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Background

This is the seventh year of a continuing collaborative program which started in
April, 1993 under an Annex pursuant to the Agreement of November 20, 1986
between the Nuclear Power and Fuel Development Corporation (PNC), Japan and
United States Department of Energy (DOE) on Cooperation in the Area of
Radioactive Waste Management. The Annex was originally signed on March 26,
1993 to be effective for four years, and was subsequently renewed on September
15, 1997 for three additional years based on the renewed PNC-DOE Binational
Agreement. The subject of research covered under this Annex is Mass Transport:
Characterization and Predictive Technologies. In 1998, PNC was renamed Japan
Nuclear Cycle Development [nstitute (JNC). The DOE Office overseeing this annex
agreement is the Office of Environmental Management, Office of Science and
Technology (EM-50). The work is performed at the Earth Sciences Division of the
Emest Orlando Lawrence Berkeley National Laboratory with funding support from
JNC.
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Objectives

The primary objective of this Collaborative Program is to (é) improve the
understanding of the fundamental physics and chemistry that govem the processes
which play a significant role in radio-active waste isolation/disposal in geologic
systems and (b) develop characterization and predictive technologies of release
and transport of radio-nuclides in heterogeneous geologic media. The Collaborative
Program focuses on the definition and investigation of the processes of primary
importance to the release and fransport of radionuclides, and the development and
application of theories and models to predict the phenomena accurately. Available
laboratory and field experiments within and outside of the Collaborative Program
_provide the basic phenomenological data to test the validity of the theories and the
modeling approach itself.

1999-2000 Activities
This year's activities cover six tasks, at different stages of progress.

The first study examines flow and transport in hierarchically fractured rocks. in
the study of hierarchically fractured rocks, we are primarily concemed with the situation
that arises when a hierarchically fractured site is encountered in which a minimum
number of wells are available for subsurface characterization. This is most likely the
case when selecting a suitable site for high-level nuclear waste storage. In the early
stages of site characterization, when only one or a few wells are available, single-well
pumping tests are likely to be the primary characterization tool. We simuilate natural-
gradient tracer tests as well as single-well pumping tests in hierarchically structured
fracture networks. We examine how fractal dimension affects the performance
measures of the natural-gradient tracer tests, including flow through the model, tracer
travel time, front width, and maximum concentration. Qur primary goal is to illustrate
the types of flow and transport behavior that are representative of hierarchically
fractured rock, and thereby aid the design of field tests and the interpretation of field
data. The present approach is more practically oriented, with the goal of providing
insights and information for designing and interpreting field experiments.

The second study focuses on the development of a robust and fast inversion
algorithm. In hydraulic well tests, pressure changes are monitored in response to a
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fiuid being pumped into or out of an aquifer. The response is a function of the
geometry and the flow parameters of the reservoir, Therefore, by analyzing the
.pressure changes one can estimate such reservoir parameters. in this regard, well
test analysis is an inverse problem. The simplest type of inversion is the traditional
analytical approach, where the pressure data are compared to those of known
analytical models. However, analytical models are only available for a handful of
idealized situations. When a more detailed characterization is needed, muitiple
pressure tests with many observation points must be conducted. In such cases a
numerical inversion is usually employed. It is not uncommon that in such inversions,
hundreds of thousands of unknown parameters have o be estimated. In the second
study, the focus is to develop an inversion algorithm that can be used in such
situations.

The third study investigates the multi-continua description of flow in composite
heterogeneous media. One of the most common assumptions that are made in
modeling flow in fractured rock is to assume that the fracture system forms one
continuum and the rock matrix ancther. It is further assumed that the cross-flow
between them is proportional to the mean pressure difference. We examine this
assumption by formulating and exactly solving the equations for flow in random
composite media. After a lengthy mathematical development, we find the
assumption generally unsatisfactory considering its region of applicability.

The fourth task includes two topical studies of solute transport in simple
fracture systems. The first is an evaluation of the simulation of particle transport in a
three-fracture system using a simple pipe model as compared with a fully
heterogeneous model. The former is often used in complex fracture network
modeling which demands a simple representation at the one, two or three-fracture
level. By taking into account permeability heterogeneity and flow channeling effect,
we calculate the effective flow wetted surface fraction for the flowing parﬁcles. This is
the surface area of the fractures through which the particles can diffuse into the matrix
and chemically react with the matrix materials. This year, the flow wetted surface area
as a function of the degree of heterogeneity is evaluated. The second subtopic is a
study of the diffusion process at an intersection between two fractures. If the diffusion
is very small, particles will follow the streamiines and enter into a neighboring fracture.
But if the diffusion is large, they will be distributed into outflow fractures according to
their respective flow rates. Such a phenomenon has important implications to solute
dispersion in fractured rocks and many authors used an arbitrary assumption. The

Vi
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study investigates the effects on tracer breakthrough curves due to diffusion at the
intersections as a function of flow velocities and fracture dimensions.

The fifth task is a summary, review, and comment of the TILA-29 report. The
TILA-99 project is a postclosure safety assessment for a potential nuclear waste
repository by the responsible Finnish organization POSIVA QY. its focus is on the
normal evolution of the repository at candidate sites in Finland and on the potential
release and transport of radionuclides from the repository into the geosphere and
biosphere. The summary 's focus is on the approach and methodology for
geosphere flow and transport predictions in performance assessment, as discussed
in the report, and on lessons leamed. TILA-99 is an interesting report. As noted
above, it attempts to do performance assessment of a potential nuclear waste
repository using simplified, conservative conditions [t is also interesting that TILA-99
does not perform multiple-case analysis, in which each case is deterministic and
specifically defined. Then ranges of predictions are built from many such case
‘calculations. Rather in TILA-99, ranges of parameters and conditions are used from
data and submodel calculations, which are then combined to give ranges of
predictions. One strength of the TILA-99 report is its careful analysis and clear
presentation of sensitivity and "what if' analysis, which is a good pattemn for other
performance assessment efforts.

The final Task is a discussion on the key issues and challenges related to
geosphere flow and transport. This discussion forms the invited Keynote Paper for
~ the International Association of Hydrogeologists XXX Congress to be held in Cape
Town in November 2000. The need for predictions of groundwater flow and
contaminant transport in the subsurface—over large distances and long time
periods—has imposed extraordinary demands on the field of hydrogeology. Such a
need arises in assessing the safety of a geologic nuclear waste repository and in
evaluating groundwater contamination and remediation designs. One of the main
difficulties in modeling groundwater flow and mass transport is the heterogeneity of
the flow system, both in terms of its characterization through in situ measurements
and its conceptualization and simulation. This paper reviews some important issues
and challenges in modeling flow and transport in heterogeneous media, and
discusses approaches to address certain aspects of the problem. Topics discussed
include dynamic flow channeling, tracer breakthrough curves, multipie scales for flow
in fractured rocks, different scales in measurement, modeling, prediction and
heterogeneity, and system characterization and analysis for predictive modeling.

vii
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Flow and Transport in Hierarchically Fractured Rock
Christine Doughty and Kenzi Karasaki
Earth Sciences Division

E.O. Lawrence Berkeley National Laboratory

Tuly 2000

Abstract

We construct multiple realizations of hierarchical fracture networks with fractal
dimensions between one and two, and then simulate single-well pumping tests and
natural-gradient tracer tests on them. We calculate averages and standard deviations of
test results over the multiple realizations, and show individual results for selected cases to
illustrate key features of flow and transport through hierarchically fractured rock. We
examine the relationship between the fractal dimension of the fracture network itself and
the fractal dimension of the flow field arising during a well test. We then investigate the
effect of these dimensions on the performance measures of the natural-gradient tracer
tests, including flow through the model, tracer travel time, front width, and maximum
concentration. These studies illustrate the range of possible behavior that might be
obtained during field tracer tests conducted in hierarchically fractured rock, and provide
insights into how to interpret field responses. It is found that there is large variability
among the transport simulation results even in networks whose dimension is close to two.
This finding is consistent with the large variability in the experimental results observed at

fractured rock field sites.

1. Introduction

Hydrogeological problems involving fractured rock are challenging to solve because
contrasts in permeability of the fractures and surrounding rock matrix are extreme and
localized, making flow strongly dependent on the interconnections between conductive
fractures (i.e., the connectivity of the fracture network). Site characterization is difficult

because the key features controlling flow are likely to be impossible to identify a priori,
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and they often respond to field tests in ways that are not amenable to simple
interpre'tations le.g., Karasaki, 1987a; National Research Council, 1996, Ch. 5]. With
the introduction of the concepts of fractal geometry to geological systems [Mandlebrot,
1982; Turcotte, 1992], the notion that fracture networks often have a hierarchical (i.e.,
fractal) structure has gained support [e.g., Sahimi, 1993 and references therein; National
Research Council, 1996, Ch. 2 and references therein]. In hierarchically fractured rock,
both the extent and spacing of fractures varies over a wide range of length scales, which

can exacerbate the difficulties associated with understanding flow and transport.

In the present study, we are primarily concerned with the situation that arises when a
hierarchically fractured site is encountered in which a minimum number of wells are
available for subsurface characterization. This may occur when multiple sites are under
consideration for a particular activity (constructing a geologic nuclear waste repository,
for example). It would not be cost effective to drill many wells at many candidate sites,
but enough information must be gleaned from each site for a reasonable choice of the
ultimate site to be made. For a nuclear waste repository site it is critical to develop an
understanding of how water flow and radionuclide transport will occur through and away
from the repository. Important characterization tools in this regard are pumping tests and
tracer tests. In the early stages of site characterization, when only one or a few wells are
available, single-well pumping tests are likely to be the primary characterization tool. On
the other hand, a natural-gradient tracer test more closely mimics the conditions under
which radionuclide escape from a repository is likely to occur, and hence provides more
reliable characterization information. Such tracer tests require careful design if the
results are to be interpretable, making it is worthwhile to study the relationships between
the responses from single-well pump tests and natural-gradient tracer tests that arise in

hierarchically fractured rock.

In a seminal paper, Barker [1988] described how a well test can be used to determine
not only the effective transmissivity of a fracture network, but also the dimension of the
flow field, which he denotes the generalized radial flow dimension, n. Values of n range
from 1 to 3, where the integral values of 1, 2, and 3 correspond to linear, radial, and
spherical flow, respectively, and intermediate non-integral values describe flow fields

with fractal dimension. Polek [1990] simulated well tests in hierarchical fracture
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networks with a range of fractal dimensions, and found that Barker’s generalized radial
flow dimension was smaller than the fractal dimension of the fracture network itself, He
interpreted this as indicating that flow occurs primarily on a subset of the fracture
network, denoted the backbone. In the present paper, we follow a procedure similar to
that of Polek, but broaden the focus to include transport as well as flow, by simulating
natural-gradient tracer tests as well as single-well pumping tests. We examine how
fractal dimension affects the performance measures of the natural‘gradient tracer tests,
including flow through the model, tracer travel time, front width, and maximum
concentration. Our primary goal is to illustrate the types of flow and transport behavior
that are representative of hierarchically fractured rock, and thereby aid the design of field

tests and the interpretation of field data.

A number of researchers have used numerical simulations to investigate flow and
transport in heterogeneous porous or fractured media [e.g., Moreno and Tsang, 1994;
Birkholzer and Tsang, 1997, Berkowitz and Scher, 1997], including several who have
explicitly invoked hierarchical concepts [Grindrod and Impey, 1993; Clemo and Smith,
1997]; However, none of these authors have systematically investigated how transport
processes vary with the fractal dimensions for flow and the fracture network itself, as is
done here. Others have investigated the significance of fractal geometry on transport,
particularly dispersion, theoretically [e.g., Ross, 1986; Cushman, 1991; Tyler and
Wheatcraft, 1992 and references therein; Sahimi, 1993 and references therein], and have
provided insightful conceptualizations and elegant mathematical formalisms. The present
approach is more practically oriented, with the goal of providing insights and information

for designing and interpreting field experiments.

