Pu-239 の捕獲反応、核分裂あたりの発生中性子数、核 分裂反応の感度係数が非常に大きな値を示した。一方、構造材の感度は、酸素の弾性散乱 反応(ELAS.SCT)、ナトリウムの非弾性散乱反応(INEL.SCT)で若干大きい程度で、それ以外 は小さい結果となった。

BFS-67-2R 炉心では、BFS-67-1R 炉心と比べ、Pu-239 および U-238 の感度係数が小さくなっている。また、Np-237 に比較的大きな感度が現れている。

U-235の感度係数の正負が両炉心間で逆になっているが、これは随伴中性子スペクトルが Np-237の装荷により変化したためである(参考 Fig.3.4)。

このように Na ボイド反応度については Np-237 装荷の影響が有意に表れており、Np 装荷 炉心の核設計精度の向上に反映する上で有効なデータであると言える。

3.3.4 制御棒反応度の感度係数

寄与の比較的大きな核種の感度係数を Table 3.4 及び 3.5 に示す。

BFS-67-1R 炉心では、U-235、U-238 および Pu-239 の捕獲反応、核分裂あたりの発生中性 子数、核分裂反応の感度係数が大きな値を示した。特に、U-235 の核分裂あたりの発生中性 子数と核分裂反応の感度が大きい。それ以外には B-10 の捕獲反応の感度が大きい。

BFS-67-2R、-3R、-3RB 炉心は、いずれも Np-237 に対する感度係数がある以外は BFS-67-1R 炉心とほぼ同程度の感度を示している。Np-237 の捕獲反応に対する感度は他の燃料核種の ものと同程度で有意な寄与を示しており、制御棒価値についても Np 装荷炉心の核設計精度 の向上に反映する上で有効なデータであると言える。

Ⅰ 70 群炉定数と縮約後(18 群)のエネルギー群構造

Group		l Inner energy	l ower energy	Lethargy
18G	70G	opper energy	Width	
1	1	10.0 (MeV)	7.7880 (MeV)	0.250
	2	7.7880	6.0653	0.250
2	3	6.0653	4.7237	0.250
	4	4.7237	3.6788	0.250
3	5	3.6788	2.8650	0.250
	6	2.8650	2.2313	0.250
4	7	2.2313	1.7377	0.250
	8	1.7377	1.3534	0.250
5	9	1.3534	1.0540	0.250
	10	1.0540	0.82085	0.250
6	11	0.82085	0.63928	0.250
	12	0.63928	0.49787	0.250
	13	0.49787	0.38774	0.250
7	14	0.38774	0.30197	0.250
	15	0.30197	0.23518	0.250
	16	0.23518	0.18316	0.250
8	17	0.18316	0.14264	0.250
	18	0.14264	0.11109	0.250
	19	0.11109 (MeV)	0.086517 (MeV)	0.250
9	20	86.517 (KeV)	67.379 (KeV)	0.250
	21	67.379	52.475	0.250
	22	52.475	40.868	0.250
10	23	40.868	31.828	0.250
	24	31.828	24.788	0.250
	25	24.788	19.305	0.250
11	26	19.305	15.034	0.250
	27	15.034	11.709	0.250
	28	11.709	9.1188	0.250
12	29	9.1188	7.1017	0.250
	30	7.1017	5.5308	0.250
	31	5.5308	4.3074	0.250
13	32	4.3074	3.3546	0.250
	33	3.3546	2.6126	0.250
	34	2.6126	2.0347	0.250
14	35	2.0347	1.5846	0.250
	36	1.5846	1.2341	0.250
	37	1.2341 (KeV)	0.96112 (KeV)	0.250

Gro	oup	Upper energy	Lower energy	Lethargy					
18G	70G			Width					
15	38	961.12 (eV)	748.52 (eV)	0.250					
	39	748.52	582.95	0.250					
	40	582.95	454.00	0.250					
16	41	454.00	353.58	0.250					
	42	353.58	275.36	0.250					
	43	275.36	214.45	0.250					
17	44	214.45	167.02	0.250					
	45	167.02	130.07	0.250					
	46	130.07	101.30	0.250					
	47	101.30	78.893	0.250					
	48	78.893	61.442	0.250					
	49	61.442	47.851	0.250					
	50	47.851	37.267	0.250					
	51	37.267	29.023	0.250					
	52	29.023	22.603	0.250					
	53	22.603	17.603	0.250					
	54	17.603	0.250						
	55	13.710	10.677	0.250					
	56	10.677	8.3153	0.250					
18	57	8.3153	6.4760	0.250					
	58	6.4760	5.0435	0.250					
	59	5.0435	5.0435 3.9279						
	60	3.9279	3.0590	0.250					
	61	3.0590	2.3824	0.250					
	62	2.3824	1.8554	0.250					
	63	1.8554	1.4450	0.250					
	64	1.4450	1.1254	0.250					
	65	1.1254	0.87642	0.250					
	66	0.87642	0.68256	0.250					
	67	0.68256	0.53158	0.250					
	68	0.53158	0.41399	0.250					
	69	0.41399	0.32242	0.250					
	70	0.32242 (eV)	10 ⁻⁵ (eV)	10.65					

Table 3.2 BFS-67-1R と-2R の臨界性に対する感度係数

		BFS-67-1R KEFF												UNIT:1.0E-4						
NUCL.	REACTION	TOTAL	18G	17G	16G	15G	14G	13G	12G	11G	10G	9G	8G	7G	6G	5G	4G	3G	2G	1G
U-235 U-235 U-235 U-235 U-235 U-235 U-235 U-235	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-518 4986 3050 42 -5 0 -23	-8 35 17 0 0 0	-9 40 20 0 0 0 0	-17 91 44 0 0 0	-33 190 97 0 0 0	-58 347 188 0 0 0	-23 163 91 0 0 0	-42 290 168 0 0 0	-52 400 243 2 0 0 0	-64 494 308 4 0 0 0	-72 592 374 6 0 0	-65 618 391 8 0 0 -1	-43 584 372 9 1 0 -3	-23 491 318 7 5 0 -5	-6 221 144 2 2 0 -2	-3 205 130 2 -4 0 -4	0 148 94 -7 0 -5	0 59 39 0 -2 0 -3	0 18 12 0 0 0 0
U-238 U-238 U-238 U-238 U-238 U-238 U-238 U-238	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-2077 1352 862 574 -116 2 -300	-11 0 0 0 0 0 0	-16 0 0 0 0 0	-29 0 0 0 0 0 0	-86 0 2 0 0 0	-153 0 13 0 0 0	-110 0 1 0 0 0	-197 0 11 0 0 0	-281 0 29 0 0 0	-324 0 49 0 -1	-287 0 86 -1 0 -6	-200 0 103 -3 0 -17	-164 0 108 9 0 -38	-138 3 100 40 0 -66	-53 42 28 27 17 0 -28	-21 516 327 23 -70 0 -44	-6 485 303 16 -80 0 -58	-1 223 147 5 -22 0 -34	0 83 55 1 -6 2 -8
PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-257 3581 2489 6 -7 0 -3	-1 5 2 0 0 0 0	-2 10 5 0 0 0 0	-9 28 17 0 0 0 0	-22 82 53 0 0 0 0	-39 148 100 0 0 0	-17 61 42 0 0 0 0	-28 132 92 0 0 0 0	-29 206 146 0 0 0	-29 301 214 0 0 0 0	-27 406 287 1 0 0	-24 466 325 2 0 0 0	-18 510 354 2 0 0 0	-9 501 350 1 0 0 -1	-2 238 167 0 0 0 0	-1 234 160 -3 0 -1	0 167 114 0 -3 0 -1	0 68 48 0 -1 0 0	0 18 13 0 0 0 0
NUCL.	BFS-67-2R KEFF UNIT:1.0E-4													-4 G						
U-235 U-235 U-235 U-235 U-235 U-235 U-235 U-235	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-515 4954 3036 41 -7 0 -23	-7 35 17 0 0 0 0	-9 39 20 0 0 0 0	-16 90 44 0 0 0 0	-33 188 96 0 0 0 0	-57 344 187 0 0 0 0	-23 162 90 0 0 0 0	-42 287 167 0 0 0 0	-52 397 241 2 0 0 0	-64 490 307 4 0 0 0	-72 589 372 6 0 0 0	-65 615 390 8 0 0 -1	-43 581 371 8 1 0 -3	-23 488 317 7 5 0 -5	-6 220 144 2 1 0 -2	-3 204 129 2 -4 0 -4	0 148 93 2 -7 0 -5	0 59 39 0 -3 0 -3	0 18 12 0 0 0 0
U-238 U-238 U-238 U-238 U-238 U-238 U-238 U-238	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-2022 1342 856 563 -132 2 -298	-11 0 0 0 0 0 0	-15 0 0 0 0 0 0 0	-28 0 0 0 0 0 0 0	-82 - 0 0 2 0 0 0 0	146 - 0 12 0 0 0	107 - 0 0 1 0 0 0	191 - 0 0 10 0 0 0	272 - 0 0 28 0 0 0 0	·315 · 0 0 48 0 0 -1	-281 · 0 0 84 -2 0 -6	-196 - 0 101 -4 0 -17	-161 0 106 9 0 -37	-136 3 2 99 38 0 -65	-53 42 27 27 13 0 -28	-21 512 325 23 -74 0 -44	-6 481 301 16 -83 0 -58	-1 221 146 5 -23 0 -34	0 83 55 1 -6 2 -8
PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-241 3544 2480 5 -8 0 -3	-1 4 2 0 0 0 0 0	-2 9 5 0 0 0 0	-7 25 16 0 0 0 0	-19 74 49 0 0 0 0	- 35 139 95 0 0 0 0	-16 58 40 0 0 0 0	-26 127 90 0 0 0 0	-28 201 144 0 0 0 0	-28 296 213 0 0 0 0	-26 402 287 1 0 0 0	-23 465 327 1 0 0 0	-18 510 356 2 0 0 0	-9 501 351 1 0 0 -1	-2 240 168 0 0 0 0	-1 237 161 0 -3 0 -1	0 169 115 0 -4 0 -1	0 68 48 0 -1 0 0	0 19 13 0 0 0 0
NP-237 NP-237 NP-237 NP-237 NP-237 NP-237 NP-237	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-61 75 47 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	-3 0 0 0 0 0 0	-6 0 0 0 0 0	-2 0 0 0 0 0 0	-5 0 0 0 0 0 0	-7 0 0 0 0 0 0	-10 0 0 0 0 0	-11 0 0 0 0 0 0	-9 0 0 0 0 0 0	-6 2 1 0 0 0 0	-2 19 12 0 0 0 0	0 17 11 0 0 0 0	0 18 11 0 0 0 0	0 13 8 0 0 0 0	0 5 3 0 0 0 0	0 1 1 0 0 0 0

