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Tinan Yang* !, Takatsugu Mihara*
Abstract

This report presents a variance reduction technique to estimate the reliability and
availability of highly complex systems during phased mission time using the Monte Carlo
simulation. In this study, we introduced the variance reduction technique with a concept of
distance between the present system state and the cut set configurations. Using this
technique, it becomes possible to bias the transition from the operating states to the failed
states of components towards the closest cut set. Therefore a component failure can drive
the systemn towards a cut set configuration more effectively.

IJNC developed the PHAMMON (Phased Mission Analysis Program with Monte
- Carlo Method) code which involved the two kinds of variance reduction techniques : (1)
forced transition, and (2) failure biasing. However, these techniques did not guarantee an
effective reduction in variance. For further improvement, a variance reduction technique
incorporating the distance concept was introduced to the PHAMMON code and the
numerical calculation was carried out for the different design cases of decay heat removal
system in a large fast breeder reactor. Our results indicate that the technique addition of this
incorporating distance concept is an effective means of further reducing the variance.

*: Nuclear System Safety Research Group, System Engineering Technology Division,
1): Present address; Monte Carlo Method Research Group, China Institute of Atomic
Energy, China National Nuclear Corporation, China
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1. Introduction

In the past twenty years, much attention has been paid to probabilistic safety assessment
(PSA) in nuclear safety community. At present, the usefnl insights which dertved from
PSA studies have had a significant impact on the design and operation of complex systems
such as Nuclear Power Plants.

Monte Carlo simulation of Markov processes offers a potentially powerful tool for the
evaluation of the reliability and availability of highly complex systems such as systems
with long mission times, e.g., decay heat removal system in liquid metal fast breeder
reactors (LMFBRs) where success criteria and grace periods are given as a function of time
due to decrease of decay heat. In order to take these effects into account and to perform
more realistic analysis, it is necessary to divide mission time into some phases. The Phased
Mission Analyses Program with Monte Carlo method - PHAMMON code™! was developed
by Japan Nuclear Cycle Development Institite(JNC) using Monte Carlo method to analyze
a Markov transition process with phased mission time; it has been applied to reliability
analysis for decay heat removal system of a large LMFBR. The main steps on treating one
history in PHAMMON code is depicted in Fig.1.1.

In applying the Monte Carlo method to practical problems, numerical values can be
obtained. This usually involves an estimate of the statistical errors in those values. We can
evaluate these statistical errors by using the Central Limit Theorem, which is described as:
let X, denote the mean of a random sample of size n from a distribution that has mean [L
and positive variance 62 , then the random variable ¥, =¢n(X, ~11) /& has an approximate
normal distribution with mean zero and variance 1.

From the Central Limit Theorem , we can obtain

1 f* -Le
PY,<X) > —=| e7dx ... (1)
Non d-
ForVX,>0,
- . e 1
P(1,| <X, =P(Z, uu|<Xu Oy 2| "eF¥dx =1-a ... @

In ' N2
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It means the random interval (X, - X,-6/ ¥n , X, + X ¢/ ¥n) includes the mean |1 with a
probability of (1 -a). In another word, the error for Monte Carlo estimate is
e =X_6/n, where X_equals 1.96 or 3, while o equals 0.05 or 0.01, respectively.

This implies that the statistical error can be decreased by increasing total histqry number n

or reducing variance 6°. The difficulty becomes apparent if we simply increase the number

of histories. This is because X, converges to the exact value L with a speed of O(n” %)
quite slowly.

Moreover, in PSA of real systems it usually happens that: (i) the mean time to failure of
component is much longer than the mission time; (ii) the mean time to repair of failed
component is much shorter than the mission time. Consequently, a cut set rarely occurs. In
the direct Monte Carlo method, only a very small fraction of the histories will contribute to
the unreliability tally. As a result, the variance will tend to be large unless an exceedingly
large number of histories is simulated. Therefore, suitable variance reduction techniques are
almost mandatory.

The PHAMMON code has a Monte Carlo method with variance-reducing techniques™ in
order to decrease the variance of the Monte Carlo estimates of the reliability. However,
There was no guarantee that the methods always reduce the variance.

M. Marseguerra and E. Zio" proposed a dependency model in which a system consists of

~ various components, and each has many possible states. To solve this dependency model,
a variance reduction method was also provided. The method allowed us to favour not only
the failures, but also, among failures, to favour those transitions leading towards the top
event. Numerical results show that this method is highly effective.

~ In order to further reduce the variance of the result from the PHAMMON code execution,
we decided to introduce the idea proposed by M.Marseguerra and E.Zio. In this study,
first, we modified the method suitable for the PHAMMON code; second, proposed a new
definition of the distance which can be interpreted as the possibility of the transition from
present state to cut set configuration; finally, we applied these methods to the PHAMMON
code. In our analyses, we provide a comparison among the original PHAMMON code
method, the method incorporating the distance definition of M. Marseguerra and E. Zio and
a new method incorporating the distance definition we created.
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Sampling of demand failure

system failure

Judgment of system state

system success

Sampling of transition time dt Sampling of transition time dt
t=t+dt t=t+dt

ace period < the time duraug ] ..
Sampling of transition component

when the system keep in
failure state

System failure

(End of the history )

Fig.1.1 Flowchart for one history
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2. Methods of Biasing

In this section, first, we briefly review the sampling method adopted in the PHAMMON
code, then describe the biasing method of the transitions towards the closest cut set.

The PHAMMON code had employed two techniques, which were referred to as forced
transition and failure biasing. In these two methods, the sampling distributions are
modified, first, to produce an artificially large number of component transitions, and
second, to increase the ratio of failures to repairs. Each trial is attached with a weight,
initialized to 1, then, the weight is modified appropriately each time when a biased
sampling distribution is used. By defining weighted tallies, the results are shown as
unbiased estimators .

2.1 Forced transition

Considering a system made of n independent components, each of which may be either
operating or failed. Then there are 2" system states arising from all possible combinations
of operating and failed components, and all possible transitions of the systems can be

divided into two classes , namely N, and F.

1) If a transition corresponds to a component repair, then it belongs to N , ie. it

represents a return to the operating state from the failed state.
2) If a transition corresponds to a change from the operating state to the failed state

which is a basic event for one or more cut sets, then it belongs to F.

In forced transitions, the probability density function that a system in state X' at time 2'
will make a state transition at time t is modified by

y SN ‘Yk'e—?k.(t_r')
Fereie =2y

where vV, is the sum of the failure rates of the functional components and the repair rates
of the failed components and T is the mission time. With this the uniformly distributed

random variable § can be used to sampling the interval to the next transition:

At=— YLlna E(L-e =) SIS T—f .. (4)
.
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and causing the next transition to be forced before the end of mission time. In order to
compensate for the modified sampling, the trial weight is modified by

2.2 Failure biasing

In failure biasing, the transition probabilities are modified to increase the ratio of failures
to repairs.

Now consider the component i with a failure rate A, and a repair rate i, , then, the total
transition rate is :

Z=X +Z, ®)
where

z,= ieZlN TP )

To= LAy e 8)

To bias the different classes of the transitions, the interval ( 0, 1 ) is divided into two

subintervals by introducing the parameters 0<X <1. Let k' be the state vector
representative of the system before the transition and &k the new state vector.

Determination of which component has failed or been repaired, and thereby of the new
state of the system , is carried out as follows:

A random number E_, is first generated.

If € < X, the transition belongs to F and the failure component i is determined from

i-1 £ i

Ar S22, <20 Ay v, O

£'§ D G iZ':l ; ®)
ieF ieF

~and the weight is multiplied by the ratio of the unbiased probability g(k / k)= (A; /%)

to biased probability g/ k') =(\;/ ch)' X, viz.
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qk/k) 1 2y
Gklky X T

IfE_,Z X, the transition belongs to N and the repaired component i is determined from

i-1 -X i
. < -2, <2 Wa o 1
- ;“Z e 1-X Zy <£'Z Hi (1)

=1 =1
r'eN i'eN

JTe

and the weight is multiplied by the ratio of the unbiased probability g(k / k)= (1;/E) to
biased probability §(k/ k)= (it;/Z,)-(1 -X) , viz.

gk/E) _ 1 Zw o,
s axn z 1P

In using these variance reduction techniques, the weight is appropriately modified at each
biased sampling until the first system failure occurs.
The estimate for the unavailability is

the sample variance is given by

2o 1 Zwm-X)’
el SRS

and the f.s.d ( fractional standard deviation ) is then

fsd=NciiX, ... (15)

where
N : the total history number

"m : the effective history number

Wy : the weight for kth effective history
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2.3. Biasing of the transitions towards the closest cut set

Although with the improved sampling in the PHAMMON code, only very rare trial
contributed a nonzero tally, in the case of highly reliable system, one of the reason is that
a component failure sampling does not necessarily drive the system towards a cut set
configuration which is more probable failure. In order to further increase the
computational efficiency for highly reliable systems, here we introduce another variance
reduction method when sampling the failed component , and the method is referred to as
biasing of the transitions towards the closest cut set . The details are as follows:

First , sampling a random number E_, uniformly distributed in (0,1).