2. Methods

We construct hierarchical fracture networks with fractal dimensions between one and
two, and then simulate a single-well pumping test and two natural-gradient tracer tests
(with opposite gradients) on them. For each fractal dimension considered, eight
realizations of the fracture network are constructed. We examine averages and standard

deviations of test results over the multiple realizations, and show individual results for
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selected cases to illustrate key features of flow and transport through hierarchically

fractured rock.

2.1 Generation of Hierarchical Fracture Networks

Two-dimensional hierarchical fracture networks are generated as random Sierpinski
lattices. We begin with a square template consisting of four fractures in two orthogonal
sets as shown in Figure 1a. This template divides the original square with sides of length
L into nine smaller squares, each with sides of length L/3. We then shrink the template
by a factor of three, replicate it Ngq times (where 1 <Ny <9), and superimpose the
replicates on the original template in Nyq of the nine smaller squares chosen at random, as
shown in Figure 1b for Ny = 5. This procedure is then repeated for each of the L/3-
length templates (Figure 1c), then for each of the resulting 1/9-length and L/27-length
templates (Figures 1d and le, respectively). For 1 £ Ngq <8, the final fracture network
contains fractures of length L, 1/3, L/9, L/27, and L/81, and blocks of intact rock of
length 1/3, /9, 1/27, 1/81, and 1/243. For Ngg = 0 and Ngq = 9, the fracture network is a
regular lattice in which all blocks of intact rock have length L/3 and 1/243, respectively.

We denote fracture networks constructed in this manner as five-generation lattices, as
they comprise five sizes of templates. Current computational limitations preclude using
higher-generation lattices for the present study, but in principle, one could continue the
process, using ever smaller templates to represent ever smaller fractures, until reaching
the fractal cutoff length, below which fractal geometry is not expected to be the best
representation of fracture flow. Sensitivity studies using four- and five-generation
lattices yield similar results for the present well-test and tracer-test analyses, indicating

that five generations is sufficient to illustrate hierarchical effects.

Figure 2 shows a selection of the eight random fracture networks created for each
value of Ny, between one and eight. In Figures 1 and 2a, at each level of the construction
a different random set of Nyq squares is filled with smaller fractures. If the same Nyq
squares are filled at each level, a much more regular fracture network is formed, as
shown in Figure 2b. For Nyq> 1, we only consider networks containing fractures that
pass close to the center of the model (these are picked out randomly from a larger suite of

realizations), in order that we can compare well tests and tracer tests with a common
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origin. As Ny, decreases, the probability of a fracture passing close to the model center
becomes smaller and smaller (Figure 3), until for Nyq = 1, there are only a few

realizations that do so, all similar to the regular lattice shown in Figure 2b.

The fractal dimension of a fracture network can be dctermined. using the box counting
method [Ozz, 1993] as shown in Figure 4, which is a log-log plot of the number of
fractures N(r) encountered as a function of distance r from some point in the lattice. The
slope of the best-fit line through these points is the fractal dimension, D. The good fit
shown in the examples presented in Figure 4 is typical of all the lattices generated, and is
evidence that fracture networks constructed in this manner do possess fractal geometry
over a range of length scales. Figure 5 shows that D increases monotonically from one to
two as Ny, increases from one to nine. Also shown is an analytical expression for the
fractal dimension of a traditional Sierpinski gasket, which is given by Dy, = In(INsg)/In(3).
Note that D,, < D for small values of Ngq. This is because the present algorithm for
fracture network generation retains fractures of all lengths, whereas the traditional
Sierpinski gasket retains only the smallest ones, i.e., those resulting from the final
shrinkage, replication, and superposition of the template. When Ny is small, the number
of shorter fractures grows slowly as the lattice is generated, and the original long
fractures contribute significantly to the fractal dimension. In contrast, when Ny, is large,

the reverse is true, and consequently D,, = D.

Although they are highly idealized, we believe that the hierarchical fracture networks
generated as random Sierpinski lattices are useful for representing real fractured rock for
the following reasons. Most importantly, fractures of all lengths are present and blocks
of intact rock matrix of all lengths are present. Additionally, there is a huge variability
among realizations, as is seen in nature. Finally, the fractures form two orthogonal sets,
another feature commonly seen in natural rocks. A possible drawback is that we are
guaranteed to have long continuous fractures with a regular geometry (the tick-tack-toe

pattern of the basic template). For low values of Ny, this may dominate behavior.

Two cases are considered for the assignment of fracture transmissivity T: one in
which all fractures have the same transmissivity (T = 107" m%s), and one in which

transmissivity is correlated with fracture length L;. The constant T case provides a



JNC TY8400 2000007

simpli-fication that allows us to focus on the fracture network geometry. It is not expected
to be strictly realistic, but it should be adequate when variability in fracture transmissivity
is relatively small or is not correlated to fracture length. The motivation for the
correlated T case comes from pressure testing in an underground mine where a large
range of fracture lengths is observed. Using steady-state pressure and flow
measurements in packed-off borehole intervals, a large range of T values is obtained
[Oyamada and Takase, 1999]. For tests conducted in this manner to yield high T values,
the zones associated with the high T measurements must be spatially extensive.
Consequently, the lower T values are associated with smaller fractures. We quantify this
relationship by taking T; = Rijm, L= 3ijin, where R is defined as the correlation ratio
(R = 1), Trin is the transmissivity of the shortest fractures whose length is Lpyq, and j is an

index describing the hierarchical level of the fracture (0 <j <4).

For the well tests, fracture aperture w and transmissivity T are related according to
the cubic law (i.e., w is a hydraulic aperture). For the tracer tests, a tracer aperture with a
value 10 times the hydraulic aperture is used. Thus, for the correlated transmissivity

cases, as Tj increases with L;, so does w.

2.2 Flow and transport simulator _

The finite element model TRIPOLY {Karasaki, 1987b; Segan and Karasaki, 1993;
Birkholzer and Karasaki, 1996] is used to simulate water flow and tracer transpoft
through the hierarchical fracture networks. Fractures are represented as one-dimensional
linear elements and fracture intersections are represented as nodes. A special-purpose
grid generator is used to create the hierarchical lattices described in Section 2.1.
TRIPOLY models transient or steady flow according to Darcy’s law, and models
transport using the advection-diffusion equation (ADE). Transport calculations use a
mixed Lagrangian-Eulerian scheme combined with an adaptive gridding algorithm that
places additional nodes in locations of large concentration changes, in order to minimize
numerical dispersion. Complete mixing is assumed at fracture intersections. For the
present transport calculations, we neglect diffusion because sensitivity studies have

shown that it has only a small effect compared to the mixing and dispersion that arise
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from the highly irregular flow field that develops in the complicated hierarchical fracture
networks. TRIPOLY can also model the effects of the porous matrix in which the
fracture network is embedded. This capability is not employed for the present studies,
but it will be in future work, as the sorption capacity of the rock matrix can have

significant effects in retarding the movement of contaminants through fractured rocks.

2.3 Single-well pumping test analysis

Barker [1988] generalized the diffusion equation for radial liquid flow to non-integral
flow dimensions, in order to analyze data from well tests conducted in fractured rock. He
obtained an analytical expression for drawdown during a constant-rate pumping test in
terms of the (complementary) incomplete gamma function [Barker, 1988; Press et al.,
1986], which includes a parameter v that is simply related to the generalized radial flow
dimension n (Figure 6). For n = 2, the incomplete gamma function simplifies to the
familiar exponential integral of the Theis [1935] equation. For n < 2, the slope of the log
drawdown-log time plot becomes linear at long times, with a slope given by v=1 - n/2.
We numerically simulate single-well, constant-rate pumping tests by applying a mass
sink to nodes near the center of the lattice while holding nodes along the outer boundary
of the lattice at constant hydraulic head. Comparing the resulting transient drawdown to
the analytical solution provides an estimation of n. For small values of n, the linear late-
time slope provides a simple way to estimate n, but for larger values of n, the constant-
head outer boundary of the lattice is felt before the drawdown curve becomes linear,

requiring that the complete curve be matched.

2.4 The H-12 flow and transport problem

The Japan Nuclear Cycle Development Institute (JNC) recently conducted a multi-
national project to investigate the uncertainties involved in the prediction of the flow and
transport behavior of a fractured rock mass [ Oyamada and lkeda, 1999; Sawada et al.,
1999, Doughty and Karasaki, 1999]. In that project, the H-12 flow comparison, several
research organizations conducted numerical simulations of radionuclide transport away

from a repository, using the same information regarding problem geometry and fractured
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rock properties. For the present studies, we consider the same geomeitry as the H-12
problem and evaluate similar performance measures, but consider flow and transport

through hierarchical fracture networks.

The H-12 problem involves a 200-m by 200-m by 200-m cube of granitic rock
containing a 200-m long cylindrical gallery of 2.2 m diameter, located in the middle of
the volume (Figure 7a). The gallery is surrounded by an excavation-damaged zone
(EDZ) with a uniform thickness of 0.5 m. Flow is generally perpendicular to the gallery
(along the y-axis) and, thus, a no-flow boundary condition is assumed for all the x-y and
y-z boundary planes. Heads are assumed uniform on both x-z boundary planes and the
head difference between the two planes is 1.6 m. The surface of the cylindrical gallery is
a no-flow boundary condition. For the present studies, we consider a two-dimensional
(2-D) slice through the middle of the granite cube in the y-z plane (Figure 7b). For
simplicity, the EDZ is modeled as a 2.5 m by 2.5 m square region in which all elements
have a low transmissivity (T = 5107'® m%s). The EDZ size equals the smallest size to
which the original four-fracture template (Figure 1a} is reduced (200/3* m on a side).
The corner nodes of the EDZ are maintained at a constant tracer concentration C = 1, to

represent the potential escape of radionuclides from the EDZ.
The H-12 performance measures are

s Q, the steady-state flow rate through the model, which can be converted to the

effective transmissivity of the fracture network,

e  Qgpz, the steady-state flow rate through the EDZ, which influences the quantity of

radionuclides released, and ultimately the integrity of the gallery itself,

e iy, the fastest tracer travel time from the EDZ to the downgradient boundary of

the model,

* t,, a weighted travel time, which is calculated using a weighted tracer velocity vy,

that approximately accounts for sorption and matrix imbibition effects.

The weighted tracer velocity in a fracture of aperture w is defined as v, = v w/2,
where v is the usual tracer velocity and 2/w approximates the surface-to-volume ratio of

the fluid flow path, which has been proposed as a useful measure of retardation arising
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from fracture/matrix interactions [Elert, 1997]. When T is not correlated to fracture
length, all the apertures in the lattice are identical, so using weighted velocity merely
muitiplies travel time by a constant factor (ty = t,2/w). On the other hand, for the
correlated case we have T ~ R) and w ~ R*, and consequently v ~ T/w ~ R%® and v, ~
T/w xw ~ R, Hence, using weighted velocity has the effect of making the medium more

strongly correlated.

In addition, we monitor Cpay, the maximum concentration at the downgradient
boundary of the model, and At, the width of the concentration front at the location where
Cmax Occurs. Furthermore, we can convert At, the front width in time, to Ay, the front
width in space, by multiplying At by the average velocity of the front, L/(2ty,), where, L/2
is the distance from the EDZ to the downgradient boundary of the model, 100 m. Then

Ay may be used as a measure of the effective dispersion occurring in the lattice.