Table 3.3 BFS-67-1R と-2R の Na ボイド反応度に対する感度係数

BFS-67-1R Na VOID REACTIVITY

UNIT:1.0E-4

NUCL.	REACTION	TOTAL	18G	17G	16G	15G	14G	13G	12G	11G	10G	9G	8G	7G	6G	5G	4G	3G	2G	1G
U-235 U-235 U-235 U-235 U-235 U-235 U-235 U-235	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-34 4744 2792 205 -62 1 -209	31 -131 -63 0 0 0 0	54 -227 -114 -1 0 0 0	129 -698 -343 -2 0 0	286 -1680 -885 -12 0 0 0	286 -1858 -1078 -16 0 0 0	0 19 16 -1 0 0 0	53 -404 -252 -8 0 0 0 0	39 -372 -254 -22 0 0 0	-73 478 266 -12 0 0 0	-226 1681 1000 21 0 0 -2	-250 2072 1209 45 -4 0 -8	-227 2685 1581 95 -2 0 -37	-105 1809 1043 70 16 0 -51	-21 545 292 17 1 0 -19	-8 322 131 13 -27 0 -22	-2 330 156 13 -33 0 -40	0 128 65 4 -11 0 -23	0 45 22 1 -2 1 -7
U-238 U-238 U-238 U-238 U-238 U-238 U-238 U-238	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	19686 12820 7691 2169 -2455 56 -4762	112 0 0 -4 0 0 0	436 0 -31 0 0	1274 0 -68 0 0	5100 -11 -6 -334 0 0	8891 -6 -3 -818 0 0 3	-1358 0 0 111 0 0 0	2115 0 -118 0 118	4143 -1 -627 0 0 10	3066 -1 0 -728 0 0 24	-297 0 254 -154 0 -24	291 0 -226 -159 0 29	-1669 4 2 1743 151 0 -621	-1488 60 39 1757 716 0 -1151	-681 519 338 546 205 0 -576	-146 2944 1655 272 -1398 0 -525	-85 5493 3254 301 -1376 0 -1078	-16 2686 1724 109 -286 0 -653	-2 1133 689 30 -154 56 -202
PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	15195 -34861 -21498 -143 -179 2 -612	100 -453 -236 0 0 0 0	388 -1511 -874 -3 0 0 0	1663 -5070 -3137 -10 0 0	4096 -15237 -9843 -64 0 0	6904 -26586 -18082 -154 0 0 0	-1372 6657 4593 25 0 0 0	983 -4281 -2851 -13 -1 0 0	1533 -9892 -6782 -109 -6 0 2	1061 -9985 -6839 -152 -15 0 6	104 -631 -260 -18 -12 0 0	334 -6230 -4245 -147 -23 0 30	-348 10087 7137 155 17 0 -65	- 170 11487 8319 167 91 0 - 127	-58 7002 5005 68 23 0 -83	-14 2779 1809 36 -101 0 -68	-9 4471 3020 52 -112 0 -169	0 1933 1369 19 -30 0 -104	0 599 399 5 -10 2 -34
OXYGEN OXYGEN OXYGEN OXYGEN OXYGEN	CAPTURE ELAS.SCT INEL.SCT N2N MU-AVE.	-255 3480 -36 0 -1465	0 -2 0 0 0	0 -30 0 0 0	-104 -104 0 0	0 -355 0 0 8	0 -1163 0 0 16	0 24 0 0 -2	0 168 0 0 3	0 -536 0 0 13	0 -755 0 0 14	0 -473 0 0 -5	0 -616 0 0 -1	-1 1551 0 210	-2 3351 0 0 -1117	-1 1259 0 0 -152	0 16 0 -102	0 737 0 0 -104	-152 408 0 -200	-99 0 -36 0 -47
SOD I UM SOD I UM SOD I UM SOD I UM SOD I UM	CAPTURE ELAS.SCT INEL.SCT N2N MU-AVE.	1752 672 7320 0 -58	1 0 0 0 0	4 -15 0 0 0	15 -71 0 0	63 -218 0 0 2	270 -1170 0 10	434 -1432 0 0 -3	81 -1724 0 3	4 -1363 0 9	134 -718 0 0 13	100 629 0 0 14	75 1010 0 28	106 1483 0 0 0	53 416 369 0 -24	12 891 686 0 -47	12 1921 2500 0 39	8 870 2216 0 -64	75 50 985 0 -26	305 113 564 0 -12
				170	160	150	140	120	BFS-67	·2R Na \	/OID RE	ACTIVIT	Υ 			 FC	40	20	UNIT:1	.0E-4
U-235	CAPTUR	E 99	 13 2		38 8	 30 17'	140	57	120	110	98	46				3	3	0	0	
U-235 U-235 U-235 U-235 U-235 U-235 U-235	NU FISSIO ELAS.S INEL.S N2N MU-AVE	-929 N -637 CT 6 CT -1 7	90 -12 7 -6 66 8 0 7	7 -16 4 -8 0 0 0 0	67 -4 87 -2 0 0 0 0 0	42 -100 19 -53 0 -4 0 0 0 0	9 -1471 5 -842 4 -6 0 0 0 0 0 0	-399 -225 0 0 0 0	-827 -500 -4 0 0	-1049 -677 -11 0 0 0	-917 -633 -8 0 0 0	-645 -505 5 -2 0	-530 -468 15 -6 0 -3	-230 -299 35 -10 0 -14	-401 -416 27 -12 0 -20	-319 -283 6 -7 0 -7	-381 -312 5 1 0 -8	-243 -202 5 11 0 -15	-104 -85 1 6 0 -8	-29 -25 0 1 0 -2
U-238 U-238 U-238 U-238 U-238 U-238 U-238 U-238	CAPTUR NU FISSIO ELAS.S INEL.S N2N MU-AVE	E 800 375 N 199 CT 123 CT -47 2 212	29 4 51 54 77 27 28	7 12 0 0 0 0 0 0 0 0 0	20 3 0 0 -5 - 0 0 0	53 149 0 -: 0 -: 10 -4 0 0	4 2790 3 -2 2 -1 7 -57 0 0 0 0 0 0	-47 0 -39 0 0 0	1030 0 -61 0 0	1739 0 0 -197 0 0 3	1430 0 -242 0 0 8	159 0 27 -54 0 -3	252 0 -83 -29 0 12	-510 1 627 45 0 -224	-519 18 11 715 215 0 -475	-250 155 89 260 -56 0 -276	-45 608 202 134 -304 0 -248	-29 1734 944 145 -274 0 -515	-5 862 527 52 16 0 -313	0 378 221 15 -36 27 -97
PU-23 PU-23 PU-23 PU-23 PU-23 PU-23 PU-23	9 CAPTUR 9 NU 9 FISSIO 9 ELAS.S 9 INEL.S 9 N2N 9 MU-AVE	E 452 -932 N -714 CT 16 CT -2 37	27 1 24 -8 11 -4 31 24 1 70	7 7 6 -32 7 -19 0 0 0 0	75 3 26 -12 99 -8 0 0 0 0	76 110 94 -454 50 -310 0 -3 0 -3 0 -3 0 -3 0 -3 0 -3 0 -3 0 -	2113 -9176 -6579 3 3 0 0 0 0 0 0	-294 1825 1337 -6 0 0 0	362 -1908 -1381 -4 0 0	533 -4004 -2920 -23 0 0 0	386 -4269 -3119 -37 0 0 1	25 -512 -427 0 -1 0 0	114 -2611 -1932 -38 0 0 8	-155 4176 2877 71 10 0 -29	-85 5155 3592 87 27 0 -67	-29 3245 2250 40 3 0 -49	-7 1486 952 25 -26 0 -46	-4 2246 1518 32 -30 0 -104	0 976 694 11 -4 0 -64	0 299 202 3 -3 1 -20
NP-23 NP-23 NP-23 NP-23 NP-23 NP-23 NP-23	7 CAPTUR 7 NU 7 FISSIO 7 ELAS.S 7 INEL.S 7 N2N 7 MU-AVE	E 407 192 N 128 CT 7 CT 2 8	73 25 35 72 28 0 35	6 3 0 0 0 0 0 0 0	34 1 0 0 0 0 0 0 0	72 71 -2 -1 0 2 0 0 0 0	7 1957 3 -31 5 -21 2 6 0 0 0 0 0 0	-589 9 6 -3 0 0 0	170 -4 -3 1 0 0 0	541 -14 -10 0 0 0 0	606 -21 -15 -1 0 0	154 -7 -5 6 0 0 0	350 -37 -26 -3 12 0 1	-27 10 6 15 12 0 -6	4 663 456 22 32 0 -19	-18 551 372 10 0 0 -14	-2 117 71 6 -6 0 -11	-2 422 274 8 -14 0 -20	0 206 141 3 -5 0 -12	0 71 45 0 -3 0 -4
OXYGE OXYGE OXYGE OXYGE OXYGE	N CAPTUR N ELAS.S N INEL.S N N2N N MU-AVE	E -9 CT 201 CT -1 69	94 8 0 0 0	0 0 0 0 0 0	0 -5 - 0 0 0	0 (16 -6) 0 (0 () 0 2 -205) 0) 0 1 0	0 -68 0 0 0	0 -19 0 1	0 -171 0 4	0 -207 0 5	0 -127 0 0 0	0 -111 0 0 0	0 567 0 0 78	0 1021 0 -477	0 581 0 -76	0 219 0 -50	0 401 0 -53	-57 213 0 -100	-37 7 -10 0 -23
SODIU SODIU SODIU SODIU SODIU	M CAPTUR M ELAS.S M INEL.S M N2N M MU-AVE	E 65 CT 509 CT 432 1	54 95 24 0 7	0 0 0 0 0	0 -3 -0 0 0	3 1 14 -3 0 0 0 0	7 83 7 -220 0 0 0 0	142 -466 0 0 1	28 -223 0 0 1	1 -65 0 2	52 188 0 0 3	39 762 0 3	31 911 0 0 9	45 1245 0 0 -2	23 884 584 0 -21	5 786 680 0 -20	5 893 1200 0 32	3 386 1111 0 -16	35 16 478 0 -6	142 52 271 0 -4