If E2X , the transition belongs to N, and sampling for transition component is

performed in the same way as eq(9) and eq(10) in previous section.

when & < X , the transition belongs to F, i.e. the new state represents a basic event for a
cut set. In order to select a cut set among the possible ones, for each cut set we introduce
a distance from the present configuration and try to favour the closer ones. This distance
should not be intended in a strict mathematical sense, but rather as a utility tool to be
defined according to appropriate rules: the smaller number for transitions to reach the cut
set IV, and the more probable 1|Iﬁ, / Eq, they are, then the closer that configuration of the
cut set is, In terms of the idea proposed by M. Marseguerra and E. Zio, the distance can
be described as:

»res

D,=N, + n=12,..,N.. ... (16)

where
N, : the number of cut sets of any order of the system .
N, : the minimum number of the transitions from the present configuration to the nth

cut set configuration ( CS,) .

[ ,
Wrn,l=1,..,N, denote the transition rate A, , suitably renamed, which lead to the

configuration CS,,. Note that each of these transitions may contribute to more than one
cutset.
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In order to select a cut set which effectively drives the systemn towards failure, the
probability interval ( 0, X ) is divided in NV, subintervals of width

1/D,

pn—

- X n=12,..,N
2 1/D;
j=1

Then the largest subinterval belongs to the closest cut set.
The transition occurs leading to nth cut set for which

n-1 n
2 PrSE<X Dy (18)

Now we can select a transition among the N, possible components. To this aim the

subinterval Py is further divided into N, subintervals, corresponding to the N,
transitions.

!

! Lpn
=Tn, l_.]_,fZ,,,,,,]\/'i,t ...... 19
Pr=y Pa (19)

Ny .
where ¥, = X (T

The failure oceurring is the one corresponding to the subinterval Z determined from

n=1 -1 n=1 !
ngl Pr +l§1 Pf, SEJ <n§1 DPn +[§1 Pi ...... (20)

Let us assume that the sampled transition changes the component Z to failed state. That is
Wi = A, . For the evaluation of the weight, we should consider the fact that the sampled
transition can draw the system closer not only to CS,but also to some other cut set

configurations CS, > CS§, » - which the same transition also appears in, say pf:(:‘: P,

pi’G P, ... respectively. The weight is then muiltiplied by the ratio of the unbiased
probability g(k/ k) = (A, /Z)to the biased probability §(k / k) =p’ + plr+p’ , viz.

gk &) A

Gk/k)  pl+ ph+ ph+e-
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NC.T
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e,
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The distance defined by eqn (16) seems to be based on the following idea : if we think

\Ui / Zq, is a relative failure probability for a component which has the failure rate \pfl ,
then the distance for a component can be defined as a reverse of relative failure
probability, therefore the distance for a cut set can be obtained from the sum of the
component distances and the less transitions to reach the cut set configuration. To apply
the probability theory more directly, we can propose another definition of distance like

below.
Nﬂ
D,= . n=12,..,Ny . (22)
t=1 Yo T
where N, , N, , \|!f, are the same as illustrated in eq(16) and T is mission time. Our

definition relies on the idea that with the more probability of reaching the nth cut set
configuration, the shorter distance is assigned to nth cut set. The weight incorporating to
the distance definition eq.(22) can be calculated by the same expression as described in

eq.(21).

In the following section, we will compare the statistical efficiency of Monte Carlo method
among the methods referred above through application to an LMFBR(Liquid-metal cooled
fast breeder reactor) decay heat removal system reliability study.
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3. Program Description

In the section 2, we described the new variance reduction technique. To apply this
methodology, we modified the PHAMMON code. In this section , a flowchart on biasing
the transitions towards the closest cut set and a description of input cards are presented.

3.1. Flowchart for biasing towards the closest cut set

The flowchart for biasing towards the closest cut set is shown in Fig.3.1.

3.2. Input description

In this section , we only have a short introduction of input, the more information is
described in Ref.1 . Distinct from the original version, we added the method selection
parameter which was used to decide the way for unreliability calculation. The cards are
input in a fixed form and classed in seven categories. A brief description is as follows:

(A) System initial configuration
Input card A-1

Format : 9%, 11, 5D10.3
Input variable : NMPHSE, (PTIME(I), I = 1, NMPHSE)
where
NMPHSE ; number of phases
PTIME ; the end time for each phase
Input card A-2
Format : 5(2A8)
Input variable : (EQIL(I), EQ2(I), I= 1, NMPHASE)
where

EQI(), EQ2(I) ; name of the minimal cut set equation on each phase

(B) Method selection for grace period calculation

Input card B-1
Format : 110
Input variable : IGR
where

IGR =1, grace period is given for each phase

IGR = 2, grace period is calculated from linear function

IGR =3, grace period is obtained from dynamic behavior
i) If IGR equals 1
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C»~ )

<1= 1, nmmes( nph@‘

dst=0.0 tfa =0.0
ji=0 ifla=0

p-<j= 1, ford (i ,nphasb

kev = member ( j, 1, nphase)
icomp = igetcm ( kev )

istat (icomp )=
&
japp { kev , nphase ) =

4 1o

*yes

J=i+1

fai (jj,i) =rlam ( nphase, icomp )
idcom ( jj , 1) =1icomp
tha=tfa+fai (f.1)

fai(jj,i) = 0.0

no

dst = dst * fai (jj, i) * ptime ( nmphse)

ifla=1

<€

idn (i) =

Fig. 3.1 Flowchart for biasing towards the closest cutset (1 /4)
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ifla® 1
&

noe

idn(i)# 0

ds{i)=dst

ds (i)=0.0

tds=tds +ds(i)
tai (i) =tfa

———-’41 , nmmes ( npha}

dp (k)=ds(k) * ynum /tds

aldl =0.0 ald2=0.0

——’él , nmmcs ( npha>

aldl = ald1 +dp(n)

yes

Fig. 3.1 Flowchart for biasing towards the closest cut set (2 / 4)
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aldl=aldl -dp(n)

*D’< nn=1,idn(n)>

ald2 = ald2 +fai (nn,n)/tfai (n)Y*dp(n

STOP

no

E <(aldl +ald2)

jcomp =idcom (nn,n)

wate = 0.0

{
<= 1, nmmcs (nph%

Q: 1,iord (m ,np%_.

kev = member ( mj, m, nphase )
kcomp = igetem ( kev )

kcomp = jcomp

no

wate = wate + ds (m) / tfai (m)

©

Fig. 3.1 Flowchart for biasing towards the closest cut set (3 /4)
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wtbs = tds / ( ynum * wate * gama )

istat { jcomp ) =-1
irpnum = irpnum + 1
irpord { jeomp ) = irpnum

istat (jecomp ) =-2

weef= 1.0

iccf ( jcomp } =0

yes

CCFCHK

Fig.3.1 Flowchart for biasing towardsthe closest cut set (4 / 4)
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Input card B-2
Format : 9%, 11, 5D10.3
Input variable : IAPHSE, (ATIME(]), I = 1, JAPHSE)
where

IAPHSE; number of the phases related to grace period

ATIME; the end time of each phase corresponding to the grace period
Input card B-3

Format : 5D10.3
Input variable : (GTIME(I), I = 1, IAPHSE)
where

GTIME ; grace time assigned on each phase

it) If IGR equals 2

-Input card B-2
Format : 2D10.3
Input variable : GRT1, GRT2
where

GRT1, GRT2; coefficients of linear function . grace time is calculated from
linear function : TG(T) = GRT1 * T + GRT2

iii) If IGR equals 3
Input card B-2
Format : 8D10.3
Input variable : TEMPO, TEMPMX, CNA, (QR(D), =1, NMPHASE)
where
TEMPO ; initial temperature