3. Results
3.1 Uncorrelated fracture transmissivity
Flow

Figure 8 shows several examples of the numerically simulated drawdown response
for single-well, constant-rate pumping tests in hierarchical fracture networks. In Figure
8a, the generalized radial flow dimension n is determined from the late-time slope v of
the log drawdown-log time plot for two realizations with Nyg =3 (v =1 -1/2). Some
lattices produce late-time drawdowns that show distinctive breaks in slope, indicating
sub-regions with different flow dimensions. Figure 8b compares the entire drawdown
curve for the regular lattice with Ny = 7 and Barker’s analytical solution, and indicates
that the flow dimension for this lattice is about n = 1.65. We estimate flow dimensions
for all the hierarchical lattices for each Ngq value using one of these two methods, and
calculate the arithmetic average and standard deviation, which are plotted in Figure 9a.
Combining this information with the plot of fractal dimension D versus Ny, (Figure 5)
enables us to plot flow dimension n versus fractal dimension D (Figure 9b). For all Ny,
we see that n < D. Following Polek [1990], we interpret this as indicating that flow

occurs primarily on a “backbone” portion of the fracture network. It is important to
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realize that no dead-end fractures exist in the hierarchical fracture networks, by virtue of
their construction as random Sierpinski lattices. Hence, our usage of the term backbone
is distinct from the common network or percolation theory usage in which the backbone

contains all conductive (i.e., non dead-end) fractures.

The finding that there are distinct fractal dimensions for geometry (D) and flow (n),
and in particular that n < D, is reminiscent of the case in nonlinear dynamics where
chaotic attractors, known as multifractals, are associated with a spectrum of fractal
dimensions. The first dimension, denoted Dy, describes the geometry of the attractor and
can be obtained by the box counting method. Higher order dimensions, Dy, Do, ...,
describe dynamical processes occurring on the attractor, and in general, Dj, <Dj. Dy is
of particular importance and is known as the information dimension [O#, 1993].
Similarly, in hydrological applications, an understanding of flow geometry, embodied in

n, adds a great deal to the picture presented by the fracture geometry.

Figure 10a shows the steady linear flow rate Q through the model during the
simulation of the H-12 tracer test. For each value of Ny, from two to eight, the values of
Q represent an average over eight lattices. The relationship between Q and Ny can be

reasonably well fit with the expression

Q = Qo exp [(Nsg/4),

where Qy is the flow through the basic tick-tack-toe pattern that corresponds to Ny = 0.
With the H-12 boundary conditions specifying a fixed head gradient Vh, Q is easily

converted into the effective transmissivity of the fracture network Tes:

Q = - Tex Vh,

Qo =-To Vh, where Ty = 2107 m¥s is the network transmissivity for Nyg = 0.
Thﬁs,

Tei'To = Qer/Qo = exp [(Nsg/d)’],

In (Tes'To) = (Nyg/4)™.

Given the smooth relationships between Ngg, D, and n (Figure 9), we could fit curves to

D(N,q) and n(Nsg), and hence express Tes/Tp as a function of D or n as well. Note that
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during the well tests, as Ny increases from 1 to 9, the generalized radial flow dimension n
increases from 1 to 2, but Tesr remains constant. In contrast, during the tracer tests, the
overall flow field remains linear (controlled by the constant head boundary conditions)

and Teg increases with Nyq as shown above.

Figure 10b shows the standard deviation of Q divided by the average Q. It features a
maximum for intermediate values of Ny, indicating that a greater variety of flow fields
occur for intermediate values of Ng;. This is simply a consequence of the greater variety

of fracture networks that can be constructed under these conditions.

Figure 11a shows the average and standard deviation over eight realizations of Qgpy,
the flow rate passing through the EDZ during the tracer test. Qgpz generally increases
with Ny, but the standard deviation is huge, indicating large variability between
realizations. The fact that the standard deviation for Qgpgz is much larger than that for Q
and n is reasonable, as Q and n embody integration over all the flow paths through the
fracture network, whereas Qgpz depends strongly on the particular flow paths intersecting
the EDZ. Another way to look at EDZ flow is to plot Qgpz/Q versus Nyg, as shown in
Figure 11b. We see an overall decrease with Ny, indicating that as more alternative flow
paths become available, more flow bypasses the EDZ. Note that dividing by Q is
equivalent to considering fracture networks that have the same Teg, regardless of Nyg.
From a well testing point of view, this may be the most common situation to find in
practice. Recall that the eight lattice realizations used for each Ny were chosen
specifically so that the fracture network would intersect the EDZ. We can combine the
probability that the fracture network intersects the EDZ (Pgpgz, Figure 3) and EDZ flow
by plotting PepzQepz/Q versus Ny (Figure 11c), which shows an increase for low N,
followed by a plateau for higher values. At small Ngq values, the small probability of the
fracture network intersecting the EDZ dominates, but at large Ny, the probability flattens
out and more nearly balances the decrease that occurs as more alternative flow paths are

added.
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Transport
To compare transport through the hierarchical fracture networks, we identify the

location along the downgradient boundary of the model where the maximum
concentration Cpay occurs for each simulation. For this location, we define the
breakthrough time t,; as the time when the concentration reaches Cpax/2, and the width of
front At as the time over which the concentration increases from zero to Cyay. These
quantities are averaged over 16 simulations (eight fracture network realizations each with
tracer tests in two directions) and plotted as a function of Ngq (Figures 12a, 13a, and 14).
Another way to compare breakthrough times for different Nsq values is to normalize t,; by
the effective transmissivity and total void space of the lattice. Normalizing ty 15
equivalent to assuming that for each value of Nyq, the transmissivity and aperture of the
fractures are chosen such that the effective transmissivity and total void space of the
model remains constant. In a sense, this normalization isolates fractal geometry effects

from other influences. Figure 12b shows t,* as a function of Ny, where ty,* is defined as

tor* = tor Q(Nsg)/Q(5) Nei(5)/Net(Nsg),

and Ng is the number of fracture elements in the lattice (although fracture length varies,
all fracture elements are the same length — the length of the shortest fractures). There is a
general decline in to* as Ny, increases, suggesting that the additional flow paths
introduced for higher fractal geometry provide more direct routes for tracer travel through

the model.

Just as converting ty to t,* serves to isolate the effects of fractal geometry, so does
converting front width in space At to front width in time Ay. Figure 13b shows Ay as a
function of Ng. For small values of Ny, few alternative flow paths are available, so Ay is
small, and for Nsq = 9, only the most direct flow path need be taken, again yielding small
Ay. For 3 <Ny <8, Ay is roughly constant and approximately equal to the distance
traveled, 1./2. For some of the tracer test simulations, C(t) curves are available at a series
of distances y from the EDZ along the path of peak concentration. At each distance, At
can be converted to Ay, which is then plotted versus y. There is a good deal of scatter
between realizations (as in Figure 13b), but on average, the trend of Ay = y is maintained

for all values of Ny between 3 and 8. The lack of dependence on Ny (or equivalently, on
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D or n) appears to be a fundamental resuit for these hierarchical lattices, and is further

discussed in Section 4.

The maximum concentration arriving at the downgradient boundary of the model
(Figure 14) is quite low compared to the constant concentration (C = 1) maintained at the
EDZ. This is because the EDZ is located away from the long through-going fractures of
the full-size template, and there is rarely a direct path across the model that intersects the
EDZ but misses these long fractures, which contribute clean water from the upgradient
boundary of the model. Most of the variability of Cpayx With Ngg is small, showing only
a gradual increase for Ngq < 9. Apparently even for the large Nyq values of 7 and 8, where
one might expect a direct path from the EDZ to the downgradient model boundary would
result in a large Cuax, the occasional presence of large gaps in the fracture network is

sufficient to disorganize the flow pattern, enabling mixing to reduce Cpax.

The standard deviations tend to be very large for parameters that reflect preferential
flow through one or only a few flow paths: Qgpz, ty., At, and Cprax (Figures 11, 12, 13, and
14). This illustrates the basic difficulty of attempting to obtain meaningful results by
averaging over multiple realizations for any quantity which itself is not representative of
average behavior within a given realization. It makes more sense to consider the range of

results possible for different realizations than to focus on the averages themselves.

It is apparent from Figures 12, 13, and 14 that the standard deviations of ty, At, and
Cumax all show peaks at intermediate values of Ny, as seen for Q (Figure 10b). This
decrease in predictability arises because intermediate values of Ngq (or equivalently,
fractal dimensions midway between one and two) have the widest range of possibilities
for connectivity of the fracture network. For n or D close to one, there is rarely more
than one flow path between any two points, and for n or D close to two, there are
generally many paths. In contrast, for intermediate values of n or D, there could be any
number of flow paths, and hence a wide range of flow and transport behavior must be

expected.

Figures 15 - 25 show steady-state concentration distribution, C(y,z), and transient
breakthrough curves, C(t), for various values of Ny, in order to illustrate some of the key

the features of flow and transport in hierarchically fractured rock. For small values of
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Njq, the situation shown in Figure 2 for Ny = 2 and Ngq = 3 is typical in that at least one
of the constant head boundaries is intersected by only two long fractures. If this is the
upgradient boundary of the model, then flow through the EDZ tends to have a diverging
character, as shown in Figure 15a for Ng; = 2. Conversely, if the downgradient boundary
of the model intersects only two long fractures, then all flow through the EDZ must
ultimately converge into these two fractures (Figure 15b). These different flow
distributions produce sharply different breakthrough curves. The diverging flow fields
tend to produce lots of mixing and spreading of tracer, resulting in classical S-shaped
breakthrough curves with late breakthrough times (exemplified by the break through
curves for z < 0 in Figure 15a). Converging flow occurs along fewer flow paths, leading
to earlier, sharper breakthrough curves in which concentration is more likely to show
oscillations, due to instabilities in the mixing of clean and traced water at a few fracture
intersections (in particular, the break through curve at z = 33 m in Figure 15b). Within an
overall diverging flow field, there are often “pinch points,” where flow through a network
of fractures must converge to a single fracture intersection (e.g., at y =33 m, z=-33 min
Figure 15a), resulting in converging flow at one scale, and diverging flow at another.
Furthermore, this converging-within-diverging pattern can occur at different scales (e.g.,
the pinch point at y =-11 m, z =-11 m in Figure 15b), ultimately leading to a great deal

of variety in spatial concentration distributions and breakthrough curves.

Figure 16 shows an example for Ny = 3. Figure 16a shows diverging flow, and a
classical S-shaped breakthrough curve. However, there is a direct flow path from the
EDZ to the downgradient boundary of the model that does not intersect the two long
fractures that bring in clean water from the upgradient boundary, hence Cpyx is bigger
than usual. The converging flow in Figure 16b shows the usual features of early ty, small
At, and oscillating Cpac- It also illustrates the phenomenon of crossing breakthrough
curves, in which the location with the earliest arrival of tracer does not end up being the
location with the maximum tracer concentration. This occurs frequently in the

hierarchical fracture networks.