Table 3.4 BFS-67-1R と-2R の制御棒価値に対する感度係数

							BFS	6-67-1	R CONT	TROL RO	D WOR	гн						UNI	T:1.0E	- 4
NUCL.	REACTION	TOTAL	18G	17G	16G	15G	14G	13G	12G	11G	10G	9G	8G	7G	6G	5G -	4G 3	3G	2G -	1G
U-235 U-235 U-235 U-235 U-235 U-235 U-235 U-235	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	1352 -16431 -11346 10 29 0 7	23 -107 -56 0 0 0 0	26 -120 -65 0 0 0 0	46 -260 -133 0 0 0 0	84 -510 -275 0 0 0 0 0	149 -952 -546 0 0 0 0	65 -483 -284 0 0 0 0 0	112 -830 -510 0 0 0 0	133 -1155 -757 1 0 0 0	162 -1485 -1019 2 0 0 0	182 -1883 -1336 5 -4 0 0	167 -2087 -1511 2 -10 0 0	111 -2074 -1533 0 -18 0 -1	62 -1834 -1386 0 -24 0 0	18 -876 -660 0 -7 0 1	10 -827 -598 0 26 0 2	2 -616 -437 0 44 0 3	0 -253 -184 0 19 0 2	0 -79 -56 0 3 0 0
U-238 U-238 U-238 U-238 U-238 U-238 U-238	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	1004 -3011 -2335 -102 1243 -2 98	31 0 0 0 0 0 0	33 0 3 0 0 0 0	38 0 4 0 0 0	17 0 1 0 0 0	14 0 -30 0 0 0	127 0 3 0 0 0	105 0 -23 0 0 0	88 0 -37 0 0 0	75 0 -30 0 0 0	99 0 7 -22 0 -1	88 0 14 -7 0 -2	95 0 16 15 0 -4	106 -8 -7 -10 16 0 9	50 -90 -77 -2 96 0 6	26 -1118 -890 -5 452 0 19	10 -1090 -826 -9 481 0 39	2 -515 -394 -3 177 0 25	0 -190 -141 -1 35 -2 7
PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-1439 9334 4719 74 110 0 -59	-1 7 3 0 0 0 0	-10 35 18 0 0 0 0	-50 140 80 0 0 0 0	-144 458 267 0 0 0 0	-251 779 466 -3 0 0 0	-103 279 166 -1 0 0 0	-175 600 354 -4 0 0 0	-183 853 481 -5 -1 0 0	-172 1067 562 0 0 0 0	-138 1154 544 13 0 0 -1	-105 1052 430 20 2 0 -4	-71 1004 409 23 9 0 -8	-29 854 388 17 29 0 -12	-5 348 164 5 21 0 -5	-2 335 171 5 22 0 -9	0 247 139 3 19 0 -12	0 96 60 1 9 0 -7	0 26 17 0 0 0 -1
BORON-10 BORON-10 BORON-10 BORON-10 BORON-10	CAPTURE ELAS.SCT INEL.SCT N2N MU-AVE.	5135 260 16 0 6	0 0 0 0 0	-1 0 0 0 0	-5 0 0 0 0	-24 -3 0 0 0	-30 -8 0 0 0	9 -2 0 0 0	82 -7 0 0 0	299 -10 0 0 1	590 -4 0 0 1	974 14 0 2	1147 33 0 0 1	970 79 0 0 1	607 85 0 0 0	135 38 3 0 0	214 25 5 0 0	106 18 5 0 0	52 1 2 0 0	10 1 1 0 0
							BF	S-67-2	2R CON	TROL R	OD WOR	TH						UN	IT:1.0	E-4
NUCL.	REACTION	TOTAL	18G	17G	16G	15G	14G	13G	12G	11G	10G	9G	8G	7G	6G	5G	4G	3G	2G	1G
U-235 U-235 U-235 U-235 U-235 U-235 U-235 U-235	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	1398 -16724 -11482 5 24 0 8	24 -110 -58 0 0 0	27 -124 -67 0 0 0	48 -271 -138 0 0 0 0	89 -532 -285 0 0 0 0	155 -982 -559 0 0 0 0	67 -493 -288 0 0 0 0	115 -847 -518 0 0 0 0	137 -1177 -765 1 0 0	167 -1508 -1027 1 0 0 0	188 -1910 -1345 -4 -4 0 0	172 -2116 -1523 1 -10 0 0	115 -2105 -1548 0 -19 0 0	63 -1861 -1403 -1 -26 0 0	18 -889 -668 -1 -8 0 1	10 -839 -605 0 25 0 2	3 -624 -442 0 44 0 3	0 -256 -186 0 19 0 2	0 -80 -57 0 3 0 0
U-238 U-238 U-238 U-238 U-238 U-238 U-238 U-238	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	1769 -3086 -2383 -195 1087 -1 79	33 0 0 0 0 0 0	41 0 3 0 0 0	59 0 4 0 0 0	95 0 0 0 0 0 0	128 0 -34 0 0	180 0 5 0 0 0	204 0 -25 0 0 0	210 0 -50 0 0 0	188 0 0 -51 0 0 1	174 0 -22 -32 0 0	125 0 -4 -23 0 0	119 0 3 -5 0 -2	120 -8 -7 -12 -4 0 8	54 -93 -79 0 55 0 3	27 -1147 -908 -2 423 0 12	10 -1116 -842 -7 463 0 31	2 -528 -403 -3 175 0 20	0 -194 -144 0 35 -1 6
PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-1157 9134 4928 52 90 0 -64	0 1 0 0 0 0 0	-3 15 8 0 0 0 0	-24 79 50 0 0 0 0	-85 314 202 -1 0 0	-173 623 407 -4 0 0 0	-77 249 164 -1 0 0 0	-141 558 361 -5 0 0 0	-157 827 508 -9 -3 0 0	- 156 1073 615 -6 -2 0 0	-130 1193 616 6 -1 0 0	-104 1119 508 16 0 0 -3	-71 1064 469 21 6 0 -8	-29 893 418 18 23 0 -13	-5 368 177 6 18 0 -6	-2 359 187 6 21 0 -10	0 267 154 4 19 0 -14	0 104 65 1 9 0 -8	0 28 19 0 0 0 -2
NP-237 NP-237 NP-237 NP-237 NP-237 NP-237 NP-237	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-1190 557 334 -49 36 0 4	0 0 0 0 0 0 0	-3 0 0 0 0 0 0	-14 0 0 0 0 0 0	-65 0 -1 0 0	-136 1 -3 0 0 0	-56 0 0 0 0 0 0	-120 1 -4 0 0 0	-170 2 1 -9 0 0 0	-200 4 2 -11 0 0 0	-191 5 3 -11 0 0	-129 7 3 -7 1 0 1	-73 16 8 -3 5 0 2	-27 140 79 0 14 0 0	-4 117 70 0 7 0 0	-2 120 73 0 5 0 0	0 95 60 0 3 0 0	0 38 26 0 1 0	0 11 8 0 0 0 0
BORON-10 BORON-10 BORON-10 BORON-10 BORON-10	CAPTURE ELAS.SCT INEL.SCT N2N MU-AVE.	5368 347 21 0 6	0 0 0 0 0	0 0 0 0 0	-1 0 0 0 0	-13 -1 0 0 0	-20 -5 0 0 0	7 -1 0 0 0	69 -5 0 0 0	272 -8 0 0 1	569 -2 0 0 1	978 18 0 2	1202 40 0 0	1032 92 0 0 1	665 113 0 0 0	156 54 5 0 0	252 30 6 0 0	126 20 6 0	62 1 2 0 0	12 1 2 0 0