TEMPMX ; the superior limit of temperature
CNA ; total heat capacity

QR(D ; heat removal capacity for each phase
Input card B-3

Format : 110
Input variable : ITINM
where

ITINM ; number of the data points, which is used to determine decay heat
level
Input card B-4
Format :2D10.3
Input variable : (TI(T), QD(D), I =1, ITINM)
where

TI(I) ; the time assigned on each point after reactor shutdown
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QD(I) ; the decay heat rate at time TI()

(C) Method selection for variance reduction technique

Format : 110
Input variable : ISECM
where

ISECM = 1, LB method
ISECM = 2, biasing of the transitions towards the closest cut set

(D) Description of component parameters
Input card D-1

Format : COMPDATA
where
COMPDATA is a character variable, which denoted the start of input data for
component parameters.
Input card D-2
Format : 2A8,13,11, D10.0, 2(D8.0, F5.0), 8%, 2D8.0

Input variable : COMNAM(1,I), COMNAM(2,D), ICCF(I), MPHASE(D),
' RTIME(1,I), RLAM(1,I), RLAMEF(1,I), RMU(1,D,
RMUEF(1,I), RBETA(1,I), XCCF()
where
COMNAM(L,I), COMNAM(2,I); component name
ICCF(I); a flag indicated if the component is related to common cause
failure(CCF).
ICCFEF(I) = 0, CCF will not consider
ICCFI) # 0, CCF occured in the same ICCF())
MPHASE(T); number of phases used for defining component data
RTIME(1,I); the end time of phase 1
RL.AM(1,]); component failure rate A in phase 1
RLAMEF(1,D); error factor of failure rate A
RMU(L,I); component repair rate LL in phase 1
RMUEF(1,I); error factor of repair rate LL
REBETA(); B factor for the same ICCF(I) component
XCCF(I); biasing parameter for CCF sampling

If MPHASE(T) > 1, for phase 2 to phase MPHASE(T), component datas are as follows:

Input card D-3
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Format : 20X, D10.0, 2(D8.0, F5.0)
Input variable : ( RTIME(ILI), RLAM(ILD), RLAMEF(IL,I), RMU(ILD),
RMUEF(ILI), II =2, MPHASE())

where
RTIME(ILI); the end time of phase II
'RLAM(]I,I); component failure rate A in phase II
RLAMEF(II,I); error factor of failure rate A
RMU(ILI); component repair rate 1L in phase II
RMUEF(II); error factor of repair rate LL

Input card D4
Format : END
where
END is a character variable, which denoted the terminal of input data for
component parameters.

(E) Calculation control parameters

Input card E-1
Format : 2110, 4D10.3, 110 :
Input variable : IHTMX, ITRMX, XNUM, TMMX, TMCT, WTCT, IRAOF
where
IHTMX; history number

if INTMX > 0, then IHTMX is the number of effective history ;

if IHTMX < 0, then ABSTHTMX) is the number of total history .
ITRMX; maximum transition number for one history
XNUM,; biasing value for variance reduction method
TMCT; time cutoff value

WTCT; weight cutoff value
IRAOF,; initial value for random number generation
Input card E-2
Format : D10.3, 6110
Input variable : Y, IREPMX, (IOHIST(D),I=1, 5)
where

Y; a parameter used to decide transition ratio; generally, Y is null and it
means forced transition.

IREPMX; maximum number of repairable component at same time

IOHIST(I); effective history ID number for recording the transition scheme

(F) Output control parameters
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Format : 2110, 9%, 11
Input variable : IBCMX, IHGMX, IPLOSW
where

IBCMX; batch number for MORSE method
THGMX; number of the time points, for each point, unreliability will be
evaluated

IPLOSW; variable related to the graph plotting function; usually, it is zero.

(G) Description of demand failure rate

Format 1 20X, 6D10.3
Input variable : (DEMVAL(L]), J =1, 5), XDEM(I)
where '

DEMVAL(,J); demand failure rate for each phase
XDEM(I); biasing value for demand failure sampling

There are some limitations in the PHAMMON code. The following are the details:
1) Maximum number of phases is 5;

2) Maximum number of components is 1000;

3) Maximum number of terms of minimal cut set is 10000;

4) Maximum number of orders for each term of minimal cut set is 6;

5) Maximum batch number of MORSE method is 20;

6) Maximum number of the time points for unreliability calculation is 50.
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4, Case Study

To evaluate the performance of the new variance reduction method, following cases
related to the decay heat removal system of an LMFBR were considered.

4.1 Imitial case of decay heat removal system
4.1.1 Decay heat removal system

The decay heat removal system , shown in Fig.4.1, consists of three-loop Intermediate
Reactor Auxiliary Cooling System (IRACS) and one Direct Reactor Auxiliary Cooling
System (DRACS) which provide a heat sink for the reactor core following reactor
shutdown. The IRACS system can function in either of two modes, forced circulation
(FC) and natural circulation(INC). But for DRACS system, only forced circulation mode
is available.

secondary circuit

to steamn
nerator
ir cooler
A loop
| DRACS 5
rd
i fi
. Py 1y frOm steam
¢ air cooler Ppenerator

oA

& 1.7

= ==
= ==

Fig.4.1 Decay heat removal system

4.1.2 Success criteria for initial case
Decay heat removal function appears in the event tree heading as one of the front line

systems. According to the original design information , success criteria of the decay heat
removal system were defined as follows (Table 4.1).
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Table 4.1 success criteria of the decay heat removal system

phase | time after reactor shutdown [hr] success criteria
1 g-1 1 loop IRACS FC or 3 loop IRACS NC
2 1-24 1 Toop IRACS FC or 1 loop IRACS NC
3 24 - 168 1loopIRACSFCor 1 loop IRACS NCor DRACS FC

These success criteria are applicable to the case in which all of the decay heat removal
mode is available at just after reactor shutdown. Number of the available loop and its heat
removal mode depend on the initiating events. To support the detailed system modeling,
the system success criteria must be further translated to a statement defining the criteria for
system failure, After considering the dependency on the initiating events, five kinds of
failure criteria ( D1 to D5 ) were developed shown in the Table 4.2.

4.1.3 Minimal cut sets corresponding to failure criteria

We assume that the minimal cut sets for 1 loop IRACS FC, 1 loop IRACS NC and
DRACS FC are given below:
(1) 1loop IRACS FC;
AFCFAIL=AFC+AFNNR+AFNRC
+EPSA+CCA+OSP*DGA+CCPSAOI*BTPSA+UPSAOL.
BFCFAIL=BFC+BFNNR+BFNRC ,
+EPSB+CCB+0SP*DGB+CCPSB01*BTPSB+UPSBO1.
CFCFAIL=CFC+CFNNR+CFNRC
+EPSC+CCC+0OSP*DGC+CCPSC01*BTPSC+UPSCO1.
(2) 1 loop IRACS NC;;
ANCFAIL=ANC+AFNNR+AFNRC+BTPSA*(EPSA+CCPSAQ1+OSP*DGA)
+UPSAO1.
BNCFAIL=BNC+BFNNR+BFNRC+BTPSB*(EPSB+CCPSB01+0SP*DGB)
+UPSBO1.
- CNCFAIL=CNC+CFNNR+CFNRC+BTPSC*(EPSC+CCPSC01+0SP*DGC)
+UPSCO1.
(3) DRACS FC;
DFAIL=MCSFCHEPSA+CCA+OSP*DGA+CCPSA01*BTPSA+UPSAOI)
*(EPSC+CCC+OSP*DGC+CCPSCO1¥*BTPSC+UPSCO01).

The macro events used above were defined as shown in Table 4.3.
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Table 4.2 Failure criteria of the Case ]

D1: All loops are available

phase | time after reactor shutdown [hr] , failure criteria
1 0-1 3 loop IRACS FC and 1 loop IRACS NC
2 1-24 3 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 3loopIRACS FCand 3 Joop IRACS NC and DRACS FC

D2: Neither FC nor NC are available for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-1 2 loop IRACS FC
2 1-24 2 Joop IRACS FC and 2 joop IRACS NC
3 24 -720 2 loop IRACS FC and 2 loop IRACS NC and DRACS FC

* The mission time is 720 hr.

D3: Only FC are unavailable for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-1 2 loop IRACS FC and 1 loop IRACS NC
2 1-24 2 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 2Joop IRACS FC and 3 loop IRACS NC and DRACS FC

DA4: Loss of off-site power

phase | time after reactor shutdown {hr} failure crteria
T 0-1 3 loop IRACS FC and 1 loop IRACS NC
P 1-24 3Toop IRACS FC and 3 loop IRACS NC
3 24-168 31o0p IRACS FC and 3 Joop IRACS NC and DRACS FC

* att = 0, off-site power(corresponding event ts “OSP’) is fail with probability of 1.0.