For larger values of Ny, the convergence of the flow field down to only two fractures

becomes less common, but converging/diverging features of the fracture network at
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different scales still have a strong impact on the tracer flow paths leaving the EDZ. As
Nsq increases from four to five, the fracture network undergoes a transition from having
more gaps than fractures to having more fractures than gaps. It is during this transition
region that the most variability in fracture network connectivity is possible. Figures 17
and 18 show examples for Ngg = 4. In Figure 17a, many fracture intersections between
the EDZ and the downgradient boundary result in S-shaped breakthrough curves, but the
crossing pattern indicates that flow is not occurring uniformlty through the network. In
Figure 170, there are fewer fracture intersections, and consequently more irregular
breakthrough curves. In Figure 18a, a diverging flow pattern following pinch points
results in uniformly low concentrations. In Figure 18b, there is less divergence, and a
relatively sharp concentration gradient is apparent across the fracture zone downgradient
of the EDZ. Note that several fractures to the left of the EDZ show no concentration

increase, as the flow field bypasses them entirely.

Figure 19 shows an example for Ny, = 5. In Figure 19a, much of the flow through the
model is funneled through the EDZ, and a relatively direct, narrow flow path from the
EDZ to the downgradient boundary results in a large value of Cma. In Figure 19b, there
is a narrow plume for a while, but then diverging flow following a pinch point causes
widening and a decreased Cnax. The oscillations in the breakthrough curve forz=33 m
probably reflect instabilities in the mixing of clean water from the upgradient boundary
and traced water from the EDZ at the pinch point. Although this is purely a numerical
effect, it may have natural analogs in the less ideal world, where changes in stress or
other non-linearities could subtly alter fracture transmissivities or hydraulic boundary

conditions.

Figure 20 shows examples for Nyq = 6 with breakthrough curves that illustrate a
small, early increase in concentration followed some time later by the main concentration
front. This low-concentration “tail” is typical of fracture networks with a relatively direct
flow path from the EDZ to the downgradient boundary that is surrounded by many longer
flow paths that lead to the same downgradient point. It is a common feature of
hierarchical fracture networks. In Figure 20a, an overall diverging flow field leads to a
wide tracer plume and a gradual breakthrough curve, whereas in Figure 20b, L/9 size

gaps keep the main part of the plume rather narrow, leading to a sharper breakthrough
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curve. Figure 21 shows two more examples for Ngg = 6. In Figure 21a, the flow field
follows an S-shape around the largest gaps that is reflected in the tracer plume. In Figure
21b, much of the flow through the model occurs in the fractured zone at 33 <z < 100 m,
bypassing the EDZ, and resulting in a very low value of Cpax. A pinch point atz=-33 m
and the subsequent divergent flow creates a remarkably uniform concentration in the y <

-33 m, z < -33 m region.

For large values of Ny, there are often relatively direct paths from the EDZ to the
downgradient boundary, but there is still a wide variety among concentration
distributions. Figures 22 and 23 show some examples for Ng; = 7. In Figure 22a, the
overall converging character of the flow field causes the plume to remain narrow as it
skirts around large gaps in the fracture network, and it shows an early . In contrast, in
Figure 22b, the diverging flow field causes the plume to grow broad as it moves around
L/9 size gaps, and it shows a much later ty.. The higher value of Cy,y for Figure 22b is
indicative of the greater fraction of flow from the upgradient boundary passing through
the EDZ for that case. In Figure 23, the flow field shows neither a global converging nor
diverging character. The deflection around an L/9 size gap in Figure 23a is obvious, but
the shepherding caused by L/27 size gaps is subtler, leading to a nearly straight-line path
in Figure 23b.

Figures 24 and 25 show examples for Ny = 8. Despite the nearly completely filled
fracture networks, gaps of all sizes exist, so there is a significant variability among
realizations. In Figure 24a, the flow field shows a gradual convergence to the right of the
large gap, which keeps the concentration plume narrow. When the flow direction is
reversed (Figure 24b), the plume bifurcates around the gap and the breakthrough curves
feature the low-concentration tails and crossing pattern seen for previous examples. In
Figures 25a and 25b, the largest gaps control the overall flow pattern by creating slightly
diverging, diagonal flow fields. The diagonal flow is strongly reflected in the
concentration plumes, despite the fact that the plumes never get close to the gaps. If this
global character of the flow field were not appreciated during the experimental design,
and tracer monitoring only occurred at z = 0 (presumably downstream of the EDZ),

nearly the entire plume would be missed.
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3.2 Fracture transmissivity correlated to fracture length
Flow

During a pumping test, when fracture transmissivity is correlated to fracture length
according to T; = Tmij, Li= 3jL,m-n, any value of Ny, can produce a drawdown curve
consistent with a generalized radial flow dimension of n = 2 by a suitable choice of R
(Figure 28a). Conversely, for a given Ngq (Nsg = 5) we can produce any value of n by a
suitable choice of R (Figure 26b). Formally, it is not readily apparent that using T ~ Rl in
the n-dimensional flow equation is equivalent to using a constant T in the two-
dimensional flow equation, but matching numerical simulations employing correlated

transmissivity to Barker’s analytical solution does seem to work.

Figure 27 shows the steady linear flow rate Q through the model during the
simulation of the H-12 tracer test, as in Figure 10a, but now instead of plotting Q as a
function of Ny, it is plotted against flow dimension n (N is converted to n using Figure
9a). Also shown in Figure 27 are the Q values obtained for the Ny = 5 lattice using
correlated transmissivity with a range of values for R, which is converted to n using
Figure 26b. Flow rates obtained with the correlated transmissivity case agree well with
the uncorrelated cases, indicating that a correlated transmissivity distribution has the

same effect on transient flow to a well (generalized radial flow) and steady linear flow.

Figure 28 shows flow through the EDZ including two correlated transmissivity cases,
one with a regular lattice, and one with a random lattice. Note that the EDZ is located
well away from the longest, highest-T fractures. Thus, as n increases, Qgpz increases

more slowly for the correlated transmissivity cases.

Transport

Figures 29 - 31 show ty, At, and Cy,x as a function of n, including uncorrelated
transmissivity cases where n depends on Ny, and correlated transmissivity cases for Ny =
5 where n depends on R. Values of ty, and At for the correlated cases show the same
trend but are generally smaller than for the uncorrelated cases. However, the spread

among the uncorrelated realizations is so large that is difficult to say how significant the
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effect of correlated transmissivity is. In contrast, Cyex for the correlated and uncorrelated
cases show diverging trends as n gets large (Figure 31). This is because for the
uncorrelated case, as Ny, increases there are more direct flow paths from the tracer source
to the downgradient boundary, so Cnmay increases, whereas for the correlated case, as R
increases more flow goes through the long high-T fractures, which are far away from the

tracer source, causing a decrease in Cuax.

When R = 1, using a weighted tracer velocity as defined in Section 2.4 just muitiplies
ty and At by a constant factor (2/w = 4.1'10* for T = 107 m%s). But whenR > 1, the
existence of fractures having a range of apertures means that the local weighted velocity
differs from the usual tracer velocity, so calculating weighted travel time requires an
integration along the weighted flow path. The resulting values of weighted ty, and At are
shown in Figures 29 and 30 (muitiplied by w/2 to enable plotting on the same scale as the
unweighted times). In all cases, the correlation effect of using a weighted velocity is
small. That is, once the weighted ty, and At values are multiplied by w/2, thrj:y not differ

significantly from the unweighted ones.

Figure 32 shows the steady-state concentration distribution for the random Ngg =35
lattice for several values of R, and illustrates a narrowing concentration plume as the

correlation between transmissivity and fracture length grows.

4. Discussion and Comparison to Other Studies

A common feature of most of the hierarchical fracture networks studied is that they
produce quasi-channelized flow, with localized, rapid transport from the EDZ to the
downgradient model boundary. Many of the breakthrough curves also show evidence of
multiple flow paths, indicating interaction between channels. In general, subtle features

of the flow field can produce strong responses in transport phenomena.

We initiate transport by imposing a localized step change in concentration at the
EDZ, follow the resulting tracer plume through the model, and examine its arrival at the
downgradient model boundary. This procedure reproduces the processes associated with
radionuclide release from a nuclear waste repository, and the associated natural-gradient

tracer test designed to mimic that release. Another approach is to introduce tracer all
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along the upgradient boundary of the model and construct a breakthrough curve by
averaging over the entire downgradient boundary of the model. [Birkhdlzer and Tsang,
1997]. This method has the advantage of incorporating the effect of flow paths
throughout the medium, but it does not illustrate what is likely to happen during a given
tracer test with a localized tracer release point and a limited number of observation
points. Others have used localized releases of tracer, but primarily focus on spatially
averaged breakthrough curves [Grindrod and Impey, 1993; Berkowitz and Scher, 1997,
Clemo and Smith, 1997]. These investigations also predict channelized flow, which leads
to irregular, difficuli-to-predict transport, making any prediction for a single point highly
likely to be completely wrong. This appears to be the motivation for examining average
rather than local breakthrough curves. However, we have found that looking at average
rather than local behavior is generally not helpful for elucidating the physical processes
occurring in the fracture network. Moreover, it is often misleading as to the range of
responses expected in an actual field experiment with only a few observation points,
precisely because the critical fast flow paths that produce the earliest tracer arrivals are
not representative of the average behavior of the medium. Although local predictions for
tracer breakthrough are likely to be in the wrong location, they are more useful than
average predictions, which say nothing about breakthrough location and are less likely to
show the right physics. A preferable situation is to be able to monitor over a spatially
extensive region, such as an underground drift or a surface exposure such as a cliff face.
Then both local and average predictions can be made, and compared to local and average

observations, respectively.

The finding that Ay = y for a large range of fractal dimensions (Figure 13b) may seem
surprising in view of numerous authors suggestions that the commonly observed scale-
dependence of dispersivity [Gelhar et al., 1985] can be éxplained as a consequence of the
fractal dimension of the tracer flow path [Tyler and Wheatcraft, 1992 and references
therein]. In the conventional ADE (Advection Dispersion Equation) with constant values
of groundwater velocity and dispersivity 0., one finds Ay ~ (ci.t) "2 or equivalently Ay ~
(OtLy)Uz. In contrast, for scale-dependent or anomalous dispersion, one observes Ay ~

or Ay ~ ¥ where r > 1/2. To preserve the connection with the conventional ADE, a

1/2 172

variable dispersivity oy is introduced so that Ay ~ (Cmt) ™ with O ~ 2! or Ay ~ (ClmY)
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with i ~ y*. To explain this phenomenon with a fractal model, one then derives an
expression for r as a function of D. For example, Wheatcraft and Tyler [1988] obtain 0,

~ y*™! based on a random walk over a set of fractal streamtubes.

In the presént studies, we find Ay ~ y, which requires ¢iq ~ y orr = 1, which is the
dispersivity dependence for a stratified aquifer [Mercado, 1967]. Neretnieks [1983]
recognized that this relationship applies to channelized flow as well. It is natural for
heterogeneous models to produce channelized flow at one scale, but Ross [1986] points
out that fractal media have the unique capability of producing channelized flow at all
scales: at any experimental scale, there are always a few fractures that are nearly as large
as the experimental scale; these provide quasi-independent channels through which most
of the flow occurs; as the experimental scale increases, longer fractures come into play
and channeling is maintained. This explanation is consistent with the finding that Ay = y,

independent of fractal dimension, for a range of y values between 5 and 100 m.

However, it must be noted that the expression Ay = y produces only a roughly
approximate fit to the numerical results, and there is a great deal of scatter around it, both
for observations at y = 100 m (Figure 13b) and for smaller values of y. This is not
surprising, since using the conventional ADE with dispersivity made a function of time or
space to account for scale-dependent dispersivity is an ad hoc approach. In fact,
Berkowitz and Scher [1995] are able to prove that using Oiy(t) leads to quantifiably
incorrect solutions for the anomalous dispersion caused by differential advection through
a highly heterogeneous medium. Cushman [1991] treats transport in a fractal medium
rigorously and obtains a non-local integrodifferential governing equation in place of the
conventional ADE. In other words, transport at a given point depends on the history of

concentration at that point, as well as concentrations elsewhere in space.