Table 3.5 BFS-67-3R と-3RB の制御棒価値に対する感度係数

							BFS-6	7-3R (CONTRO	L ROD	WORTH							UN	IT:1.0	E-4
NUCL.	REACTION	TOTAL	18G	17G	16G	15G	14G	13G	12G	11G	10G	9G	8G	7G	6G	5G	4G	3G	2G	1G
U-235 U-235 U-235 U-235 U-235 U-235 U-235 U-235	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	1380 -16633 -11444 8 25 0 7	23 -109 -57 0 0 0 0	27 -123 -66 0 0 0	47 -267 -136 0 0 0 0	87 -523 -281 0 0 0 0	152 -970 -554 0 0 0 0	66 -490 -287 0 0 0 0	114 -842 -515 0 0 0 0	136 -1170 -763 1 0 0 0	165 -1501 -1025 2 0 0 0	186 -1902 -1343 4 -4 0 0	170 -2108 -1521 2 -10 0 0	113 -2097 -1545 0 -19 0 -1	63 1854 1399 -1 -25 0 0	18 -885 -666 0 -8 0 1	10 -836 -603 0 25 0 2	3 -622 -441 0 44 0 3	0 -255 -185 0 19 0 2	0 -79 -57 0 3 0 0
U-238 U-238 U-238 U-238 U-238 U-238 U-238 U-238	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	1411 -3049 -2360 -166 1148 -1 91	32 0 0 0 0 0 0 0	38 0 3 0 0 0	50 0 4 0 0 0	61 0 0 0 0 0 0	78 0 -33 0 0 0	156 0 4 0 0 0	159 0 -24 0 0 0	154 0 -46 0 0	134 0 -44 0 0 0	137 0 -12 -28 0 0	105 0 3 -17 0 -1	105 0 8 3 0 -3	112 -8 -7 -12 4 0 9	52 -92 -78 -2 73 0 4	26 -1132 -899 -4 434 0 16	10 1103 -835 -8 469 0 36	2 -522 -399 -3 175 0 23	0 - 192 - 142 0 35 - 1 7
PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239 PU-239	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-1280 9297 4903 61 95 0 -59	0 3 1 0 0 0	-5 23 13 0 0 0	-34 105 65 0 0 0	-110 381 236 -1 0 0	-207 700 442 -4 0 0 0	-89 267 169 -1 0 0	-156 582 363 -4 0 0	-169 843 501 -7 -2 0 0	-163 1077 597 -3 -1 0 0	-134 1185 591 9 -1 0 -1	-105 1104 483 18 0 0 -3	-72 1049 450 22 7 0 -8	-29 882 410 17 26 0 -12	-5 361 173 5 19 0 -6	-2 350 181 5 21 0 -9	0 258 147 4 18 0 -12	0 100 63 1 8 0 -7	0 27 18 0 0 -1
NP-237 NP-237 NP-237 NP-237 NP-237 NP-237 NP-237	CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	-659 267 160 -22 18 0 0	0 0 0 0 0 0 0	-2 0 0 0 0 0 0	-12 0 0 0 0 0 0	-45 0 0 0 0 0 0	-86 0 -2 0 0 0	-34 0 0 0 0 0 0	-68 0 -2 0 0 0	-92 1 0 -4 0 0 0	-105 2 1 -5 0 0 0	-98 2 1 -5 0 0 0	-65 3 1 -3 1 0 0	-36 8 4 -1 3 0 0	-13 68 39 0 8 0 0	-2 57 34 0 3 0 0	-1 58 35 0 2 0 0	0 45 29 0 1 0	0 18 12 0 0 0 0	0 5 4 0 0 0 0
BORON-10 BORON-10 BORON-10 BORON-10 BORON-10	CAPTURE ELAS.SCT INEL.SCT N2N MU-AVE.	5251 307 18 0 6	0 0 0 0 0	0 0 0 0 0	-3 0 0 0 0	-17 -2 0 0 0	-24 -6 0 0	8 -1 0 0 0	74 -6 0 0 0	280 -9 0 0 1	576 -3 0 1	975 16 0 2	1180 37 0 0 1	1005 86 0 0	638 100 0 0	145 46 4 0 0	232 28 5 0	115 19 5 0 0	56 1 2 0 0	11 1 2 0 0
							BFS-6	67-3RB	CONTR	ROL ROE	WORTH							UN	IT:1.0	E-4
NUCL.	REACTION	TOTAL	18G 1	17G ²	16G	15G 1	BFS-6 4G 13	37-3RB 3G 12	CONTF 2G 1 [°]	ROL ROE	WORTH	G 8(G 7(G 6	G (5G 4	4G	UN 3G	IT:1.0 2G	E-4 1G
NUCL. U-235 U-235 U-235 U-235 U-235 U-235 U-235 U-235	REACTION CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	TOTAL 1368 -16492 -11349 7 25 0 8	18G 1 23 -109 -57 0 0 0 0	26 -122 -66 0 0 0	47 -266 -136 0 0 0 0	15G 1 87 -522 -280 0 0 0 0 0	BFS-6 4G 13 151 -965 - -551 - 0 0 0 0 0	67 - 3RB 3G 12 66 487 - 285 - 0 0 0 0	CONTF 2G 1 ⁻ -113 -835 - -511 0 0 0 0	ROL ROE 1G 1 135 1159 - -756 - 1 0 0 0) WORTH 0G 9 164 1486 - 1014 - 1 0 0 0	G 80 184 1883 - 1329 - 4 -4 0 0		112 2077 1531 0 -19 0 0	62 -1838 -1388 -1 -25 0 0	5G 4 -878 -662 0 -8 0 1	4G -829 -599 0 25 0 2 2 0 2	UN 3G -617 -438 0 44 0 3	IT:1.0 2G -253 -184 0 19 0 2	E-4 1G -79 -56 0 3 0 0
NUCL. U-235 U-235 U-235 U-235 U-235 U-235 U-238	REACTION CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE. CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	TOTAL 1368 -16492 -11349 7 25 0 8 1575 -3063 -2370 -235 1098 -1 101	18G 1 23 -109 -57 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0	17G 26 -122 -66 0 0 0 0 39 0 39 0 3 30 0 0 0 0 0	16G 47 -266 -136 0 0 0 0 0 54 0 0 4 0 0 0 0	15G 1 87 -522 -280 0 0 0 0 0 0 77 0 0 0 -1 0 0 0	BFS-6 4G 13 -965 - -551 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	67-3RB 3G 1: 	CONTF 2G 1' 113 -511 0 0 0 0 0 180 0 0 -25 0 0 0	ROL ROE 11G 11 135 1159 - -756 - 1 0 0 0 0 - 183 0 0 - 52 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WORTH 00G 9 164 1486 - 1014 - 1 0 0 0 162 0 0 -57 0 0 1	G 8(1883 - 1329 - 4 -4 0 0 154 0 0 -30 -31 0 1	168 2087 - 1506 - 2 -10 0 0 -11 -22 0 0 -11 -22 0 0	G 6 112 2077 1531 0 -19 0 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 0 -19 0 0 0 0 0 0 0 0 0 0 0 0 0	G -1838 -1388 -1 -25 0 0 114 -8 -7 -16 -2 0 12	5G 18 -878 -662 0 -8 0 1 52 -92 -92 -92 61 0 5	4G 10 -829 -599 0 25 0 2 26 -1137 -903 -4 424 0 16	UN 3G -617 -438 0 44 0 3 -1108 -8 -8 463 0 36	IT:1.0 2G -253 -184 0 19 0 2 -525 -401 -3 174 0 23	E-4 1G 0 -79 -56 0 3 0 -193 -143 0 35 -1 7
NUCL. 	REACTION CAPTURE NU FISSION ELAS.SCT N2N MU-AVE. CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE. CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	TOTAL 1368 -16492 -11349 7 25 0 8 1575 -3063 -2370 -235 1098 -1 101 -1194 9062 4841 48 88 0 -59	186 1 23 -109 -57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17G 26 -122 -122 -122 -66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47 -266 -136 0 0 0 54 0 0 0 4 0 0 0 -28 91 58 0 0 0 0 0 0 0 0 0	15G 1 87 -522 -280 0 0 0 0 0 77 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -346 219 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BFS-6 4G 12 151 -965 -551 - 0 0 0 0 0 0 -34 0 0 0 -34 0 0 0 186 652 421 - 4 0 0 0	57-3RB 36 12 66 66 487 - -285 0 0 0 0 0 0 0 0 0 166 0 0 0 0 0 0 0 0 0 0 0 0 0	CONTF 2G 1 113 835 - 511 0 0 0 0 180 0 0 -25 0 0 0 -25 0 0 0 0 -25 560 358 -50 0 0 0	COL ROD 11G 1 1159 - 1159 - 159 - 159 - 100 0 0 183 0 0 0 -52 0 0 0 -552 0 0 0 -552 0 0 0 -556 0 0 0 -556 0 0 0 0 -556 0 0 0 0 0 -556 0 0 0 0 0 0 0 0 0 0 0 0 0) WORTH 	G 88 184 1883 - 1329 - 4 -4 0 0 -30 -30 -30 -30 -31 0 1 -130 11776 601 5 -1 0 0 0	168 2087 - 1506 - 2 -10 0 0 -11 -22 0 0 -11 -22 0 0 -11 -103 150 -103 1102 493 15 0 0 -3	3 6 112 2077 1531 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 -19 0 0 	G 62 -1838 -1388 -1388 -1388 -1 -25 0 0 0 -12 -29 -29 868 400 17 -29 868 400 17 -23 -29 -29 868 400 -12	18 -878 -662 0 -8 0 1 5 5 -2 61 0 5 -5 353 167 5 18 0 -6	46 10 -829 -599 0 25 0 2 26 -1137 -903 -4 424 424 0 0 16 -2 342 174 6 20 0 -10 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	UN 3G 2 -617 4388 -838 -838 -838 -838 -838 -838 -8	IT: 1.0 26 0 -253 -184 0 19 0 2 2 -525 -401 -3 174 0 23 174 0 23 8 60 1 8 8 60 -7	E-4 1G 0 -79 -566 0 3 0 0 -193 -143 0 355 -1 -1 -7 0 0 27 18 0 0 -19 -18 -19 -19 -19 -19 -19 -19 -19 -19
NUCL. 	REACTION CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE. CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE. CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE. CAPTURE NU FISSION ELAS.SCT INEL.SCT N2N MU-AVE.	TOTAL 1368 -16492 -11349 7 25 0 8 1575 -3063 -2375 1098 -1 101 -1194 9062 4841 48 88 0 0 -59 -872 383 221 -21 22 0 0 0 0 0 0 0 0 0 0 0 0 0	186 1 233 -109 -57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17G 266 -122 -666 0 0 0 0 0 39 0 0 0 39 0 0 0 0 -122 -666 0 0 0 0 0 -122 -666 0 0 0 0 0 -122 -666 0 0 0 0 0 0 0 0 0 0 0 0 0	16G 47 -266 -136 0 0 0 0 0 54 0 0 0 0 0 -28 91 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15G 1 87 -522 -280 0 0 0 0 0 77 0 0 -1 0 0 -96 346 219 -1 0 0 -566 0 0 0 0 0	BFS-6 4G 12 151 -965 -551 -0 0 0 0 0 -0 103 0 0 -34 0 0 0 -34 0 0 -34 421 -4 0 0 0 -108 -108 -100 -100 -100 -100 -10	57-3RB 66 66 487 -285 0 0 0 0 0 0 0 0 0 0 0 0 0	CONTF 2G 1 113 835 - 511 0 0 0 180 0 0 180 0 0 -25 0 0 0 -25 0 0 0 -25 560 0 0 -25 560 0 0 -25 -5 0 0 0 25 -5 1 	ROL ROL 1G 1 135 1 1159 - 756 - 1 0 0 0 183 0 -756 - 183 0 0 - 188 20 0 0 158 820 0 - 119 2 1 -4 0 0	0 WORTH 	G 88 184 1883 - 4 -1329 - 4 -4 0 0 -30 0 1 -130 1176 601 5 -1 0 0 -135 4 2 -5 0 0 0 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 -31 0 0 0 0 0 0 -31 0 0 0 0 0 0 0 -31 0 0 0 -31 0 0 0 0 0 0 0 0 0 0 0 0 0	-103 -102 -10 0 -112 -10 0 0 -112 -10 0 0 -112 -103 -112 -103 -112 -103 -112 -103 -112 -103 -103 -102 -103 -103 -102 -103 -103 -102 -22 -33 0 0 -33 -33 -33 0 0 -33 -33	3 6 112 2077 1531 0 0 109 0 0 -3 -4 0 0 -3 -4 0 0 -7 104 104 109 -3 -4 0 0 -3 -4 0 0 -3 -4 5 0 0 0 0 0 -3 -4 5 0 0 0 0 0 0 0 0 0 0 0 0 0	G 62 -1838 -1388 -1388 -1388 -1388 -1388 -16 -20 0 0 -114 -8 -7 -6 -2 0 0 12 -29 868 400 -12 -29 868 400 -17 23 0 0 -12 -19 9 9 9 9 0 0 0 -12 -12 -19 -12 -13 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	56 18 -878 -662 0 -8 0 -8 0 1 52 -92 -78 -22 61 0 -5 363 167 5 188 0 -6 -3 81 47 0 0	46 10 -829 0 25 0 25 0 25 -1137 -903 -4 424 40 0 16 -10 -2 342 174 6 20 0 0 -1 -1 -2 -4 424 424 424 42 42 42 6 0 0 0 0 2 -2 -2 -2 -2 -2 -2 -2 -2 -2	UN 36 2 -617 -4388 0 44 0 3 36 -1108 -838 -88 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -0 252 2143 36 -0 252 2143 -13 -0 -13 -0 -13 -0 -13 -0 -13 -0 -13 -0 -13 -0 -10 -0 -10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	IT: 1.0 -26 0 -253 -184 0 19 0 2 -525 -401 -3 174 0 23 -7 0 98 60 1 8 8 0 -7 -7 0 0 -7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	E-4 1G 0 -79 -566 0 0 -193 0 0 -193 0 355 -11 7 0 27 18 0 0 0 -193 8 0 0 -193 -143 0 0 -193 -143 0 0 -193 -143 0 0 -193 -143 0 0 -193 -143 -143 -143 -143 -145 -155 -145 -155 -145 -155 -145 -155