D35: DRACS is unavailable

phase | time after reactor shutdown [hr} failure criteria
1 0-1 3 loop IRACS FC and 1 loop IRACS NC
2 1-168 3 loop IRACS FC and 3 loop IRACS NC




Table 4.3

Macro events and its reliability parameter

% 17  :Loss of funciion of XXX' means a syslem or ane train XXX failure due to a failure of component which belongs 1o only XXX, not o supporl system of XXX.

® 2 X' means the kind of loop or Lrain .

¥ 3 amacro event covered by {E7F] means thal this macro event is sum of the other macro events.

%4 XFN=XFNNR+ XFNRC

5 used in only case 4
unning
macro event demand failure rate failure rate eveni descriplion
(%2)  (%3) [/demand] {mour] (1)
A sel of events which result jn onty FC(forced circulation ) mode failure in ACS X train. The events in (his sel are
XFCO1 2.3E-3 1.1E-4 [related to failure of the components included in only ACS X train{primary loop X, secondary loop X, and ACS X} .
PMCS X 2.1E-3 1.BE-5 |Loss of function of the primary loop X pony moter cooling sysiem
XSGMOVI2 6.9E-7 4.9E-8 |Fail 1o close both the SG(steam generalor) inlet stop valve and the SG outlel stop valve in secondary loop X.
A set of events which result in only FC(forced circulation ) mode failure in ACS X
44E-3 1.2E-4  lirain{AFC+PMCSA+ASGMOV 12)
A set of events which resull in both FC and NC(natural circelation) mede lailure in ACS X train. The events in this sei
X FNO! 5.7E-3 3.1E-5 |are related to failure of the components included in only ACS X train(primary loop X, secondary loop X, and ACS X) .
XACMOVI B.3E-4 8.3E-6 [Fail to open the ACS outlet stop valve in ACS X train
6.5E-3 3.9E-5 |A set of events which result in both FC and NC mode failure in ACS X train. (XFNO1+XACMOV1)
1.3E-5 7.1E-6  |A set of events which result in both FC and NC mode failure in ACS X train and is assumed to be not repairable,
6.5E-3 3.2E-5 |A set of events which result in both FC and NC mode failure in ACS X train and is assumed 10 be repairable.
4.6E-4 1.1E-4 {Loss of funclion of the CCS(componunt cooling sysiem) x Lrain
2.6E-5 3,1E-5 |Loss of function of the CCWS(component couvling waler sysiem) x train
4.8E-4 1.5B-4 |Loss of funclion of either the CCS x train or CCWS x train

€10—66 006N ONI



runaing
macro event demand failure rate | failure rate event description
(%2) (X3) [/demand] {/hour] (%1)
EPSX 01 1.1E-5 2.2E-5  |Loss of function of either the 6.6kV M/C(metal-clad switch gear) X train or the 440V P/C (power center) X train
CSSISX - 2.7E-5 3.4E-5 {Loss of function of the CSSS(component sea water supply system} X train
Loss of function of the HY AC(heating ventilation and air conditioning system) X train for elecirical power equipment
1.9E-4 4.7E-5 [room
4.2E-5 5.9E-5 |Loss of function of the chiiler system X train for HYAC
A sel of the events which result in loss of electrical power supply function from cither the 6.6kV M/C(metal-clad
2.7E-4 1.6B-4  |switch gear) X train or the 440V P/C (power center) X train (EPS X01+CSSS X +HVAC X +CHILLER X)
A set of events which result in FC(forced circulation ) mode failure in MCS(maintenance cooling system). The evenis
6.8E-3 6.6E-5 [in this set are related 1o failure of the components included in only MCS.
6.3E-3 3.3E-5 [Loss of function of the MCS EMP(electromagnetic pump) cooling system.
1.3E-2 9.8E-5 |A set of events which result in FC mode failure in MCS.(MCSFCO1+EMPCS)
74E-3 9.8E-5 |A set of events which result in only FC mode failure in MCS.
MCSENNR (3%5) 2.8E-5 6.8E-6 {A set of events which result in both FC and NC mode failure in MCS and is assumed to be no repairable.
MCSFENRC (%5) 5.7E-3 24E-5 A set of events which resull in both FC and NC mode failure in MCS and is assumed to be repairable.
OSPp 1.4E-5 3.7E-5 |Loss of off-site power {lass of electrical power supply from off-site to 6.6kV M/C),
PGX 14E-2 24E-4 [Loss of electrical power supply from the emergency diesel generator train X t0 6.6kV M/C irain X
BTPSX 2.1E-5 4.1E-5 |Loss of electrical power supply from the battery train X o the 110V AC vital power supply system train X
CCPS X 0! 1.5E-5 3.0E-5 iLoss of Function of the 440V C/C (control center) X train
UPS X 01 7.9E-6 1.6E-5 |Loss of function of the 110V AC vital power supply system train X
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After these minimal cut sets data have been derived, the minimal cut set equation for each
failure criteria defined in previous section can be formed by substituting the equations for
1 loop IRACS FC, 1 loop IRACS NC and DRACS FC into the below Boolean equations
and simplifying with Boolean calculation. _ |
For case D1, we assume that all loops are available and the Boolean equations for each
phase are as follows.

phasel(3 loop IRACS FC and 1 loop IRACS NC)
3FIN
=(AFCFATL*BFCFAIL*CFCFAIL)*(ANCFAIL+BNCFAIL+CNCFATL).

~ phase2(3 loop IRACS FC and 3 loop IRACS NC)
3F3N
=(AFCFAIL*BFCFAIL*CFCFAIL)*(ANCFAIL*BNCFAIL*CNCFAIL).

phase3(3 loop IRACS FC and 3 loop JRACS NC and DRACS FC)
3F3N

=(AFCFAIL*BFCFAIL*CFCFAIL)*(ANCFAIL*BNCFAIL*CNCFAIL)*DFATL.

For case D2, we assume that neither FC nor NC are available for one IRACS loop. To
perform the PHAMMON code, we assign IRACS-B is unavailable. The following
Boolean equations are obtained for each phase.

phasel(2 loop IRACS FC)
2F :
=(AFCFAIL*CFCFAIL).

phase2(2 loop IRACS FC and 2 loop IRACS NC)
2F2N
=(AFCFAIL*CFCFAIL)*(ANCFAIL*CNCFAIL).

phase3(2 loop IRACS FC and 2 loop IRACS NC and DRACS FC)
2F2NM
=(AFCFAIL*CFCFAILY*(ANCFAIL*CNCFAIL)*DFAIL.

For case D3 , we assume that only FC is unavailable for one IRACS loop; Loss of off--
site power and DRACS is unavailable are the assumptions of the case D4 and DS,
respectively. we can obtain minimal cut sets corresponding to each phase same as the case
of DI .
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4.2 Sensitivity case of decay heat removal system

4.2.1 Case2 and Case3 (NC capacity up)

The success criteria (or failure criteria) described above is based on the original design
and is called Case 1. In Case 1, the IRACS can successfully remove decay heat with
three loops in natural circulation just after reactor shutdown. For Case2 and Case3 we
assume 100% heat removal capacity of IRACS-NC can be attained by 2 loops or 1 loop,
respectively. Based on the improvement of heat removal capacity, we developed failure
criteria for Case2 and Case3 shown in the Table 4.4 and Table 4.5.

4.2.2 Cased (DRACS capacity up)

In Case 4, heat removal capacity of IRACS-FC and NC are the same as in Case 1, and we
assume natural circulation is available for DRACS, and DRACS can function as one of
three loops of IRACS in both of the forced and natural circulation mode. Based on this
assumption, we developed the failure criteria for Case 4 shown in the Table 4.6.
Considering the ability of natural circulation mode, we modified the minimal cut sets for
DRACS below.

DFCFAIL=MCSFC+MCSFNRC+MCSFNNR
+(EPSA+CCA+OSP*DGA+CCPSA01*BTPSA+UPSAO1)
*(EPSC+CCC+OSP*DGC+CCPSCO1*BTPSC+UPSCO1).

DNCFAIL=MCSNC+MCSFNRC+MCSFNNR
HBTPSA*(EPSA+CCPSAO1+OSP*DGA)+UPSAO1)
*(BTPSC*(EPSC+CCPSC01+0OSP*DGC)+UPSCO1).