5. Summary and Cenclusions
We have generated hierarchical fracture networks with well-defined fractal
dimensions and simulated well test and tracer tests through them. By examining multiple

realizations, we have looked for trends that describe the varation of transport with fractal
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dimension, and features that are unique to particular fracture network geometries. The
studies attempt to illustrate the range of possible behavior that might be obtained during
field tracer tests conducted in hierarchically fractured rock, and provide insights into how
to interpret field responses. Some specific findings are presented below, followed by

more general concluding remarks.

1. As the number of filled squares N in the random Sierpinski lattices increases, the
fractal dimension of the fracture network D increases, as does the generalized radial

flow dimension n obtained during a well test. For all fracture networks, n < D.

2. For linear flow during a tracer test, the effective transmissivity of the fracture network
is well fit by the relationship In (Tes/To) = (qu/4)2, where T is the transmissivity of a
fracture network with Ngq = 0. Given the smooth relationships between Ngq, D, and g,

simple analytical expressions could also be written for Ter(D) and Tegr(n).

3. During tracer tests, the relative amount of flow through the EDZ (the tracer source)
tends to increase with fractal dimension, as smaller gaps in the fracture network make

it less likely that the EDZ will be bypassed by the primary flow channels.

4. During tracer tests, channelized flow tends to produce early, localized tracer
breakthroughs, but some interaction between channels 1s also apparent, as

breakthrough curves show evidence of multiple flow paths arriving at a given point.

5. Normalized breakthrough time tp* decreases as fractal dimension increases, due to

the addition of more and more direct flow paths through the model.

6. Front width Ay is independent of fractal dimension over the range 3 < Nsg<8,and is
approximately equal to the distance traveled by the front. This linear dependence is
consistent with channeling that occurs over a range of length scales, which is quite

plausible for a hierarchical fracture network.

7. Maximum concentration at the downgradient boundary Crax 18 quite low compared to
the unit concentration maintained at the EDZ, and Cgax shows only a slight increase
with fractal dimension for Ngq < 8. This suggests that even for dense fracture
networks the occasional gaps disrupt and disorganize the flow pattern, leading to low

values of Chax.



JINC TY8400 2000—007

8. For flow properties, assuming that transmissivity is directly correlated with fracture
length makes the fracture network act as though it had a higher value of n and no
transmissivity correlation. However, for transport properties, the relationship is not
so simple, as some transport properties follow the trends of uncorrelated networks

and others do not.

Geometry and flow-related properties D, n, and T.g represent average behavior over
the whole fracture network and thus show little variability between realizations for a
given Ny. Consequently, the averaged relationships for D, n, and Teg as a function of Niq
apply quite well to all realizations. In contrast, transport-related properties Qgpz, twt, At,
and Chay are controlled by a relatively few fractures and consequently are very sensitive
to subtle variations in the fracture network and the flow field. By virtue of the
hierarchical fracture network structure, flow field variations occur at all scales. In
particular, the existence of gaps of all sizes means that the converging-diverging pattern
associated with pinch points occurs at all scales. Large-scale flow-field features control
the overall direction of the tracer plume, and whether it broadens or remains narrow. At
smaller scales, flow can be focused toward the EDZ or largely bypass it, strongly
affecting the resulting tracer plume. Consequently, there is a great deal of variability in
transport properties among realizations, which must be appreciated when looking for

trends associated with fractal dimension.

At a fractal dimension of D = 1.5, there is a transition from networks with more gaps
than fractures (N, < 4) to networks with more fractures than gaps (Ngq > 5). This is
where the greatest variability in fracture network geometry occurs, leading to the biggest
uncertainty in flow and transport properties. However, even for fractal dimensions near
D = 2 there is still a very large variability among transport simulation results for different
realizations. Moreover, within a given realization, there is also a great deal of variability,
as evidenced by the large values of Ay and small values of Cyax. These finding are
consistent with and may partially explain the large variability in the experimental results

observed at fractured rock field sites.



JNC TY8400 2000—007

6. Future Directions :

The present study has continued and expanded on earlier works by Barker [1988] and
Polek [1990] to investigate flow and transport in hierarchically fractured rock, but it has
by no means exhausted the subject. Much more can be done using the approach of
generating hierarchical fracture networks as random Sierpinski lattices. The resulting
hierarchical fracture networks are simple to generate, straightforward to use in
simulations, capture the variability of the real world, and thereby allow a systematic
study of the relationships between flow and transport behavior and fractal geometry.
Specific topics for further work include:

e Develop three-dimensional hierarchical fracture networks, in which individual
fractures are represented as planar disks or squares and fracture intersections become
line segments. 7

¢ Examine transmissivity distributions more carefully by considering more realistic
correlation structures.

¢ Include the rock matrix in which the fracture network is embedded. In particular,
model matrix diffusion and sorption explicitly, rather than through the weighted
velocity approximation presently used.

e Extend the notion of site characterization with a minimal number of wells to include
tracer tests. Novakowski et al. [1998] describe a tracer test procedure using only one
well, consisting of radial injection followed by linear drift along with the regional
flow. It would be very interesting to simulate this type of test for hierarchically
fractured rock and compare the results to single-well hydraulic tests and the more

conventional tracer tests discussed in the present paper.
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8. Figure Captions

Figure 1. Construction of a random Sierpinski lattice for Ngq = 5: (a) the basic template
with four fractures of length L, (b) addition of fractures of length L/3, (c) addition of
fractures of length L/9, (d) addition of fractures of length L/27, and (e) addition of
fractures of length L/81. '

Figure 2. Some of the fracture networks constructed as (a) random, and (b) regular
Sierpinski lattices.

Figure 3. Probability of the fracture network intersecting the EDZ as a function of Ng,.

Figure 4. Example of the box counting method. The plot shows the number of fractures
encountered within a radius r of a central point; the slope of the lines is the fractal
dimension D.

Figure 5. Fractal dimension D of the lattice as a function of Ngg, with D averaged over
eight random lattices for each value of Nyg from two to eight. Dy, is the fractal dimension
for a traditional Sierpinski gasket in which only the shortest fractures are retained.

Figure 6. The incomplete gamma function (dimensionless drawdown) versus
dimensionless time [Barker, 1988].

Figure 7. Schematic of the FH-12 problem: (a) full 3-D problem, and (b) 2-D slice through
the center of the block modeled in the present studies. The EDZ is shown as a solid black
square in the center.

Figure 8. Comparison of numerically simulated drawdown and Barker solution for
single-well, constant-rate pumping tests for lattices with (2) Ngg =3, and (b) Ny =7.

Figure 9. Generalized radial flow dimension n as a function of (a) Ng and (b) D.

Figure 10. Flow through the model during a tracer test: (a) average Q as a function of
quz, and (b) standard deviation of Q divided by average Q as a function of Njg.

Figure 11. Different ways of evaluating flow through the EDZ during a tracer test: (a)
Qepz versus Ny, (b) Qepz/Q versus Ngg, (€) PenzQrpz/Q versus Ny

Figure 12. Breakthrough time at the downgradient boundary of the model as a function
of Ngq (a) actual breakthrough time ty, and (b) normalized breakthrough time ty™*, with
the influence of effective lattice transmissivity and total void space removed.

Figure 13 Concentration front width at the downgradient boundary of the model as a
function of Ny (a) front width in time At, and (b) front width in space Ay.

Figure 14. Maximum concentration at the downgradient boundary of the model as a
function of Ng.
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Figure 15. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny, = 2 lattice in which flow is from (a) left
to right and (b) right to left.

Figure 16. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny = 3 lattice in which flow is from (a) left
to right and (b) right to left.

Figure 17. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny, = 4 lattice in which flow is from (a) left
to right and (b) right to left.

Figure 18. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for Ngq = 4 lattices in which flow is from (a) left to
right and (b) right to left.

Figure 19. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ngg = 5 lattice in which flow is from (a) left
to right and (b) right to left. '

Figure 20. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for Ny = 6 lattices in which flow is from (a) left to
right and (b) right to left.

Figure 21. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for Ny = 6 lattices in which flow is from right to
left.

Figure 22. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ngq = 7 lattice in which flow is from (a) left
to right and (b) right to left. '

Figure 23. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny, = 7 lattice in which flow is from (a) left
to right and (b) right to left.

Figure 24. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny = 8 lattice in which flow is from (a) left
to right and (b) right to left.

Figure 25. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for Ny, = 8 lattices in which flow is from right to
left.

Figure 26. Well-test results for correlated transmissivity: (a) the value of R required to
produce a drawdown curve consistent with n = 2, for various values of N, and (b) the
relationship between R and n for Ngg = 5.

Figure 27. Flow through the model Q as a function of n, including the correlated
transmissivity case with Ny, = 5.

Figure 28. Flow through the EDZ as a function of n, including correlated transmissivity
cases with Ngg = 5.
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Figure 29. Breakthrough time ty at the downgradient boundary of the model as a
function of n, including correlated transmissivity cases.

Figure 30. Concentration front width At at the downgradient boundary of the model as a
function of n, including correlated transmissivity cases.

Figure 31. Maximum concentration at the downgradient boundary of the model as a
function of n, including correlated transmissivity cases.

Figure 32. Steady-state concentration distributions for correlated transmissivity cases.
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Figure 1. Construction of a random Sierpinski lattice for Ngg = 5: (a) the basic template
with four fractures of length L, (b) addition of fractures of length L/3, (c) addition of

fractures of length L/9, (d) addition of fractures of length L/27, and (e) addition of
fractures of length L/81.
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Figure 2. Some of the fracture networks constructed as (a) random, and (b) regular
Sierpinski lattices.
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Figure 2 continued.
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Figure 19. Steady-state concentration distribution and breakthrough curves at selected
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Figure 20. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for Ng = 6 lattices in which flow is from (a) left to
right and (b} right to left.
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Figure 21. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for Ng = 6 lattices in which flow is from right to
left.
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Figure 22. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny = 7 lattice in which flow is from (a) left
to right and (b) right to left.
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Figure 23. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny, = 7 lattice in which flow is from (a) left
to right and (b) right to left.
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Figure 24. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for an Ny = 8 lattice in which flow is from (a) left
to right and (b) right to left.
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Figure 25. Steady-state concentration distribution and breakthrough curves at selected
points on the downgradient boundary for Ny, = 8 lattices in which flow is from right to
left. i
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Abstract. An asymptotic formulation of the inverse problem for flow reveals
that the inversion may be partitioned into two complementary sub-problems. In the
first problem, the arrival time associated with the peak slope of the transient curve is
directly related to reservoir properties. The second inverse problem is similar to current
methods for interpreting flow data, the transient head amplitudes are related to reservoir
storage and conductivity. The first sub-problem, the arrival time inversion, involves
much less computation than does amplitude matching. Furthermore, it appears to be
more robust with respect to the starting model. Therefore, the solution to the arrival
time inversion provides a starting model for amplitude matching. The methodology
is particularly suited to the analysis of observations from well tests. We apply the
approach to observations from two interference tests conducted at the Borehole Test
Facility in Oklahoma. Using the transient pressure measurements, we image a shallow
conductive fracture. The existence and location of the fracture has been verified by both
geophysical and borehole data. In particular, core from a slant well contains an open,

vertical fracture which coincides with our conductive feature.
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Introduction

There are advantages in utilizing head or pressure data to characterize aquifer
structure. For example, pump tests are generally easier to conduct than are tracer
tests. Pressure observations are rather directly related to reservoir conductivity and
storage. By contrast, the interpretation of quantities such as tracer concentrations
and multi-phase flow data are dependent on variations in reservoir pressure, reservoir
conductivity and storage, as well as on additional quantities such as tracer dispersion
and fractional flow properties.