(注4)燃料領域の網掛け部分は、Naボイド領域。

Fig.3.1 Na ボイド反応度解析用 RZ モデル

Fig.3.3 Np-237とU-238の捕獲断面積の比較

第4章 BFS-67 臨界実験の解析

BFS-67 の 4 つの炉心(BFS-67-1R、-2R、-3R、-3BR)で測定された主要核特性(臨界性、 Na ボイド反応度、制御棒価値、炉心中心反応率比)の解析手法及び結果を述べる。

4.1 解析手法

解析は BFS-62 体系での臨界実験解析^[4]と同様、3 次元 Hex-Z 体系の拡散計算結果を基準 計算値とし、輸送補正などを適用して最確計算値を求めた。

4.1.1 原子個数密度の算出

BFS-67 体系の実験情報には BFS-62 体系と同様ペレット内部の構造についての情報が存在 しないため、以下の考え方に基づきミート部及びシェル部(被覆)の高さ、密度を算出し た。また、格子計算を1次元体系で実施する都合上、ペレットの側面部のシェル及びチュ ーブ、SUS スティックをミート部を挟む上下領域に含めた。(プレートストレッチモデル、 Fig.4.1)

ペレット内のミート部とシェル部の高さは、ペレットの寸法、各部の重量及び密度デ ータを基に算出する。

ペレット内のミート部とシェル部間の空隙はシェルに含め、シェルの密度を希釈する。

参考までに Np 装荷領域(LEZ 領域)の均質原子個数密度を Table 4.1 に示す。Np の装荷に よって U238 の原子個数密度が減少し、その分 Np-237 の原子個数密度が加わっていること が確認できる。置換に伴い AL や Fe の密度も変化しているが核特性への影響は感度が小さ く無視できる。

4.1.2 格子計算

格子計算は燃料・非燃料ともに格子計算コード CASUP^[3]を使用した。炉定数には高速炉用 70 群炉定数 JFS-3-J3.2R を用い、燃料を含むセル(ブランケットを除く)については1次 元非均質計算を実施し、臨界バックリングを設定した。非均質セルのバックグラウンド断 面積の算出には TONE の手法^[5]を用いた。

4.1.3 基準計算

体系計算は6角体系用拡散計算コード MINIHEX^[7]を用いてエネルギー18群3次元 Hex-Z 体系で実施した。燃料領域の拡散係数には Benoist の異方性拡散係数^[6]を用い、 スペクト ルには領域依存性を考慮した。エネルギー70群から18群への縮約には2次元 RZ 拡散計算 で求めたスペクトルを用いた。反応度の単位変換に用いる実効遅発中性子割合は、摂動計 算コード PERKY^[3]に Tuttle(1979)の Yield、Saphier(1977)の遅発中性子スペクトル、 Keepin(1965)の比率、崩壊定数^[3]を用いて評価した。

Na ボイド反応度については PERKY を用いた厳密摂動計算で評価した。

制御棒価値については制御棒挿入前後の実効増倍率から反応度を算出した。制御棒の挿 入モデルについては Fig.4.2 に示す SUPORT 部を無視したモデルを使用した。この影響につ いては無視できることを基準計算値で確認している。

反応率比については拡散計算で得られた炉心中心位置での中性子スペクトルにその位置 で使用された燃料セルのセル平均実効ミクロ断面積を乗じ、エネルギー群で総和した反応 率から評価した。

4.1.4 補正計算

補正値としては、輸送・メッシュ効果と次世代炉定数効果を考慮した。反応率比については加えてセルファクターも考慮した。臨界性については輸送・メッシュ効果における輸送効果、メッシュ効果それぞれの寄与も評価した。Naボイド反応度については漏洩項、非漏洩項に区分して補正した。

(1)輸送・メッシュ効果

臨界性については、3次元 Hex-Z 体系計算によって、その他の核特性については2次元 輸送計算コード TWOTRAN^[3]を用いた2次元 RZ 計算によって輸送計算値を求めた。いずれ の場合もエネルギー18 群とし、約5cm / メッシュ、Pn 次数は0、 スペクトルには Pu 領 域のものを全領域に適用した。輸送効果におけるメッシュ効果は無視できることを確認 している。

Sn 次数については、臨界性、反応率比については S4 を、その他の核特性については BFS-67-1R 炉心でのパラメータサーベイに基づき S8 を無限メッシュ、無限 Sn の結果に相 当するものとした。

輸送・メッシュ効果を算出するための拡散計算値には Benoist の等方拡散係数、Pu 領域の スペクトルを使用した結果を使用した。

輸送・メッシュ効果は得られた輸送計算値と拡散計算値による核特性の比によって評価した。

臨界性については、輸送・メッシュ効果の内訳も評価した。3次元 Hex-Z と Tri-Z の拡 散計算を実施し、両者の結果から無限メッシュ相当値を算出し、メッシュ効果を評価した。各体系計算ともに、エネルギー群(18群)拡散係数(Benoist の等方拡散係数)

スペクトル (Pu 領域のものを全炉心に適用)とした。輸送効果は輸送・メッシュ効果 からメッシュ効果を差し引いて評価した。

(3)セルファクター

反応率比のみに考慮するものである。対象核種がセル内に均質に薄く分布している場合と、燃料セル内のペレット構成に従って分布している場合の2種類のセル平均反応率を CASUP によって評価し、それらの比をセルファクターとする。前者は核分裂計数管に