4.3 Consideration on the system repairability

In order to study the effects of repair activity on system unreliability and unavailability
calculation, we have chosen two kinds of special cases. first, to consider all of the
components are unrepaired; second , for the component FNRC which can be repaired in
both forced circulation and natural circulation mode, to improve the repair rate from 0.1 to
0.4 . Both of them will be considered in the initial Case 1.
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Table 4.4 Failure criteria of the Case 2

D1: All loops are available

phase | time after reactor shutdown [hr] failure criteria
1 0-1 3 loop IRACS FC and 2 loop IRACS NC
2 1-24 3 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 3 loop IRACS FC and 3 Joop IRACS NCand DRACS FC

D2: Neither FC nor NC are available for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
I 0-1 2 loop IRACS FC and 1 loop IRACS NC
2 1-24 2 loop IRACS FC and 2 loop IRACS NC
3 24 - 720 2 loop IRACS FCand 2 loop IRACS NC and DRACS FC

* The mission time is 720 hr.

D3: Only FC are unavailable for one IRACS loop

phase | time after reactor shutdown [hr] fatlure criteria
1 0-1 2 loop IRACS FC and 2 loop IRACS NC
2 1-24 2 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 2bop1RACSFC'and3bop1RACSNCmdDRACSFC

D4: Loss of off-site power

phase | time after reactor shutdown [hr] failure cnteria
1 0-1 3 loop IRACS FC and 2 loop IRACS NC
2 1-24 3 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 3 Joop IRACS FC and 3 Joop IRACS NC and DRACS FC

* att =0, off-site power(corresponding event is ‘OSP’) is fail with probability of 1.0.

D35: DRACS is unavailable

phase | time after reactor shutdown [hr] failure criteria
1 0-1 3 loop IRACS FC and 2 loop IRACS NC
2 1-168 3 loop IRACS FC and 3 loop IRACS NC
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Table 4.5 Failure criteria of the Case 3

D1: All loops are available

phase | time after reactor shutdown [hr] failure criteria
1 0-1 3 loop IRACS FC and 3 loop IRACS NC
2 1-24 3 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 3 loop IRACS FC and 3 Joop IRACS NCand DRACS FC

D2: Neither FC nor NC are available for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-1 2 loop IRACS FC and 2 loop IRACS NC
2 1-24 2 loop IRACS FC and 2 loop IRACS NC
3 24 -720 2loop IRACS FC and 2 loop IRACS NC and DRACS FC

* The mission time is 720 hr.

D3: Only FC are unavailable for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
i 0-1 2 loop IRACS FC and 3 loop IRACS NC
2 1-24 2 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 2Joop IRACS FCand 3 loop IRACS NC and DRACS FC

D4: Loss of off-site power

phase | time after reactor shutdown [hr] failure criteria
1 0-1 3 loop IRACS FC and 3 loop IRACS NC
2 1-24 3 loop IRACS FC and 3 loop IRACS NC
3 24 - 168 3loop IRACS FCand 3 loop IRACS NCand DRACS FC

* at t =0, off-site power(corresponding event i1s ‘OSP’) is fail with probability of 1.0.

D35: DRACS is unavailable

phase | time after reactor shutdown [hr]

failure criteria

1 0-168

3 loop IRACS FC and 3 loop IRACS NC
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Table 4.6 Failure criteria of the Case4

D1: All loops are available

phase | time after reactor shutdown [hr] failure criteria
1 0-1 (3 loop IRACS FCand DRACS FC) and (2 loop
IRACS NCor 1 loopIRACS NCand DRACS NC)
2 1-168 3Joop IRACS FCand 3 Joop IRACS NC
and DRACS FCand DRACS NC

D2: Neither FC nor NC are available for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-1 (2 loop IRACS FC and DRACS FC) and
(1 loop IRACS NC or DRACS NC)
2 T-720 7 Toop IRACS FC 2nd 2 loop IRACS NC
and DRACS FC and DRACS NC

* The mission time is 720 hr.

D3: Only FC are unavatilable for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-1 (2 Joop IRACS FC and DRACS FC) and (2 loop
IRACS NCor 1 loop IRACS NC and DRACS NC)
2 1-168 2 loop IRACS FC and 3 loop IRACS NC
and DRACS FC and DRACS NC
D4: Loss of off-site power
-phase | time after reactor shutdown [hr] failure criteria
1 0-1 (3 loop IRACS FCand DRACS FC) and (2 Joop
IRACS NCor 1 loop IRACS NC and DRACS NC)
2 1-168 3 loop IRACS FC and 3 loop IRACS NC
and DRACS FC and DRACS NC

. *att=0, off-site power(corresponding event is ‘OSP"’) 1s fail with probability of 1.0. -

D5: DRACS is unavailable

phase | time after reactor shutdown [hr] failure criteria
I 0-1 3 loop IRACS FC and 1 loop IRACS NC
2 1-168 3 loop IRACS FC and 3 loop IRACS NC
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4.4 Consideration of decay heat removal capability with the

water steam system

The failure probability of the decay heat removal system can be reduced if the redundancy
of the decay heat removal system can be increased for the first 24 hours after reactor
shutdown. Based on this proposal, we developed the decay heat removal system models
with considering the heat removal capacity of the Water Steam System (WSS).

We assume that the minimal cut sets for the water steam system are as follows.
WSSSF = WSSS + OSP + ACSFCAW * ACSFCBW * ACSFCCW.
ACSFCAW = AFC + CCA + EPSA .

ACSFCBW =BFC + CCB + EPSB .

ACSFCCW = CFC + CCC + EPSC .

And another two cases related to WSS were considered.

4.4.1 Case5"!

In the Case 5, heat removal capacity of IRACS FC, IRACS NC and DRACS FC are the
same as in the Case 1, and we assume that the WSS can remove the decay heat alone for
the first 24 hours. On the basis of this assumption, the failure criteria for the Case 5 were
developed shown in the Table 4.7,

For case D1, we can get the minimal cut sets for each phase below.
phase1( 3loop IRACS FCand 1 koop IRACS NC and WSSSF)
3FINW

=(AFCFAIL * BFCFAIL * CFCFAIL) * ( ANCFAIL + BNCFAIL + CNCFAIL) * WSSSF.
phase2 (3 loopIRACS FCand 3 loop IRACS NC and WSSSF )

3F3NW

=(AFCFAIL * BFCFAIL * CFCFAIL) * (ANCFAIL * BNCFAIL * CNCFAIL ) * WSSSF.
phase3 ( 3loopIRACS FCand 3 loop IRACS NCand DRACS FC)

3F3NM

=(AFCFAIL * BFCFAIL * CFCFAIL) * (ANCFAIL * BNCFAIL * CNCFAIL ) * DFAIL.

For the case D2 to D35, the minimal cut sets can be obtained similar to the case of D1.

4.4.2 Caseé6
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In the Case 6, we assume that heat removal capacity of IRACS FC, IRACS NC and
DRACS FC are the same as in the Case 3, and the WSS can be used to remove the decay
‘heat for the first 24 hours. Depending on this assumption, the failure criteria for the Case
6 were developed shown in the Table 4.8.
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Table 4.7 Failure criteria of the Case 5
{ Water steam system can remove the decay heat for the first 24 hours)

D1: All loops are available

phase | time after reactor shutdown [hr] failure criteria
1 - 0-1 3 loop IRACS FC and 1 loop IRACS NCand WSSSF
2 1-24 3 Joop IRACS FC and 3 loop IRACS NC and WSSSF
3 24 - 168 3 loop IRACS FC and 3 Joop IRACS NC and DRACS FC

D2: Neither FC nor NC are available for one IRACS loop

phase | time after reactor shutdown [hr] 2failure criteria
1 0-1 2 Joop IRACS FC and WSSSF
2 1-24 .2 Joop IRACS FC and 2 Joop IRACS NC and WSSSF
3 24 -720 2loop IRACS FCand 2 loop IRACS NC and DRACS FC

* The mission time is 720 hr. -

D3: Only FC are unavailable for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-1 2Joop IRACS FCand 1 loop IRACS NC and WSSSF
2 1-24 2 Joop IRACS FCand 3 loop IRACS NC and WSSSF
3 ' 24 - 168 2loop IRACS FCand 3 loop IRACS NC and DRACS FC

D4: Loss of off-site power

phase | time after reactor shutdown [hr] failure criteria
1 0-1 3 loop IRACS FC and 1 loop IRACS NC
2 , 1-24 3loopIRACSFCand 3 loop IRACS NC
3 24 - 168 3 loop IRACS FC and 3 Joop IRACS NC and DRACS FC

* at t = 0, off-site power(corresponding event is ‘OSP’) is fail with probability of 1.0.