In hydraulic well tests, pressure changes are monitored in response to a fluid being
pumped into or out of a reservoir. The response is a function of the geometry and
the flow parameters of the reservoir. Therefore, by analyzing the pressure changes one
can estimate such reservoir parameters. In this regard, well test analysis is an inverse
problem. The simplest type of inversion is the traditional analytical approach, where the
pressure data are compared to those of known analytical models. However, analytical
models are only available for a handful of idealized situations. Although care must be
used, the analytical approach is nonetheless a powerful tool for estimating bulk reservoir
parameters.

When a more detailed reservoir description is called for, multiple pressure tests
with many observation points must be conducted. In such cases a numerical inversion
is usually employed to analyze the data. There are by now a wealth of computational
techniques for interpreting and inverting pressure or head variations. Due to their
great diversity, it is difficult to categorize the various approaches. Some are primarily
geostatistical while others are more deterministic in nature, though it is possible to
treat the problem in a somewhat unified manner [McLaughlin and Towney, 1996]. Some
methods attempt to estimate parameters using stochastic optimization methods such as
simulated annealing [Mauldon et al., 1993] or hybrid schemes such as simplex annealing

[Pan and Wu, 1998]. More commonly, a linearized inversion technique is used iteratively
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to estimate parameter values. Linearized approaches require the computation of the
sensitivity coefficients relating perturbations in reservoir properties to perturbations in
flow. Since the early work of Jacquard and Jain [1965] several classes of methods have
been developed for computing such sensitivities. For more details interested readers
should consult the reviews by Yeh [1986], Kuiper {1986], Carrera {1987], Ginn and
Cushman {1990], Sun [1994], and Mclaughlin and Towney [1996].

Some difficulties in interpreting pressure obsefvations are due to the computation
required to solve the inverse problem and due to the localized nature of pressure
sensitivities. Inverfing transient pressure data involves extensive computation,
particularly for three-dimensional problems. Most solutions of the forward problem,
calculating pressure given a reservoir model, rely on purely numerical solutions, which
can be expensive. The solution of the inverse problem entails repeated solution of
the forward problem, either to compute sensitivities for a linearized inversion or to
construct a solution using a stochastic technique. The spatial variations in pressure
sensitivity also introduce difficulties into the inversion process. In particular, well
pressure variations are far more sensitive to flow properties near the pumping and
observing boreholes than to conductivity and storage at a distance. Furthermore, the
pressure sensitivities to variations in conductivity and storage are fairly similar over
time. Thus, the pressure history at a well is in many ways redundant. That is, a large
number of pressure observations do not necessarily produce a corresponding number of
independent constraints on the spatial variation of reservoir properties.

In this paper we describe an approach to transient pressure inversion which is
based upon an asymptotic solution to the flow equation. The approach has some
useful properties, particularly when treating the inverse problem. First, the solutions
are defined along trajectories or paths in the model, between the source well and the
observation point. Thus, the three-dimensional problem of calculating pressure is

reduced to a sequence of one-dimensional problems. This is particularly important for
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the inverse problem because sensitivities may be computed by integrating analytical
expressions along the tré,jectories. Secondly, the inverse problem divides into two
complementary estimation problems. Initially, we use the arrival time of the maximum
slope in pressure curve to infer conductivity and storage. Subsequently, the pressure
variations themselves are inverted for flow properties. The advantage of this two-step
procedure is that, as we shall show, the travel time is equally sensitive to structure
between the pumping and observing wells, it is not more strongly influenced by
variations in the vicinity of the boreholes. Furthermore, the arrival time inverse problem
is more robust with respect to the starting model. Thus, the arrival times may be used
to find a initial three-dimensional reservoir model which may be used as the starting
model for the inversion of the pressure values themselves.

Our asymptotic approach follows that of Vasco et al. [1999], Vasco and Datta-Gupta
[1999], and Virieux et al. [1994]. A number of studies have extended asymptotic
methods to propagation problems with a diffusive component, amoung them are
Chapman et al. [1999], Smith [1981], Kravtsov [1968], and Cohen and Lewis [1967].
There is a related body of work in which the diffusion equation is explicitly transformed
into a wave equation [Wilson, 1983; Pierce, 1986; Philip, 1989; Oliver, 1994]. In these
approaches similar ideas, such as arrival time matching [Oliver, 1994], do arise. However,
such transform methods have been hampered by the instability of the transformation

between the wave-like and diffusive domains [Oliver, 1994].

Methodology

In this section we derive the asymptotic series solution for flow. By considering
terms of various orders in 1/\/w {where w is the frequency) we arrive at the eikonal
equation governing the phase or arrival time and the transport equation describing the
evolution of pressure amplitude in space and time. Using the eikonal and transport

equations we then derive the sensitivities of head to variations in aquifer storage and
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conductivity.

The equation governing drawdown

In an inhomogeneous medium the equation describing the space x and time ¢

evolution of head A(x,t) is

K(x)Vh(x,t) + VE(x) - Vh(x,t) = S(X)ah(a’;’t) (1)

where K (x) denotes the hydraulic conductivity and S(x) denotes the storage coefficient
[Bear, 1972; de Marsily, 1986]. We consider the equation in the frequency domain,
applying the Fourier transform

Hix,w) = % [ hx e, )

—0C0

In the frequency domain equation (1) becomes

 Kx)VH(x,w) + VE(x) - VH(x,w) = iwS(x)H(x,w). (3)
Defining
Al = T (@
and
Ax) = E,((i)) ()

produces the more compact form
VIH(x,w) + A(x) - VH(x,w) — iwA(x)H(x,w) = 0. (6)

In the frequency domain it is clear that for large w, at high frequencies, the head
is sensitive to A(x), the ratio of storage to conductivity. Conversely, low frequency
variations in head, such as the static change in pressure, are primarily sensitive to A(x)

which may be written as

A(x) = Vin K(x).
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In order to motivate our particular form of the solution, in powers of 1/+/w, note

that in a homogeneous medium A(x) vanishes, resulting in the diffusion equation
ViH(x,w) — wA(x)H(x,w) =0 (7

where A(x) is now constant. For an impulsive source —4w§(t) the diffusion equation has

the time-domain solution

h(x, 1) = %—A(x)fz/‘*tz(t) (8)

where r is the distance from the source and %(t) is a step function. If we consider the

solution in the frequency domain we find that

 H(x,w) = 2Ko(vV—iwr/A(x)r) (9)

where Kj is a modified Bessel function of zero-th order [Virieux et al., 1994]. For large

w, Ko may be approximated by

H(x,w) = Var %e‘m\/ﬂf")" (10)
V—twy/Ax)

[Virieux et al., 1994]. Note in particular that the frequency enters the solution in the

form +/—iw.

Asymptotic solutions for flow

An asymptotic solution for flow follows if we take a solution of the form

H(x,w) = e “"“"’(")Z}frj%%): (11)

[Fatemi et al., 1995]. The motivation for using an expansion in inverse powers of

w is that the initial terms of the series represent rapidly varying (high-frequency,
large w) components of the solution and successive terms are associated with lower
frequency behavior [Vasco and Datta-Gupta, 1999]. The reason for using +/~iw, rather

than simply w, is that we would like our solution to reduce to the solution given by
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equation (10) in a homogeneous medium. One could also argue for a solution of the
form (11) on physical grounds, based upon dimensional or similarity analysis of the
equation for drawdown. This is somewhat analogous to the derivation of the Boltzmann
transformation discussed by Bear {1972]. Other asymptotic expressions are also possible.

For example, Chapman et al. [1999] consider an expansion of the form

Hx,w)=w"e o (x) Z (n x)
n=0 Y
where the constant € is chosen such that the leading-order equation is nontrivial.

The asymptotic solution (11) is the sum of an infinite number of functions A,(x).
However, we will generally be interested in only the first few terms in the series which
we can relate to important physical quantities. In order to obtain expressions for these

quantities, the sum (11) is substituted into equation (6). The operators in equation (6)

may be applied term by term to the series. For example,

VH(x,w) =e~ V—iwa(x) Z;)m__—_(v}izg)))

=V (e T T j___x))

and similarly for V? = V - V. Thus, substituting expansion (11) into equation (6)

(12)

produces an expression with an infinite number of terms. Each term will contain /—iw
to some order and we may consider the sets of terms for any given order. In the next

two subsections we consider the two terms of order (v/—iw)? and +/—iw respectively.
P

The eikonal equation and the arrival time of the maximum drawdown
For terms of highest order in v/—iw, those of order (y/—iw)?, we have the equation
wVo(x) - Vo(x)Ae(x) — twA(x)Ag(x) = 0. (13)
Assuming that Ag(x) and w are non-vanishing, we find

Vo(x) - Vo(x) — A(x) = 0. (14)
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Equation (14), known as the eikonal equation, governs many types of propagation
processes [Kline and Kay, 1965; Kravtsov and Orlov, 1990] and there are efficient
numerical methods for its solutions [Sethian, 1996]. The eikonal equation relates the
function o(x) to the flow properties, as contained in A(x).

A physical intefpreta.tion of o(x) is obtained if we consider the zero-th order term
in expansion (11)

H(x,w) = Ag(x)e %), (15)

Taking the inverse Fourier transform with respect to w produces the time domain

expression

h(x,t) = Ao(x)%e“’z(x”“ (16)

[Virieux et al., 1994]. At a fixed position, X, the drawdown is a maximum when

OR(Xt) _  _o2(xp/as (_L @)
5 =e 2\/15—5—{— o (17)

vanishes, when 6¢ = o?(x). Hence, for an impulsive source the peak drawdown occurs at

time o%(x)/6. For this reason o(x) is referred to as the pseudo-phase, a type of iravel
time. Equation (14) is a statement that the travel time is a function of A(x), the inverse
of the medium diffusivity. This relationship between the arrival time of a pressure pulse
and A(x) has also been noted by Oliver [1994] in the context of pressure inversion. We
should emphasize that o(x) is associated with the propagating front of peak drawdown
and does not necessarily represent a surface of equal drawdown. The spatially varying
quantity Ag(x) will generally ensure that the amplitude of the peak drawdown observed
at various positions will differ. For some situations, such as a homogeneous medium,
the surfaces of equal drawdbwn and peak drawdown at a given time may coincide.
Surfaces defined by constant o(x) designate positions in space at which the peak
drawdown occurs at time o2(x)/6. For the moment, we shall work with T = /% as our
primary temporal measure. Consider the surface defined by = = o(x)/+/6. The norxﬁals

to this iso-surface are given by Vo(x) and we may define the normal vector p = Vo (x).
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Note, from equation (14) we see that the magnitude of p is given by

lpl = yA(x). (18)

A point s = (sy, 8,583) on the iso-surface traces out a curve as r = /% is varied. The

tangent vector to this curve is proportional to the normal to the iso-surface

ds
== €p (19)

for some scaling factor e. The shape of the surface is not influenced by the scaling factor
€.
As outlined in Appendix A, we compute the trajectories by solving the following

~ system of ordinary differential equaionts

2 op (20)
P _ gax). (21)

dr

Equations (20) and (21) are also subject to a set of boundary conditions. Usually, the
constraints are provided by the requirement that the pressure change start at the source
point X, and end at another specified point, say y. That is, we have the end-points
conditions

s(0)=x;, s(l)=y (22)

for a path starting at 7 = 0 and ending at 7 = 1. The above equations are integrated
numerically to arrive at the path s(7). Note that the trajectories are generally not
straight lines. Rather, they are curves in three-dimensional space.