よる測定値に、後者は基準計算値に対応する。その比で基準計算値を補正することによって測定値に対応する反応率が得られる。

なお、反応率比がウラン箔で測定されている場合は、箔が局所的に設置されるため、 軸方向に均質分布しているとは言い難いが、Fig.2.5のように箔は複数位置に設置されて いるため、セル全体に箔が挿入されているものと見なし、核分裂計数管に対する場合と 同じセルファクターを適用した。

(4)次世代炉定数効果

次世代炉定数は 41keV 以下を超微細群 (91500 群) 炉定数、41keV 以上を遮へい解析用 炉定数 VITAMIN-J の 175 群構造で扱うことにより、断面積の共鳴構造等を正確に考慮す ることができる炉定数である^[8]。

臨界性については 3 次元 Hex-Z 拡散計算を、その他の核特性については 2 次元 RZ 拡散 計算によって次世代炉定数を用いた計算値を求めた。いずれの場合もエネルギー群は 175 群である。燃料領域の拡散係数には Benoist の非等方拡散係数を用い、 スペクトルに は領域依存性を考慮した。次世代炉定数を用いた場合と JFS-3-J3.2R を用いた場合の評 価結果の比を次世代炉定数効果とした。

4.2 解析結果

4.2.1 臨界性

Table 4.2 に臨界性の解析結果を示す。C/E 値は平均 0.995 で炉心間のばらつきも少ない。 補正係数についても各炉心で同程度の値となっている。

次世代炉定数効果は 0.1%未満と小さい。参考までに BFS-62-5 炉心では約 0.3%である。 BFS-67 体系では中性子スペクトルが硬いためエネルギー10keV 以下の寄与が小さく、共鳴 の扱いを改善する効果が現れにくいものと考えられる。

4.2.2 Na ボイド反応度

Table 4.3 に Na ボイド反応度の解析結果を示す。BFS-67-2R 炉心についての解析値は実 験値と実験誤差の範囲で一致しているが、BFS-67-1R 炉心では 12%の過大評価となった。過 大評価の原因としては、反応度が小さく、かつ漏洩成分と非漏洩成分の絶対値差が小さい ことが考えられる。解析値と実験値の差でみると、BFS-67-1R 炉心では 0.8cent、BFS-67-2R 炉心では 0.2cent とともに 1cent 以内に収まっている。

Np の装荷(BFS-67-1R から BFS-67-2R への変化)によってボイド反応度の実験値は約3 倍(反応度差で約+13cents)になっている。Table 4.4 に解析値でボイド反応度の内訳を示 すが、散乱項(散乱の減少に伴うスペクトルの硬化による寄与)に差異が現れていること が分かる。その差異の分析として Fig.4.3 には散乱項のエネルギー毎の内訳を示すが、 BFS-67-2R では 30keV 以上での正の効果が大きく、30keV 以下での負の効果が小さくなって おり、中性子スペクトルが Np の装荷により硬くなることが影響していることが分かる。

Np 装荷に伴うボイド反応度の変化 13cents に対し解析精度の炉心間の差異は 1cent 以内

であり、Npを装荷しても Na ボイド反応度の解析精度に影響は現れないといえる。

4.2.3 制御棒価値

Table 4.5 に結果をまとめて、Table 4.6~4.9 には炉心毎に解析結果の詳細を示す。補 正値のうち次世代炉定数効果については BFS-67-1R 炉心の結果で 1.00 (効果なし)と得ら れたため、炉心依存性も無視できるものと判断し、その他の炉心についても適用していな い。

濃縮 B₄C の制御棒については実験値と実験誤差約 5%以内で一致し、Np 装荷に伴う解析精度の差異も現れていない。一方、天然 B₄C の制御棒については最大 10%の過大評価となっている。炉心毎の C/E 値の平均及び分散を見ると、天然 B₄C の結果は濃縮 B₄C のものに比べて概して過大評価となっていることが確認できる。炉心間のばらつきはいずれの場合も数%以内であり、Np 装荷の影響は現れていないことが分かる。

4.2.4 炉心中心反応率比

Table 2.1 に示した 14 種類の反応率比のうち、主要な核種である 11 種類について解析した。

Fig.4.4 には各炉心の C/E 値をまとめて、Table 4.10~4.12 には炉心毎に解析結果の詳細を示す。輸送・メッシュ効果および次世代炉定数効果は、BFS-67-1R 炉心で評価した結果、効果が小さいためその他の炉心では考慮していない。

Fig.4.4 より核分裂反応(F28 など)の反応率比については C/E 値の 1.0 からのずれはほ ぼ実験誤差(数%)の範囲にあることが分かる。捕獲反応(C28 など)を含む反応率比につ いては炉心によっては 5%を超えるずれが現れている。この原因としてはセルファクターを セル全体に箔が挿入されていると見なして評価したことが考えられる。

Fig.4.5 及び 4.6 には Np の装荷に伴う反応率比の変化(BFS-671R 炉心での反応率との差 異)を実験値と解析値で比較した。

BFS-67-2R(Fig.4.5)、BFS-67-3BR(Fig.4.6)いずれの炉心の場合でも核分裂反応率比については Np 装荷に伴う変化を解析で再現できていることが確認できる。一方、捕獲反応を含む反応率比については解析値が差異を負側に評価する傾向があり、やはりセルファクターに課題があることを示唆している。

応秳	BES_67_1P	BES_67_2P	BES-67-30 -380	BFS-67-1R	からの変化
们又们里	BF3-07-TK	BF3-07-2K	DF3-07-3K,-3DK	BFS-67-2R	BFS-67-3R,-3BR
U-235	2.1688E-05	1.8086E-05	2.0200E-05	0.0000	0.0000
U-238	5.1946E-03	4.3295E-03	4.8374E-03	-0.0009	-0.0004
Pu-239	1.1728E-03	1.1766E-03	1.1714E-03	0.0000	0.0000
Pu-240	5.6803E-05	5.6988E-05	5.6737E-05	0.0000	0.0000
Pu-241	3.1081E-06	3.1183E-06	3.1046E-06	0.0000	0.0000
Np-237	0.0000E+00	8.4128E-04	4.1878E-04	0.0008	0.0004
Н	3.2919E-06	3.3027E-06	3.2881E-06	0.0000	0.0000
С	2.6403E-04	2.5820E-04	2.6114E-04	0.0000	0.0000
0	1.0479E-02	1.0388E-02	1.0585E-02	-0.0001	0.0001
Na	6.8346E-03	6.8569E-03	6.8267E-03	0.0000	0.0000
AI	2.2230E-03	1.5664E-03	1.6285E-03	-0.0007	-0.0006
Ti	9.0267E-05	8.0158E-05	8.6144E-05	0.0000	0.0000
Cr	2.4135E-03	2.1431E-03	2.3032E-03	-0.0003	-0.0001
Mn	1.5112E-04	1.2980E-04	1.4242E-04	0.0000	0.0000
Fe	8.8344E-03	7.8627E-03	8.4372E-03	-0.0010	-0.0004
Ni	1.1287E-03	1.0023E-03	1.0771E-03	-0.0001	-0.0001
Ga	7.0924E-05	7.1156E-05	7.0842E-05	0.0000	0.0000
Si	8.4606E-05	8.4606E-05	8.4606E-05	0.0000	0.0000

Table 4.1 Np 装荷領域(LEZ 領域)の均質原子個数密度

(unit :10⁻²⁴/cm³)

	BFS-67-1R	BFS-67-2R	BFS-67-3R	BFS-67-3BR
基準計算值(3次元Hex-Z、18群、 Benoist-D)	0.99160	0.99122	0.99153	0.99095
輸送計算値(3次元Hex-Z、18群)	0.99832	0.99782	0.99809	0.99753
等方拡散計算(3次元Hex-Z、18群、 Disotropic)	0.99481	0.99427	0.99458	0.99402
径メッシュ増計算(3次元Tri-Z、18群、 Benoist-D)	0.99075	同左	同左	同左
軸メッシュ増計算(3次元Tri-Z、18群、 Benoist-D)	0.99096	同左	同左	同左
次世代炉定数計算值(3次元Hex- Z、175群、Benoist-D)	0.99212	0.99178	0.99209	0.99151
メッシュ補正	-0.00179	-0.00179	-0.00179	-0.00179
輸送補正	0.00530	0.00534	0.00531	0.00531
次世代炉定数効果	0.00052	0.00057	0.00056	0.00056
補正後計算值	0.99563	0.99533	0.99560	0.99502
実験値	1.00038	1.00034	1.00038	1.00048
C/E値	0.9912	0.9909	0.9911	0.9905
補正後C/E値	0.9953	0.9950	0.9952	0.9945
平均C/E值		0.9950	± 0.0003	

Table 4.2 臨界性の解析結果

Table 4.3 Na ボイド反応度の解析結果

(BFS-67-1R 炉心)

	Non-Leakage (k/kk')	Leakage (k/kk')	Total (k/kk')	Total(¢)	C/E value
Base calc. ^(*1)	6.19E-04	-2.32E-04	3.87E-04	7.1	1.14
Transport&mesh correction factor	1.02	0.87			
Transport calc. ^(*2)	6.35E-04	-1.99E-04			
Isotropic Diffusion calc. ^(*2)	6.23E-04	-2.28E-04			
UF correction factor	0.94	1.04			
UF constant 175g calc. ^(*3)	5.78E-04	-2.33E-04			
JFS-3-J3.2R 70g calc. ^(*3)	6.16E-04	-2.24E-04			
Corrected calc.	5.93E-04	-2.11E-04	3.82E-04	7.0	1.12
					Exp. Error
Experiment value				6.2	4.8%

(BFS-67-2R 炉心)