D5: DRACS is unavailable

phase | time after reactor shutdown fhr} failure criteria
1 0-1 3loopIRACS FCand 1 Joop IRACS NC and WSSSF
2 1-24 3loop IRACS FCand 3 loop IRACS NC and WSSSF
3 24 - 168 3loop IRACS FC and 3 loop IRACS NC
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Table 4.8 Failure criteria of the Case 6
( Water steam system can remove the decay heat for the first 24 hours)

D1: All loops are available

phase | time after reactor shutdown [hr] fatlure criteria
1 0-24 3 loop IRACS FCand 3 Joop IRACS NC and WSSSF
2 24 - 168 3 loop IRACS FC and 3 loop IRACS NC and DRACS FC

D2: Neither FC nor NC are available for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-24 2 Joop IRACS FC and 2 loop IRACS NC and WSSSF
2 24 - 720 2 Joop IRACS FCand 2 loop IRACS NC and DRACS FC

* The mission time is 720 hr.

D3: Only FC are unavailable for one IRACS loop

phase | time after reactor shutdown [hr] failure criteria
1 0-24 2 Joop IRACS FC and 3 loop IRACS NC and WSSSF
2 24 - 168 2 loop IRACS FC and 3 loop IRACS NC and DRACS FC

D4 Loss of off-site power

phase | time after reactor shutdown [hr] failure criteria
1 0-24 3loopIRACSFCand 3 loop IRACS NC
2 24 - 168 3loop IRACS FCand 3 Joop IRACS NCand DRACS FC

* at t = 0, off-site power({corresponding event is *OSP’) is fail with probability of 1.0.

D3: DRACS is unavailable

phase | time after reactor shutdown [hr] fatlure criteria
1 0-24 3 loopIRACS FCand 3 loop IRACS NCand WSSSF
2 24 - 168 3loop IRACS FCand 3 Joop IRACS NC
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5. Results and Discussion

In order to evaluate the effectiveness of the proposed variance reduction method which
incorporate our definition for distance, we ran and compared the results of PHAMMON
code simulations for the original PHAMMON code, the PHAMMON code revised to
include the distance definition given by M.Marseguerra and E.Zio and the PHAMMON
code incorporating our new definition for distance. For the remainder of this paper, These
three methods are called the LB, ME and present work methods, respectively. Unless

explicitly specified, all cases were performed with 10° trials and the failure biasing value
for the unreliability calculation was set at x = 0.85 . The computer used was a SUN Ultra
Sparc 2.

Tables 5.1 - 5.8 compare the results of failure probability and errors(f.s.d) used by the
LB method, ME method, and present work, while the computational times and ratios of
effective history numbers are shown in Tables 5.9 - 5.16. Because the water steam
system (WSS) can not function in the case of loss of off-site power, so we do not
consider the failure criteria of D4 in studying the decay heat removal capability of the
WSS.

As seen in Tables 5.1 - 5.16, both of the distance definitions lead to similar estimations of
the failure probability and error for all cases, but compared with the ME method, our
present work provides improvements both in saving CPU time and in increasing the
effective history numbers. We can better explain the reason by considering a very simple
system consisting of three independent components A, B and C with a failure rate of
10™%/hr, 10”*/hr and 10™/nr. If we assume the minimal cut set of the system is A* B +
C, and the mission time is 100 hours, then we can easily know that using ME method, the
second term C is sampled with an approximately probability of 30%, but for the present
work method, the second term C can be sampled with probability increased of about
90%. It seems worth noting that second term C failure is much easier to reach compared

with the first term A * B failure for a real case, as the probability to failure for C is 107

and A * B is 107* for 100 hours operation. In this sense, using the present work method,
we can drive the system towards a cut set more efficiently without wasting time and
histories.

We then continued the comparison between present work and LB method. the plots of
f.s.d, versus time are shown in Figures 5.1 - 5.38.



Table 5.1 Results of the failure probability and f.s.d for Case 1

LB method ME method Present work
failure criteria failure probability fsd failure probability fsd failure probability fs.d
casel_dl 6.492E-07 4.20% 6.606E-07 4.21% 6.743E-07 4.02%
casel_d2 9.520E-05 2.83% 1.010E-04 3.25% 9.725E-05 2.18%
casel_d3 5.591E-05 4.09% 6.008E-05 4.00% 5.888E-05 3.95%
casel_d4 1.730E-06 4,60% 1.877E-06 4.29% 1.765E-06 4.56%
casel_d5 7.064E-07 3.68% 7.151E-07 3.49% 7.193E-07 3.39%
Table 5.2 Results .of the failure probability and f.s.d for Case 2
LB method ME‘ method Present work
failure criteria failure probability fs.d failure probability fsd failure probability f.s.d
case2_dl 3.498E-07 5.46% 3.572E-07 5.32% 3.788E-07 521%
case2_d2 7.380E-05 3.46% 7.544E-05 4.05% 7.259E-05 2.81%
case2_d3 1.811E-05 7.29% 1.796E-05 7.01% 1.676E-05 7.05%
case2_d4 5.665E-07 0.83% 4.891E-07 0.92% 5.960E-07 9.57%
case2_d5 3.680E-07 5.62% 3.782E-07 5.57% 3.657E-07 5.52%
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Table 5.3 Results of the failure probability and f.s.d for Case 3

LB method ME method Present work
failure criteria failure probability fsd fallure probability f.sd failure probability fsd
case3_dl 8.241E-08 10.5% 7.998E-08 10.4% 8.955E-08 0.80%
case3_d2 2.885E-05 7.22% 3.758E-05 9.25% 3.149E-05 4.40%
case3_d3 1.110E-07 16.5% 7.586E-08 15.9% 9.792E-08 16.3%
case3_d4 9.610E-08 31.6% 8.058E-08 35.6% 1.050E-07 28.2%
case3_d5 0.650E-08 13.2% 1.001E-07 13.0% 9.757E-08 12.1%
Table 5.4 Results of the failure probability and f.s.d for Case 4
LB method ME method Present work
failure criteria | failure probability fsd failure probability fs.d failure probability f.s.d
cased_dl 1.193E-08 30.3% 1.128E-08 7.66% 9.100E-09 8.19%
cased_d2 6.590E-06 37.1% 5.319E-06 5.63% 4.181E-06 5.03%
case4_d3 5.258E-07 9.61% 5.633E-07 - 7.91% 5.320E-07 8.08%
cased_d4 1.587E-08 10.7% 2.177E-08 18.2% 1.945E-08 7.79%
cased_d>5 1.156E-06 22.8% 1.072E-06 9.711% 1.040E-06 5.64%
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Table 5.5 Results of the failure probability and f.s.d for unrepaired system

LB method ME method Present work
failure criteria | failure probability £s.d failure probability f.s.d Failure probability £s.d
casel_dl_mu0 | 2.916E-06 21.6% 2.070E-06 2.73% 2.158E-06 232%
casel_d2_mu0 [ 9.254E-04 5.74% 8.183E-04 1.67% 7.863E-04 1.48%
“casel_d3_mu0 1.183E-04 1.92% 1.212E-04 1.72% 1.208E-04 - 1.64%
casel_d4 mu0| 7.624E-06 3.02% 7.157E-06 2.27% 8.211E-06 2.13%
casel_d5_mu0| 4.217E-06 10.2% 4.959E-06 3.75% 5.063E-06 2.70%
Table 5.6 Results of the failure probability and f.s.d for the system repairability up
LB method ME method Present work
failure criteria | failure probability f.s.d failure probability fsd Failure probabitity fsd
casel_dl_fnrc 8.042E-08 12.1% 8.092E-08 12.1% 1.028E-07 11.0%
casel_d?2_fnrc 6.191E-05 16.6% 4.571E-05 5.84% 4.468E-05 3.42%
casel_d3_fnrc 9.724E-06 10.6% 1.100E-05 9.12% 1.165E-05 941%
casel_d4_fnrc 3.323E-07 9.85% 3.505E-07 9.70% 3.918E-07 9.24%
casel_d5_forc 9.787E-08 10.1% 9.630E-08 ©7.85% 1.039E-07 7.75%
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Table 5.7 Results of the failure probability and f.s.d for Case 5