In our treatment of the peak arrival time and amplitude, the calculations are
simpler if‘ we adopt a coordinate system based upon the trajectories or rays. That is,
assuming that the trajectories have already been defined by numerically integrating

equations (20)-(22), we take one coordinate, say s, along the raypath. The other two

components are taken to lie within the appropriate iso-surface defined by o(x). Our
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coordinate system is now curvilinear rather than Cartesian, but it is better suited for
numerical computation. For example, in these coordinates o(x) only varies with s and
Vo and p are tangent to the s coordinate curve. Thus, the Vo = do/ds and from

equation (14) we find

Z = /a6 (23)

or, remembering that v/ = ¢//6,

Tx) = % - % fz JA(s)ds (24)

where T'(x,) is the travel time from the source to the observation point x; and ¥ is the
trajectory from the source to the observation point. This integral relates the square root
of the arrival time of the peak drawdown directly to flow properties, A(s), integrated
along the trajectory Y. Equation (24) is a result of our high-frequency assumption.
That is, we are assuming that the permeability and porosity vary smoothly with respect

to the spatial wavelength of the propagating pulse.

The transport equation for the amplitude variation of drawdown

Now consider terms of order /—iw in the asymptotic expansion. We find, after

making use of equation (14), the following relationship between o(x) and Ap(x)
V - Vo(x)Ag(x) + 2Vo(x) - VAe(x) (25)

+A(x) - Vo(x)Ag(x) = 0.

For a uniform medium, A(x) = 0, this expression reduces to the standard transport
equation treated in geometrical optics, electromagnetics, and seismology {Klein and Kay,
1965; Kravtsov and Orlov, 1990; Fatemi et al., 1995]. In order to integrate equation (25)

let us introduce the variable v such that

dy = (26)
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and the unit vector 1 which points along V. Then, Vo = /A(x)] and
g

1Lv=1 (27)
and we may write
Vo - VAg= /A VA = )d;i”
= /A Sel - 2o
dvy ds dy
Similarly,
A- vaAo_ﬂ 1/A(x)Ao = /A ‘;"i{

Ao dK dy _ AcdK
I& dyds ~ K dv’

Equation (25) may be rewritten as an ordinary differential equation along the trajectory

s
dAy Ay dK
. i Ea. )
V- Volx)Aolx) + 22 + L & =" (28)

or
,41n(4o) | dln(K)

Vo =0. 2
7 otV Vo=0 (29)

We may integrate equation (29) along the trajectory from o to

Ao(7) = Aol0) %"f exp (~3 [V Vodr) (30)

where Ap{vo) is the initial pressure amplitude at the source and K{v) is the

conductivity at the source. Note, when the medium is homogeneous K (yo) = K ()
and /K (y0)/K(vy) = 1. Based upon geometrical considerations and Gauss’s divergence

theorem, the integrand in equation (30) may be reduced to

= ——ln \/—J (7)] (31)

where J(-y) is the Jacobian which measures the expansion of the pressure front along

the trajectory. Derivations are given in many books on geometrical optics and ray
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theory [Kline and Kay, 1965, p. 156; Kravtsov and Orlov, 1990, p. 22]. Substituting the

expression (31) into equation (30) produces

ﬁ 70 \/ A(v0)d (7o)
NNeE

This equation describes the evolution of the amplitude along the trajectory in terms of

Ao(7) = Aolr0 (32)

quantities at the source and properties along the path ¥. The Jacobian is calculated
during ray tracing, based upon the divergence of a bundle of rays with distance along
% [Kravtsov and Orlov, 1990]. That is, a family of trajectories are constructed and
the change in distance between rays as a function of ra.yléngth is used to estimate the
Jacobian.

Let us collect all factors depending on source properties into a single source term

I(70) = Ao(0)v/ K (10)y/ /A (70)J (10)- (33)

Thus, we may write the amplitude as

I(F)(O) , (34)

Ao(7) =
VKA ()

resulting in the frequency domain expression for pressure

I(%) oV=iwa (1) (35)
\/ KyWAM)JI (v
at position - along the ray. Transforming back to the time domain and expressing the

quantities as functions of length s along Z, the trajectory in equation (24),

_ 1(s0) 0’(3) e~ (s)/4t
h(s,t) = e
\/K(s),/A(s)J( m

where, o(s) is the integral

(36)

= /s: JA(s)ds'. (37)
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Step-function source. The solution (36) corresponds to an impulse (delta
function) source. For a general source this solution must be convolved with the source
time function. A temporal convolution corresponds to multiplication in the frequency
domain. For our numerical tests and field application we shall be interested in a step
function (Heaviside) source, in which pumping commences at time zero and continues
at a constant rate. Then the {requency domain expression corresponding to equation

(35) is given by

— (7o) V=iwa(y)
H(y,w) = VB TY(w) (39)
VEOWBEI()

where H(w) denotes the Fourier transform of the step function. In the application we
shall work with changes in pressure over a small time increment, the temporal derivative
of the pressure. In the frequency domain this corresponds to multiplication by w

[Bracewell, 1978]

H(y,w) = tw e eV~ e M 7(1) (39)

where the prime signifies the Fourier transform of the derivative of the pressure. We can
move the iw onto the H(w) term and use the fact that the derivative of a step function

is an impulse to arrive at

dh _ I{s) a(s) o= s)/4
o d \/I{(s)\/A(s)J(s) 2v/xt3

which is of the same form as equation (36).

(40)

Arrival Time and Amplitude Sensitivities

In performing an inversion for reservoir properties we need to relate changes or
perturbations in flow properties to vartations in the predicted responses. For example,
how do changes in reservoir storage and conductivity lead to deviations in head? For

small deviations in properties we may use a perfurbation approach to calculate the
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resulting changes in observed quantities. That is, we consider a perturbation to some
background model. The background reservoir structure is characterized by the spatial
distribution of hydraulic conductivity A°(x) and storage S°(x). If we perturb these

quantities

K(x) = KO(x) + 6K(x)

and

S(x) = 5%(x) + 6S(x)

the distribution of H{x,w) will also change
H{x,w) = H°(x,w) + §H(x,w).

Arrival Time Sensitivities. The simplest sensitivities are those relating the
arrival time of the maximum drawdown, due to an impulsive source, to reservoir storage
and conductivity. The relationship between these quantities is given by equation (24).
In actual field practice we will not have an impulsive pressure source. Rather, the source
will likely be a step function in which the flow rate discontinuously jumps from zero to
some finite value. There are several ways to derive the appropriate equation for fhis
situation. Consider equation (1) with an additional step function source term on the
right-hand-side. Because of the linearity of equation (1), we could simply differentiate
equation (1) with respect to time. The form of the equation remains the same except
that it is now an equation in the time derivative of head and the source term i1s now
an impulse function. Thus, all the preceding derivations up to and including equation
(24) hold, but for the time derivative of head. Alternatively, as in equations (38)-(40),
we could follow through with the Fourier transform of the step function and transfer
the iw onto the step function to arrive at equa,ti.on (40). Then, as in (17), we could
differentiate (40) to produce the expression (24) relating the arrival time of the peak

slope to the integral of A(s) over the trajectory.
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The basic idea is that, for a step-function source there is no well defined arrival
time. Because pressure behaves diffusively, the head will gradually increase with time
(Figure 1a). However, as indicated in equation (17), for a step-function source we
can define the arrival time of the maximum slope (Figure 1b), which is related to
reservoir properties by equation (24). From equations (5) and (24) we may compute the

sensitivity associated with the square root of the arrival time to changes in storage

VT _ JAKX) (41)
)

3S(x)  S(x

and conductivity

ovT _ YARX) i
8K(x)  K(x)' (42)

Hence, a perturbation in arrival time is related to perturbations in S(x) and K(x) by

VA(s) A(s)
§VT = /H [ 51y 556~ ey K )| (43)

where II is the trajectory between the pumping and observing boreholes. Note, the
sensitivity in a homogeneous medium is uniform between the pumping and observing
well. Unlike pressure amplitudes, the arrival times are not dominated by structure in
the vicinity of the boreholes. As in medical and geophysical imaging, we may adopt a
tomogfaphic approach in order to invert the arrival times. Some initial reservoir model
is assumed and the trajectories are traced through the model. By backprojecting the
arrival time anomalies along the trajectories, we may estimate variations in storage and
conductivity between the boreholes. A more detailed account of this approach will be
given in the numerical illustration below.

Amplitude Storage Sensitivities. Now, we shall consider the effect of a
perturbation in storage on head amplitudes. As shown in the Appendix B, we may

relate this to the change in head, § H(x,w),

§H(x,w) = iw ] Gx,y,w)H(y,w)65(y)dy (44)
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where G(x,y,w) is a Green’s function solution of equation (6) [Stakgold, 1979,
“with respect to the background medium. The sensitivity, the coefficient relating the
perturbations in S(y) to changes in H(x,w), is iwG(x,y,w)H(y,w). Implicit in the
term H%(y,w) is the temporal variation of the source and as well as its location. Using
the asymptotic expressions for G(x,y,w) and H°(y,w), as in Appendix B, we find a

time domain expression for (44),

§h(x,t) = f Ms(y, x, )65 (y)dy (45)
where
Ms(y,%,1) = Ao ) Sgghe™ oo/ (46)
and
Ao(%erX) = Ao(¥4,¥) X Aof¥,X) (47)
o(xs,%) = (X5, ¥) + o(¥,%). (48)

The quantities Ag(xs,x) and o(xs,x) represent the amplitude and phase, respectively,
for the propagation of the pressure from the source (x,) to the point y and then from
the point y to the receiver at x {see Appendix B].

Amplitude Conductivity Sensitivities. As shown in the Appendix B, a

perturbation in hydraulic conductivity is related to a change in head via the integral
SH(x,w) = ~2 / VG(x,y,w) - VHE (y,w)5 K (v)dy. (49)

The time domain equivalent of equation (49) is

5h(x,t) = [ Tie(y,x, )6 K (y)dy (50)
where
_ o (Xs,X) —o2(x,,x}/4t
Ur(y,x,t) = I(XS:X)AO(XSI'X)W‘B (51)

the terms Ao(xXs,x) and o(x,,x) are defined in (47) and (48), and

T(xs,x) = —2Vo(x,,y) - Vo(y, x). (52)
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Numerical Illustration

In this section the asymptotic storage and conductivity sensitivities, given by
equations (45) and (50), are compared to sensitivities calculated using a purely numerical
approach. In addition, the two-step approach (arrival times/amplitudes) to inverting
transient head data is illustrated using a set of synthetic head values, generated by a

known permeability distribution.

Sensitivities

As a test of our asymptotic approach for estimating head amplitude sensitivities
we compared our values with sensitivities produced by a numerical reservoir simulator.
Sensitivities are derived from the simulator using a numerical perturbation technique
in which values in successive cells are perturbed by 0.1 percent. That is, a uniform
structure of 100 mD and a porosity of 0.1 serves as our background model. The
numerical model is represented on a 21 by 21 grid of cells. We cycle through the
grid, perturbing one cell at a time. Thus, a total of 441 forward runs are required to
estimate the storage sensitivities. An additional 441 runs are needed to calculated the
conductivity sensitivities. The full transient flow problem must be solved for each cell.
The resulting storage and conductivity sensitivitiés are displayed in Figures 3 and 4,
respectively. These numerical calculations are compared to sensitivities based upon our
asymptotic expressions in equations (43) and (50).