	Non-Leakage (k/kk')	Leakage (k/kk')	Total (k/kk')	Total(¢)	C/E value
Base calc. ^(*1)	1.21E-03	-2.60E-04	9.55E-04	17.6	0.94
Transport&mesh correction factor	1.03	0.86			
Transport calc. ^(*2)	1.24E-03	-2.15E-04			
Isotropic Diffusion calc. ^(*2)	1.21E-03	-2.51E-04			
UF correction factor	0.98	0.97			
UF constant 175g calc. ^(*3)	1.18E-03	-2.58E-04			
JFS-3-J3.2R 70g calc. ^(*3)	1.20E-03	-2.67E-04			
Corrected calc.	1.22E-03	-2.15E-04	1.01E-03	18.6	0.99
					Exp. Error
Experiment value				18.8	4.3%

(*1)Hex-Z system,70groups,Benoist-D,Region X

(*2)RZ system,70groups,Dave

(*3)RZ system,175groups & 70groups,Benoist-D,Region X

(*4)Effective delaied neutron ratio, BFS-67-1R=5.48E-03, BFS-67-2R=5.42E-03

(*5)Exact perturbation in calculation

₹*1

CODE			非漏洩項			定油店	스늭
CORE	生成項	核分裂項	捕獲項	散乱項	小計		
BFS-67-1R	-0.00029	0.00009	0.00020	0.00062	0.00062	-0.00022	0.00039
BFS-67-2R	-0.00028	0.00009	0.00012	0.00127	0.00120	-0.00027	0.00093
差異 (2R-1R)	0.00002	0.00000	-0.00008	0.00065	0.00058	-0.00004	0.00054

*1 : 基準計算値による評価

(unit: dk/kk')

		Absorbe	r type and heig	ght of absorbe	r column
	炉心名	B ₄ C enr.	B ₄ C enr.	B ₄ C nat.	B ₄ C nat.
		(38.13cm)	(19.16cm)	(38.08cm)	(19.05cm)
	BFS-67-1R	-2.16	-1.26	-0.88	-0.49
宝聆値(¢)	BFS-67-2R	-2.06	-1.15	-0.79	-0.43
	BFS-67-3R	-2.10	-1.20	-0.81	-0.46
	BFS-67-3BR	-2.13	-1.20	-0.83	-0.46
	BFS-67-1R	-2.17	-1.24	-0.91	-0.49
基準計算値	BFS-67-2R	-2.04	-1.18	-0.83	-0.47
(\$)	BFS-67-3R	-2.09	-1.22	-0.87	-0.49
	BFS-67-3BR	-2.06	-1.20	-0.85	-0.48
	BFS-67-1R	0.99	1.00	1.01	1.02
輸送・メッ	BFS-67-2R	0.97	0.98	1.00	1.00
シュ効果	BFS-67-3R	0.98	0.99	1.01	1.02
	BFS-67-3BR	0.98	0.99	1.01	1.01
	BFS-67-1R	-2.14	-1.24	-0.93	-0.51
最確計算値	BFS-67-2R	-1.97	-1.16	-0.84	-0.47
(\$)	BFS-67-3R	-2.05	-1.21	-0.88	-0.50
	BFS-67-3BR	-2.02	-1.19	-0.86	-0.49
	BFS-67-1R	0.99	0.98	1.06	1.03
○/⊑値	BFS-67-2R	0.96	1.01	1.06	1.10
	BFS-67-3R	0.97	1.01	1.08	1.10
	BFS-67-3BR	0.95	0.99	1.04	1.07
平均	BC/E値	0.97	1.00	1.06	1.08
C/E	值分散	0.02	0.01	0.02	0.03

Table 4.5 制御棒価値の解析結果まとめ

	Absorbe	Absorber type and height of absorber column							
	B4C enr. (38.13cm)	B4C enr. (19.16cm)	B4C nat. (38.08cm)	B4C nat. (19.05cm)					
Base calc.(\$) ^(*1)	-2.17	-1.24	-0.914	-0.493					
keff in CR withdraw	0.98964								
keff in CR inserted	0.97811	0.98303	0.98476	0.98700					
Reactivity(k/kk')	-1.19E-02	-6.79E-03	-5.01E-03	-2.70E-03					
Transport&mesh correction factor	0.99	1.00	1.01	1.02					
Transport calc. ^(*2)									
keff in CR withdraw	0.99731								
keff in CR inserted	0.98432	0.98982	0.99210	0.99445					
Reactivity(k/kk')	-1.32E-02	-7.59E-03	-5.26E-03	-2.88E-03					
Isotropic Diffusion calc. ^(*2)									
keff in CR withdraw	0.99290								
keff in CR inserted	0.97990	0.98548	0.98781	0.99012					
Reactivity(k/kk')	-1.34E-02	-7.58E-03	-5.19E-03	-2.83E-03					
UF correction factor	1.00	1.00	1.00	1.01					
UF constant 175g calc. ^(*3)									
keff in CR withdraw	0.99149								
keff in CR inserted	0.97757	0.98331	0.98595	0.98827					
Reactivity(k/kk')	-1.44E-02	-8.39E-03	-5.67E-03	-3.29E-03					
JFS-3-J3.2R 18g calc. ^(*3)									
keff in CR withdraw	0.99091								
keff in CR inserted	0.97694	0.98272	0.98538	0.98773					
Reactivity(k/kk')	-1.44E-02	-8.40E-03	-5.66E-03	-3.25E-03					
Corrected calc.(\$)	-2.14	-1.24	-0.928	-0.507					
Experiment value (\$)	-2.16	-1.26	-0.879	-0.493					
Exp. Error(%)	5.6	4.8	4.4	4.3					
C/E	1.01	0.98	1.040	1.000					
Final C/E	0.99	0.98	1.06	1.03					

Table 4.6 制御棒価値の解析結果(BFS-67-1R)

(*1)Hex-Z system,18groups,Benoist-D,Region X

(*2)RZ system,18groups,Dave

(*3)RZ system,175groups&18groups,Benoist-D,Region X

(*4)Effective delaied neutron ratio = 5.48E-03

	Absorber type and height of absorber column						
	B4C enr.	B4C enr.	B4C nat.	B4C nat.			
(*4)	(38.13cm)	(19.16cm)	(38.08cm)	(19.05cm)			
Base calc.(\$) ⁽¹⁾	-2.04	-1.18	-0.832	-0.471			
keff in CR withdraw	0.98925						
keff in CR inserted	0.97857	0.98301	0.98486	0.98676			
Reactivity(k/kk')	-1.10E-02	-6.42E-03	-4.51E-03	-2.55E-03			
Transport&mesh correction factor	0.97	0.98	1.00	1.00			
Transport calc. ^(*2)							
keff in CR withdraw	0.99678						
keff in CR inserted	0.98498	0.99007	0.99218	0.99429			
Reactivity(k/kk')	-1.20E-02	-6.80E-03	-4.65E-03	-2.51E-03			
Isotropic Diffusion calc. ^(*2)							
keff in CR withdraw	0.99238						
keff in CR inserted	0.98036	0.98560	0.98783	0.98992			
Reactivity(k/kk')	-1.23E-02	-6.93E-03	-4.63E-03	-2.50E-03			
UF correction factor	1.00	1.00	1.00	1.00			
UF constant 175g calc. ^(*3)							
keff in CR withdraw	0.98968						
keff in CR inserted	0.97759	0.98287	0.98509	0.98709			
Reactivity(k/kk')	-1.25E-02	-7.01E-03	-4.72E-03	-2.66E-03			
JFS-3-J3.2R 18g calc. ^(*3)							
keff in CR withdraw	0.98916						
keff in CR inserted	0.97703	0.98231	0.98457	0.98657			
Reactivity(k/kk')	-1.26E-02	-7.04E-03	-4.71E-03	-2.65E-03			
Corrected calc.(\$)	-1.97	-1.16	-0.837	-0.474			
Experiment value(\$)	-2.06	-1.15	-0.787	-0.433			
Exp. Error(%)	5.8	5.2	4.4	3.9			
C/E	0.99	1.03	1.06	1.09			
Final C/E	0.96	1.01	1.06	1.10			

Table 4.7 制御棒価値の解析結果(BFS-67-2R)

(*1)Hex-Z system,18groups,Benoist-D,Region X (*2)RZ system,18groups,Dave (*3)RZ system,175groups&18groups,Benoist-D,Region X (*4)Effective delaied neutron ratio = 5.42E-03

	Absorbe	r type and heig	ght of absorbe	Absorber type and height of absorber column						
	B4C enr. (38.13cm)	B4C enr. (19.16cm)	B4C nat. (38.08cm)	B4C nat. (19.05cm)						
Base calc.(\$) ^(*1)	-2.09	-1.22	-0.866	-0.493						
keff in CR withdraw	0.98959									
keff in CR inserted	0.97858	0.98312	0.98499	0.98697						
Reactivity(k/kk')	-1.14E-02	-6.65E-03	-4.72E-03	-2.68E-03						
Transport&mesh correction factor	0.98	0.99	1.01	1.02						
Transport calc. ^(*2)										
keff in CR withdraw	0.99668									
keff in CR inserted	0.98439	0.98963	0.99182	0.99402						
Reactivity(k/kk')	-1.25E-02	-7.15E-03	-4.93E-03	-2.69E-03						
lsotropic Diffusion calc. ^(*2)										
keff in CR withdraw	0.99227									
keff in CR inserted	0.97985	0.98523	0.98749	0.98968						
Reactivity(k/kk')	-1.28E-02	-7.20E-03	-4.87E-03	-2.64E-03						
UF correction factor	1.00	1.00	1.00	1.00						
Corrected calc.(\$)	-2.05	-1.21	-0.876	-0.502						
Experiment value(\$)	-2.10	-1.20	-0.809	-0.455						
Exp. Error(%)	5.7	5.0	4.3	4.4						
C/E	0.99	1.02	1.07	1.08						
Final C/E	0.97	1.01	1.08	1.10						