LB method ME method Present work
failure criteria failure probability fsd failure probabitity fsd failure probability f.s.d
case5_d1 6.364E-09 8.29% 6.525E-0% 7.96% 5.887E-09 71.37%
case5_d2 1.846E-05 45.0% 1.359E-05 22.5% 1.008E-05 9.27%
case5_d3 6.801E-07 6.95% 7.729E-07 7.19% 7.354E-07 6.74%
case5_d5 8.379E-09 24.0% 9.991E-09 11.3% 1.477E-08 7.45%
Table 5.8 Results of the failure probability and f.s.d for Case 6
LB method ME method Present work
failure criteria | failure probability fs.d failure probability fsd failure probability f.s.d
case6_dl 7.216E-10 24.1% 2.675E-09 62.1% 1.204E-09 11.1%
case6_d2 1.539E-05 45.7% 1.331E-05 15.2% 1.030E-05 13.3%
case6_d3 7.884E-10 34.6% 2.021E-09 60.8% 1.156E-09 15.8%
case6_d5 2.753E-09 71.9% 5.537E-09 22.8% 1.405E-08 17.4%
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Tuble 5.9 Results of the CPU time and ratio of the effective hislory for Case |

LB method

ME method

Present work

fuilure criteria | CPU time (min.} ratio of the effective | CPU time / effective | opy) ime (min.) ratio of the effective | CPU time / effective | ~niy iime (min.) ratio of the eflective { CPU time / eftective
) ) history history number ’ history history number ) history history number
case l;dl 853 4.4% 2.0E-2 194.6 13.6% 14E-2 118.7 56.7% 2.1E-3
casel_d2 14.1 20.7% 6.8E-4 252 53.4% 4.7E-4 179 83.6% 2.1E-4
casel_d3 714 11.4% 6.3E-3 142.3 23.1% 6.2E-3 88.0 57.9% {.5E-3
casel_d4 61.6 11.7% 5.3E-3 125.3 19.7% 6.4E-3 78.6 47.9% 1.6E-3
casel_d5 80.3 6.9% 1.2E-2 174.0 16.5% 1.1E-2 109.3 61.6% 1.8E-3

Table 5.10 Resulis of the CPU time and ratio of the effective history for Case 2

ludlure criteria

LB method

ME method

Present work

CPU ime (min.)

ratio of the effective

CPU time / eftective

CPU Lime (min.)

ruio of the effective

CPU Lime / elfective

CPU time (min.}

ratio of the ¢Flective

CPU tine / ellective

history history number history history number history history number
case2_d! 80.5 3.3% 2.7E-2 1971 12.3% 1.6E-2 1223 56.2% 2.1E-3
case2_d2 14.3 19.2% 7.4E-4 25.5 52.2% 4 9E-4 17.5 83.1% 20E-4
case2_d3 78.1 6.2% 1.3E-2 1533 17.9% 8.6E-3 96.1 55.6% 1.7E-3
case?_d4 68.7 50% 1.4E-2 1335 12.8% 1.0E-2 88.4 42.9% 20E-3
case2_ds 85.2 4.1% 2.1E-2 1814 13.8% 1.3E-2 F12.5 60.2% 1.9E-3
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Tuble 5.11 Results of the CPU time and ratio of the effective history for Case 3

LB method ME method Present work
failure criteria | CPU time (min.) ratio of the effective | CPU time / effective CPU time (min.) ratio of the effective | CPU time / effective CPU time (min.) ratio of the effective { CPU time / elfective
) history history number ) history history number ) history history number
cased_di $7.6 1.7% 5.2E-2 193.5 11.3% 1.7E-2 119.3 55.4% 2.1E-3
cased_d2 15.2 14.5% 1.1E-3 26.3 50.3% 5.2E-4 17.6 82.3% 2.1E-4
'case?r_dS 71.6 23% 34E-2 151.2 15.2% 9.9E-3 93 4 534% 1.78-3
case3_d4 66.3 1.6% 4.1E-2 129.9 10.0% 1.3E-2 83.1 39:5% 2.1E-3
case3_d5 83.5 1.9% 4 4E-2 179.9 12.3% {.5E-2 109.1 59.0% 1.8E-3
Table 5,12 Results of the CPU time and ratio of the effective histary for Case 4
LB method ME method Present work

ratio of the effective

CPU time / effective

ratio of the elfeclive

CPU time / ¢ffeciive

ratio of the etfective

CPU time / effective

fuilure criteria | CPU time (min.) biatery history b CPU time (min.) istory hintory auisber CPU time (min.) bistony history muntbr
cased _dl 140.6 2.1% 6.8E-2 2914 11.5% 2.5E-2 195.6 56.7% JA4E-3
cased_d2 30.5 8.4% 3.6E-3 512 49.4% 1.0E-3 36.1 80.1% 4 4E-4
cased_d3 137.8 43% 3.2E-2 276.2 14.6% 1.9E-2 191.9 53.2% 3.5E-3
cased_d4 128.5 4.0% 3.2E-2 264.3 10.6% 2.5E-2 191.7 42.1% 44E-3
cased_d5 136.5 1.5% 1.8E-2 269.4 27.5% 9.8E-3 1754 74.0% 24E-3
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Table 5.13 Results of the CPU time and ratio of the effective history for unrepaired system

LB method

ME method

Present work

ratio of the effective

CPU time / effective

ratio of the eflective

CPU time / effective

ratio of the effective

CPU time / effective

failure critersia | CPU time (min.) bistory history wamber CPU time (min.) history nstory s CPU time (min.) histors bistory mmber
casel_d1_mu0 71.2 44% 1.8E-2 192.2 12.6% 1.5E-2 114.4 64.6% 1.7E-3
case?_d2_mud 13.2 259% 5.1E4 240 61.1% 3.9E4 14.6 89.8% 1.6E4
casel_d3_mu0 714 11.0% 6.5E-3 174.8 20.3% 8.6E-3 107.3 66.6% L.6E-3
casel_d4_mul 69.3 12.3% 5.6E-3 167.1 21.9% 7.6E-3 1075 65.7% 1.6E-3
casel_d5_mu0 72.5 7.8% 9.3E-3 170.4 20.7% 8.2E-3 052 75.2% 1.2E-3

Table 5.14 Results of the CPU time and ratio of the effective history for the system repairability up

failure criteria

LB method

ME method

Present work

CPU tine {min.)

tutio of the effective

CPU time / eflective

CPU time {min.)

rutio of the effective

CPU time / effective

CPU time {min.)

rutio ol the elfective

CPU e / eflective

history history number history history number history histary number
casel_dl_fnrc 76.4 2.5% 3.0E-2 17.6.3 5.0% 3.5E-2 113.4 209% 5.3E-3
casel_d2_fore 1.3.3 15.1% 8.8E4 257 34.0% 7.6E-4 17.5 58.4% 2.8E-4
casel_d3_forc 67.2 7.7% 8.7E-3 136.1 12.1% L1E-2 86.2 23.8% 3.5E-3
casel_d4_fore 51.2 6.9% B.3E-3 116.5 9.3% 1.3E-2 794 18.1% 4.3E-3
casel_dS_fnre 72.4 4.2% 1.7E-2 161.2 6.8% 2.4E-2 104.0 17.7% 5.7E-3
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Table 5.15 Results of the CPU time and raiio of the effective history for Case 5

failure criteria

LB method

ME method

Present work

CPU time {min.)

ratio of the effective

CPLU time / effective

CPU time (min.)

ratio of the effective

CPU time / efiective

CPU time {(min.}

ratjo of the eifective

CPU time / effective

history history number history history number history history number
case5_dti 155.2 1.4% 1.1E-] 344.6 5.0% 6.9E-2 250.1 42.3% 5.9E-3
case5_d2 29.3 11.3% 2.6E-3 513 40.5% 1.3E-3 39.6 14.8% 5.3E4
case5_d3 175.3 4.4% 4.0E-2 393.2 9.5% 4.1E-2 313.1 36.4% 8.6E-3
case>_d5 149.2 2.6% 5.9E-2 3323 7.5% 4.4E-2 2344 47.4% 4.9E-3

Table 516 Results of the CPU time and ratio of the effective history for Case 6

Fitilure criteria

LB method

ME method

Present work

CPU time (min.)

rutio of the effeclive

CPU time / effective

CPU time (min.)

ratio of the effective

CPU time / eftective

CPU time (min.)

rilio of the cllective

CPU time / eflective

history history number history history number history history number
caseb_d1 172.2 0.7% 2.5E-1 366.5 4.0% 9.2E-2 268.6 42.0% 6.4E-3
case6_d2 34.2 10.0% 34E-3 57.1 39.3% 1.5E-3 453 74.3% 6.1E-4
case6_d3 197.2 1.2% 1.6E-1 4263 5.7% 7.5E-2 346.2 33.6% 1.0E-2
caseb_d5 167.2 1.0% 1.7E-1 346.5 5.8% 5.9E-2 256.2 5.6E-3

46.1%
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From Table 5.1, 5.2 and Figure 5.1 - 5.10, we know that the errors (f.s.d) obtained from
LB method are consistent with those obtained from present method, which indicate that
both methods can be adopted in Case 1 and Case 2.

Moreover, from Table 5.4, 5.5, 5.6, 5.7,5.8 and Figure 5.16 - 5.38, we can clearly see
that further reduction in the errors (f.s.d) is the prominent outcome of the present work.
This is because sufficient effective history numbers are obtained by using present method,
therefore, reasonable statistics of results can be attained. It should be noted that in these
cases the improvement of the effective history number is mainly due to the fact that in the
LB method the component can be only sampled depending on the natural failure
probability, therefore when biasing is applied there is no distinction between the cut sets.
However, with the method of biasing of the transitions towards the closest cut set by
introducing the concept of the distance between the present state and cut sets, we can bias
the transitions towards the cut set which is more likely to fail. In this way, the number of
failed histories is increased, as we anticipated.

However, Table 5.3 shows that both methods are not very effective for the case3_d3,
case3_d4 and case3_d5. But if we analyze the results in more detail, we see that a
potential major contributor to the failure probability of each case is its unavailability, and
from Figure 5.13, 5.14, 5.15 , we can clearly see that the total error is governed by the
error due to demand failure sampling. Similarly for casel_d1_fnrc, a case in which we
considered the improvement of the repairability of the component FNRC. we can solve
the problem by increasing the demand biasing parameter of the component FNRC from
0.2 1o 0.5. In this way, sufficient effective history numbers can be obtained during
demand sampling, therefore statistical significant results can be gained. For case3_d3,
case3_d4, case3_d5 and casel_dl_fnrc which errors (f.s.d) are greater than 10 percent,
we recalculated the errors with the increased demand biasing parameter of 0.5 for the
component FNRC and the results are given in Table 5.17. Indeed, the results show its
effectiveness.

Table 5.17 Comparison of Monte Carlo failure probability and f.s.d results for the case
in which the error is governed by demand failure sampling

Demand biasing value of Demand biasing value of
FNRC (0.2) FNRC (0.5)
failure criteria | failure probability f.s.d failure probability f.s.d
case3_d3 9.792E-08 16.3% 8.903E-08 6.00%
case3_d4 1.050E-07 28.2% 9.670E-08 7.95%
case3_d5 9.757E-08 12.1% 1.024E-07 6.14%
casel_di_fnrc 1.028E-07 11.0% 8.045E-08 8.47%
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Returning to the Case 6 study, when we assume that 100% heat removal capacity of
IRACS-NC can be attained by 1 loop, and we consider the heat removal capacity of the
WSS in the first 24 hours, the occurrence of decay heat removal system failure is really a
rare event for the case D1, D3 and D5. Table 5.8 shows that the errors obtained from LB
method and ME method are so large that the results have little meaning. Compared with
these two methods, the errors calculated by present work are relatively small but still
larger then 10 percent. If we further analyze the results, we can see that unreliability plays
an important role in the failure probability calculation, especially for the case D2 and DS5.
It should be noted that when we alter the natural probabilities aiming at favouring events,
the alternative, unfavoured events may still occur, even with less frequency. When this
latter contributes to the estimation of unreliability, its'larger weights may deteriorate the
resulting statistics, unless a very larger number of trials is performed. In order to address
this problem, based on our experience and observations, we changed the demand biasing
parameter of the component FNRC and component WSSS, and adjusted the biasing value
X used in the unreliability calculation. The parameters are given in Table 5.18, and the
results are shown in Table 5.19.

Table 5.18 The change of biasing value in the Case 6

failure criteria | Demand biasing Demand biasing | biasing value X used in the
value of FNRC | value of WSSS unreliability calculation
case6_dl 0.5 0.2 0.95
case6_d2 0.5 0.05 0.5
case6_d3 0.5 0.5 0.9
caseb_d5 0.4 0.3 0.95

Table 5.19 Comparison of Monte Carlo failure probability and f.s.d results for the case
in which the error is governed by unreliability calculation

failure criteria | Results before biasing value | Results after biasing value
changed changed
failure probability f.s.d failure probability f.s.d
case6_dl 1.20E-09 11.10% 1.21E-09 9.39%
case6_d2 1.03E-05 13.30% 9.57E-06 - 9.80%
case6_d3 1.16E-09 15.80% 8.98E-10 6.78%
case6_d5 1.41E-08 17.40% 8.504E-09 10.3%
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Table 5.19 show that when the total error is governed by unreliability calculations, it is
very difficult to further decrease it, especially for cases D2 and D5. Also it should be
mentioned that the biasing value setting is case dependent.

It is difficult to find out a perfect technique to assign the biasing values for the demand
failure sampling. Based on our experience and observations, we assigned the biasing
values according to the importance measure of each component and its repairability, i.e.
the higher importance of the component and the more probable can be repaired, then the
larger biasing value it is.

Meanwhile, The plots of the f.s.d vs. the total number of histories are shown in Figure
5.39 - 5.76. As seen in Fig.5.77, if we assume the reasonable statistical results can be
obtained from the errors less than 20 percent, 40 thousand of histories are enough to get
the practicable answer for most cases. But if we want to get less errors, . g. the errors are
less than 10 percent, we had better to simulate 100 thousand of histories.
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Fig.5.51 F.5.D vs. total history number for Case3_d3 (FNRC: 0.5)
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Fig.5.53 F.5.D vs. total history number for Case3_d5 (FNRC: 0.5)
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6. New Distance Definition

A more common distance definition was introduced to the PHAMMON code. which can be
described as:

NH
D =

n

1
=Tyl
where N, , N, , ! are the same as illustrated in eq(16) and T is defined as follows:
If the system will make a state transition at (¢ +A7) given that it is state at time t; and time
point (r +A:) will fall in the Ith phase, then T = TP;“ t, where Tpr_ is the end time of the
Ith phase.

n=1,2,...,N

The plots of failure probability, versus time using by LB method, ME method, Present
method and New method are shown in Figure 6.1(a) - 6.38(a), while the plots of f.s.d,
versus time are shown in Figure 6.1(b) - 6.38(b). For the failure probability calculation,
we do not consider the grace period for the case of all the components are unrepaired.

The nurnerical results indicate that the new distance definition is an effective means of
reducing the variance.

The effects of considering grace period for the casel_d1_mu0 in which all the components
unrepaired are as follows:

In casel_dl_mu0, we consider all of the components are unrepaired, this means once the
system failed, it can not be recovered. But in the previous calculation, we consider grace
period for all cases.

In PHAMMON code, we consider the system failure in the following steps: If the system
is in failure state, we compare the time duration with grace period; if the time duration is
larger then grace period, then end of this history; but if time duration is less then grace
period, we will sample a failed component ( for the case of all of the components are
unrepaired). Certainly, this sampling will be accompanied by a weight, and the value of the
weight is depended on the adopted technique (LB method, ME method, Present work and

New method). This is the reason why even for the demand failure sampling, the f.s.d is
different among each method.

Moreover, There is five kinds of failure criteia (D1 to D5) for each Case. The failure

criteria of D1(All loops are available) is most stringent among all these five failure criteria,

1l
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i.e. the effective history number for the demand sampling in case D1 is less than that in
case D2, D3, D4 and D5. On the other hand, the weight created by using New method is
changed relatively great comnpared with that created by using Present method.

So the result of f.s.d in casel_d1_mu0 can be effected by following factors:

1) we consider the grace period for the case in which all of the components are unrepaired;
2) case D1 has less effective history number compared with other cases;

3) by using New method, the weight is changed relatively great.
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6. Conclusions

Reliability and availability analysis usually deals with highly reliable systems, which have
very low probability of failure. Therefore the variance reduction method is needed to
improve the computational efficiency of the Monte Carlo simulation. In this work, we
applied another variance reduction method to the PHAMMON code by introducing a
concept of distance. Compared with the original method, the results show that the use of
the biasing of the transitions towards the closest cut set can further decrease variance and
is highly effective.
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