Table 4.8 制御棒価値の解析結果(BFS-67-3R)

(*1)Hex-Z system,18groups,Benoist-D,Region X

(*2)RZ system,18groups,Dave (*3)RZ system,175groups&18groups,Benoist-D,Region X

(*4)Effective delaied neutron ratio = 5.45E-03

	Absorber type and height of absorber column			
	B4C enr. (38.13cm)	B4C enr. (19.16cm)	B4C nat. (38.08cm)	B4C nat. (19.05cm)
Base calc.(\$) ^(*1)	-2.06	- 1.20	-0.852	-0.484
keff in CR withdraw	0.98902			
keff in CR inserted	0.97821	0.98268	0.98452	0.98646
Reactivity(k/kk')	-1.12E-02	-6.52E-03	-4.62E-03	-2.62E-03
Transport&mesh correction factor	0.98	0.99	1.01	1.01
Transport calc. ^(*2)				
keff in CR withdraw	0.99629			
keff in CR inserted	0.98428	0.98943	0.99156	0.99372
Reactivity(k/kk')	-1.22E-02	-6.96E-03	-4.79E-03	-2.60E-03
Isotropic Diffusion calc. ^(*2)				
keff in CR withdraw	0.99190			
keff in CR inserted	0.97975	0.98502	0.98725	0.98938
Reactivity(k/kk')	-1.25E-02	-7.04E-03	-4.76E-03	-2.57E-03
UF correction factor	1.00	1.00	1.00	1.00
Corrected calc.(\$)	-2.02	-1.19	-0.858	-0.489
Experiment value(\$)	-2.13	-1.20	-0.825	-0.455
Exp. Error(%)	6.1	5.0	4.4	4.4
C/E	0.97	1.00	1.03	1.06
Final C/E	0.95	0.99	1.04	1.07

Table 4.9 制御棒価値の解析結果(BFS-67-3BR)

(*1)Hex-Z system,18groups,Benoist-D,Region X

(*2)RZ system,18groups,Dave (*3)RZ system,175groups&18groups,Benoist-D,Region X

(*4)Effective delaied neutron ratio = 5.42E-03

Reaction Type	Base Calc.	Cell factor	Transport · mesh correctio n factor	UF correctio n factor	Corrected calc.	Exp.	C/E	Exp. Error(%)
F28/F25	0.033	1.016	0.999	1.006	0.033	0.032	1.034	1.9
F49/F25	1.006	0.987	1.000	1.002	0.995	1.003	0.992	1.0
F37/F49	0.234	1.012	0.999	1.003	0.237	0.236	1.004	2.1
F48/F49	0.669	1.012	1.000	1.002	0.678	0.644	1.052	3.0
F40/F49	0.280	0.917	0.999	1.002	0.257	0.246	1.044	1.6
F41/F49	1.334	1.008	1.000	0.997	1.341	1.314	1.020	1.3
F42/F49	0.185	1.012	0.999	1.001	0.187	0.181	1.033	1.7
F51/F49	0.197	1.012	0.999	0.999	0.199	0.203	0.981	2.0
C28/F25	0.130	1.016	1.000	0.996	0.132	0.134	0.983	2.2
C37/C28	6.134	0.982	1.000	0.999	6.018	5.520	1.090	4.0
C37/F25	0.798	0.998	1.000	0.995	0.793	0.750	1.057	2.7

Table 4.10 反応率比の解析結果(BFS-67-1R)

Table 4.11 反応率比の解析結果(BFS-67-2R)

Reaction Type	Base Calc.	Cell factor	Exp.	C/E	Exp. Error(%)
F28/F25	0.037	1.034	0.038	1.013	1.8
F49/F25	1.035	0.981	1.038	0.979	1.0
F37/F49	0.261	0.993	0.258	1.004	2.3
F48/F49	0.690	1.019	0.670	1.050	3.0
F40/F49	0.297	0.937	0.267	1.043	1.5
F41/F49	1.297	1.010	1.273	1.028	1.3
F42/F49	0.202	1.019	0.199	1.034	1.5
F51/F49	0.217	1.019	0.224	0.988	1.8
C28/F25	0.129	1.018	0.135	0.969	2.2
C37/C28	5.670	1.000	5.350	1.060	3.9
C37/F25	0.729	1.018	0.710	1.045	2.8

Table 4.12 反応率比の解析結果(BFS-67-3BR)

Reaction Type	Base Calc.	Cell factor	Exp.	C/E	Exp. Error(%)
F28/F25	0.035	1.030	0.036	1.015	2.0
F49/F25	1.025	0.984	1.024	0.986	1.1
F37/F49	0.254	0.984	0.248	1.008	2.4
F48/F49	0.682	1.016	0.661	1.047	3.0
F40/F49	0.290	0.928	0.260	1.037	1.5
F41/F49	1.309	1.009	1.285	1.028	1.0
F42/F49	0.195	1.016	0.193	1.027	1.6
F51/F49	0.209	1.016	0.217	0.979	1.8
C28/F25	0.129	1.014	0.139	0.942	2.2
C37/C28	5.733	1.015	5.500	1.058	3.8
C37/F25	-	-	-	-	-

Fig.4.1 集合体に対するプレートストレッチモデルの適用概念図

Fig.4.2 解析で使用した制御棒モデル (unit:cm)

Fig.4.3 Na ボイド反応度の散乱項の炉心間での比較

Fig.4.4 反応率比 C/E 値の炉心間の比較

BFS-67-2R実験値

BFS-67-2R解析值

Fig.4.6 Np 装荷による反応率比の変化の比較(BFS-67-3BR)

第5章 結言

「多量の Np を種々の臨界集合体に添加したときの炉物理特性の変化に関する研究」に関する共同研究(平成 13 年度~15 年度)の第1 報として契約1 年目で入手した BFS-67 体系に関する実験情報とそれを基に JNC で実施した解析結果をまとめた。

BFS-67 体系では Np の装荷量(最大 10kg)や装荷位置を変えた4種類の炉心について核特性(臨界性、制御棒価値、ボイド反応度など)が測定されている。JNC の標準的な解析手法で評価し、以下の知見を得た。

Na ボイド反応度、制御棒反応度の Np の捕獲断面積に対する感度係数は U-238 や Pu-239 と同程度に大きいことを確認した。本実験データは Np 装荷炉心の核設計精度の向上に 活用できるといえる。また、中性子スペクトルにも Np 装荷による変化が現れているた め、反応率比についても有用な実験データであるといえる。

臨界性(実効増倍率)については BFS-67 体系の 4 炉心について同程度の C/E 値 0.995 が得られ、本実験について高精度の解析が可能であることが確認できた。

Naボイド反応度については、炉心によらず1cent以内で解析値は実験値と一致しており、 Npを装荷しても高精度で解析できることが分かった。

制御棒反応度の解析値は、濃縮 B₄C の制御棒については実験値と 5%以内で一致した。天 然 B₄C の制御棒については最大 10%の過大評価となっている。、Np 装荷に伴う解析精度の 差異は現れていない。

炉心中心反応率比の解析値は、核分裂反応率比については実験値と5%以内で一致し、Np 装荷に伴う反応率比の変化を解析で再現できている。一方、補獲反応を含む反応率比に ついては実験値との差異が10%近い場合もある。セルファクターに近似的な値を使用し ていることが原因と考えられる。

今後は、BFS-67体系の実験について解析評価、検討を継続するとともに、契約2年目で入 手した BFS-69体系について解析を進め、得られた解析結果を用いて Np 装荷炉心の核設計精 度の向上を図る予定である。また、追加実験については実施する方向で IPPE 側と内容を協議 中である。

37

謝辞

本共同研究は炉心燃料システム Gr の林 秀行氏(現所属 日本原子力研究所)によって開始されたものであります。また、本社 国際・核物質管理部 国際協力課の田崎 真樹子氏 には IPPE との調整にご尽力して頂き、契約を円滑に遂行することができました。

この場を借りてお礼申し上げます。

参考文献

- S.P.Belov, et al., PROC. of International Conference on the Physics of Reactors(PHYSOR 96), M-82, Mito, 1996.
- (2) 千葉豪、羽様平、石川眞: "高速炉用炉定数セット JFS-3-J3.2 の改訂",日本原子力学会誌, 1[4], 335(2002).
- (3) 石川眞、斉藤正幸、佐藤若英、他:「核設計基本データベースの整備()-核特性解析コード システムの整備 - 」、PNC TN9440 94-004(1994 年 3 月).
- (4) 杉野和輝, 庄野彰, 岩井武彦, 沼田一幸: "BFS 臨界実験解析 BFS-62-1 及び 62-2 炉心の解 析", JNC TN9400 2002-008 (2002 年 4 月).
- (5) T.Tone, "A Numerical Study of Heterogeneity Effects in Fast Reactor Critical Assemblies," J. of Nucl. Sci. and Technol. 12 (8), P.467 (1975).
- (6) P.Benoist, "Streaming Effects and Collision Probabilities in Lattices," Nucl. Sci. and Eng. 34, P.285 (1968).
- (7) 船曳淳,角田弘和: "BN 及び BFS 炉心解析システムの整備()-3 次元 Hex-Z 体系用輸送核 特性解析コードの整備-", JNC TJ9410 2002-001 (2002 年 3 月).
- (8) 杉野和輝:次世代炉定数システムを用いた JUPITER 臨界実験解析、 JNC TN9400 2001-091 (2001 年 8 月).