In Figure 3 storage sensitivities are given for head measurements at 0.2, 0.4, and
0.9 days. Overall, there is excellent a.gre‘ement between the numerical and asymptotic
sensitivities, both in amplitude and pattern. The sensitivity coefficients are all
negative, increasing storage decreases the observed drawdown. In general, we find peak
sensitivities centered on both the pumping and the observing wells. The two wells are
the focii of a roughly elliptical region in which the sensitivity is non-zero. The size of

this elliptical area grows with time but the general pattern does not change significantly.
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The patterns in Figure 3 are very much like those published previously by Oliver [1993].

Because the sensitivities are so similar over time, taking many measurements
does not necessarily translate into a large number of independent constraints. Rather,
there is considerable redundancy in a set of head observations. This does not imply
that there is no value in head measurements over long periods. From equation (3},
the pressure equation in the frequency domain, we see that when w is small there is
increased sensitivity to conductivity and decreased sensitivity to storage. Thus, the long
wavelength component of the transient curve contains useful information. However,
the similarity in sensitivities with time does imply that dense sampling over the entire
observation period may not be necessary.

Numerical and asymptotic conductivity sensitivities are shown in Figure 4. Again,
the patterns and amplitudes agree quite well. However, the degree of similarity is
somewhat less than it was for the storage sensitivities (Figure 3). There is an additional
approximation in the conductivity sensitivities associated with deriving equation {51).
Terms of lower order in w were neglected in the expression for the inner product
of VG(x,y,w) and VH(y,w). Regardless, the similarity between the conductivity
sensitivities in Figure 4, and the similarity of these sensitivities to those obtained
previously [Oliver, 1993; Vasco et al., 1997], is sufficient for their use in the inversion

scheme described next.

Inversion of pressure values

As a demonstration of our two-step inversion approach we have constructed a set
of synthetic head values. The values were obtained by simulating three interférence
tests in a single layer reservoir model. The test structure, shown .in Figure 5, contains
a 300% variation in perméability. On average, permeabilities are lower to the west
and higher to the east. The lowest values are located in the northwestern quadrant of

our model. The pumping and observing boreholes are configured in a three by three
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grid pattern (Figure 5). Three interference tests were simulated in which three wells,
those centered in the north-south direction, pumped at distinct times. For each episode
of pumping six adjacent observation wells recorded head variations for 1.4 days. As
an example, consider the first test in which fluid was injected into the westernmost
borehole at X=50M, Y=225M. Head variations were simulated for all wells lying to the
east of this borehole. The results of this first test are given in Figure 6. In this figure
we present both the transient head values as well as the changes in head over the given
time intervals, an estimate of the slope.

Arrival time matching. The peak slope of the head variation, the ratio of the
head difference over the respective time increment, is used to estimate arrival times for
the initial stage of the inversion. Specifically, we take the square root of the arrival time
associated with the peak slope for each transient curve in Figure 6. Given an initial
estimate of reservoir structure, in this case a uniform layer with a permeability of 70 mD,
we predict the arrival time of the peak slope, Figure 7. The residual is the difference
betwéen the observed and calculated times, §+/T, which is related to perturbations in
reservoir parameters via expression (43). For the case at hand, only perturbations in

conductivity are considered and equation (43) reduces to

VT = —

(s)ds (53)

In general, there will be a trade-off between storage and conductivity which is difficult
to resolve. One possibility is to consider low frequency variations in head, variations
associated with small w. Such variations are primarily sensitivity to conductivity as is
evident in equation (3). Thus, by cycling between high and low frequency data it may
be possible to resolve spatial variations in both conductivity and storage.

In order to use equation (53) to estimate variations in conductivity we first
determine trajectories, the path of integration denoted by I, between the pumping and

observing wells. This is accomplished by solving the ray equations (20)-(22) numerically
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for the background model. Knowing the trajectory, we subdivide the reservoir into a 21
by 21 grid of cells and consider the segments of the path in each block. The integral
(53) may then be approximated by a summation over the segments of the trajectory for
the (N = 441) cells of our model. Thus, given background values for S(s) and K(s),
equation (53) becomes a linear equation relating a perturbation in conductivity to a
perturbation in the ith root arrival time

§VT; = f: M;;6K;ds (54)

i=1
with the coefficient matrix M;; given by
\/A_—j

M = *"—KT5S:‘J‘ (55)

where s;; represents the length of trajectory 7 in cell j and A; and K; are the values of
A(x) and K(x) in cell j. The quantity which we minimize is the sum of the squares of

the residuals

M N ?
|]5d - M(SK“ = Z (5\/Ti - Z Mijéf{j) (56)
=1 j=1
where || - || denotes the L? norm of a vector. For a set of transient head curves we will

have an associated linear system of equations which we may solve for perturbations in
conductivity. Because the system of equations is extremely sparse, this is efficiently
accomplished using the LSQR algorithm of Paige and Saunders [1982]. Note that, due
to the non-linearity of the inverse problem, we must iteratively solve the system for a
series of perturbations to our initial model.

In addition to minimizing the misfit to the data we also included penalty terms to
regularize (stabilize) the inversion. Inclusion of such penalty terms is standard practice
for hydrological and geophysical inversions [Tarantola, 1987; Parker, 1994; Sun, 1994].
We include terms which penalize large parameters deviations and models which are
not smoothly varying. The underlying motivation is that, in the absence of strong

data constraints, we should like to stay close to our initial model. Also, because of the



JNC TY8400 2000—007

smoothing nature of hydrologic data [Vasco et al., 1997], we do not expect to resolve
rapid spatial variations in flow properties. We have described our particular approach
elsewhere [Vasco et al., 1999] and will only outline the mechanics of the procedure here.
‘The penalty terms most often take the form of quadratic functions on the set of models,
for example model perturbation vector norm, the size of the perturbations, is measured
by

N
K| = - (65;)° G

i=1
and model roughness, a measure of spatial variability, is given by

N
LK = 3 (Vo K;)* (58)
i=1
where L is a spatial difference operator which computes the spatial gradient of the

model by differencing adjacent block values [Parker, 1994]. Solving the regularized

inverse problem entails finding those elements of 6K which minimize the sum
ll6d — MSK|| + ||6K|| + |[LEK]|. (59)

The necessary equations for a minimum are an augmented linear system

M §d
I |[6K=]|o0 (60)
L 0

[Vasco et al., 1999].

In Figure 8a we show the mean squared arrival time error for ten iterations of
the inversion. Each travel time iteration took approximately 0.5 CPU minutes, for a
total computation time of 5 CPU minutes to complete the ten arrival time iterations.
Some 21 CPU seconds were used to calculate the pressures and set up the system of
equations for each iteration. The remaining time was spent in the solver, estimating
the permeability deviations. The resulting permeability variations are indicated in

Figure 9a. On comparison of this figure with Figure 5 we see that the large-scale spatial
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variations in permeability are recovered in the arrival time inversion. In particular,
the general pattern of higher conductivities to the east and lower conductivities to the
west is reproduced in the inversion. Furthermore, the large low permeability area to
the northwest is recovered in our arrival time model. The average amplitude of the
variations are slightly smaller than those in Figure 5, but the amplitudes are generally
more sensitive to details of the inversion, such as prior constraints or regularization.
Amplitude matching. The next stage of the inversion involves matching the
amplitudes of the head variations. The arrival time matching has produced a starting |
model for this part of the inversion {([igure 9a). In our experience, the convergence of
amplitude inversion algorithm is more sensitive to the starting model. Furthermore,
amplitude matching is much more computationally intensive than is the arrival time
inversion, and any reduction in the number of amplitude iterations is helpful. Therefore,
it is a real advantage to have the arrival time result as a starting point. Even with the
initial estimates provided by the arrival time inversion, some 20 amplitude iterations
are required to match the transient head values (Figure 8b). Each amplitude inversion
required almost 10 minutes of CPU time. Thus, the enfire amplitude match took
some 3 hours to complete. The resulting amplitude inversion, shown in Figure 9b,
contains some details not seen in the arrival time inversion. In particular, there is a
roughly north-south trough of low permeability in the western half of the model which
is imaged. The size of the variations in permeability are closer to the amplitude of the
heterogeneity seen in Figure 5. However, there are some smaller scale features in Figure
5 which are not observed in our result {(Figure 9b). Because of the diffusive nature of
pressure, such data are unable to resolve fine scale variations in reservoir properties
[Vasco et al., 1997]. Additional information, such as tracer or multi-phase flow data may
help in this regard. The final match to the transient head values is shown in Figure 10
For the most part the agreement is quite good, a significant improvement over the initial

predictions (Figure 7). The pressure slope data is slightly under-estimated. This is due
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to the inclusion of model norm and model roughness penalty terms in the inversion.
Such terms bias the model towards a smoother solution with less overall variation. By
exploring the range of penalty term weightings we can attempt to better fit the data

with a somewhat rougher and higher amplitude model [Parker, 1994].

Field Application: Interference Tests

We now apply our methodology to a pair of interference tests obtain at the Borehole
Test Facility in Kay County Oklahoma. The facility, which is owned and operated by
Conoco, contains five shallow (50 M) wells which are configured in a skewed five-spot
pattern. The wells penetrate the Fort Riley, a fractured limestone between about 10
and 28.meters in depth. As part of a program developing geophysical and hydrological
methods for detecting and characterizing natural fracture systems, Conoco and Berkeley
Laboratory conducted a series of field experiments at the site. The experiments included
a set of interference and tracer tests, both crosswell and single-well seismic surveys, and
the drilling of a slant well to penetrate a suspected fracture. The results of this work
are described by Majer et al. [1996] and D’Onfro et al. [1998§].

The Fort Riley Limestone is part of the Lower Permian Chase Group which consists
primarily of limestones and shales {Toomey, 1992]. The sediments in this region are,
for the most part, flat lying with a regional dip of less than 1 degree. Two roughly
orthogonal, near vertical, fracture sets have been mapped in the area, a dominant
east-northeast set and a less pervasive north-northwest striking set [D’Onfro et al.,
1998]. The Fort Riley Limestone itself has a low average permeability, ranging between
0.11 and 6.06 mD with an average of 1.23 mD. However, the presence of fractures is
very likely to modify these laboratory estimates considerably.

The initial characterization effort was associated with the execution and
interpretation of a series of interference tests at the Borehole Test Facility [Datta-Gupta

et al., 1995]. The first test involved withdrawing groundwater from the westernmost
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well (GW-5) at a constant rate of 2.3 L/min for approximately one day. The transient
head variations are shown in Figure 1la. Rather surprisingly, the furthest borehole
(GW-2) responded earlier and more vigorously than the others. A reciprocal test in
which groundwater was withdrawn from well GW-2 at a rate of 1.8 L/min, produced
a corresponding anomalous response from GW-5 (Figure 11b). This was the initial
indication of significant reservoir heterogeneity at the facility. In order to estimate
arrival times we construct estimates of the slope of the temporal variation in head
(Figure 12) using differences. As is evident from the curves in Figure 11 the maximum
slope travels faster between wells GW-2 and GW-5.

As a starting model for the two stage inversion we assume a background permeability
of 1 mD, a value close to the estimated average matrix permeability. A background
porosity 0.03 percent is also used and held constant in the inversion. In effect, because
of the trade-off between storage and conductivity, we are solving for an equivalent
permeability which may be .sca,led by some porosity variation. The background model
roughly matches the head variations observed at wells other than GW-2 and GW-5. A
two-dimensional, 21 (east-west) by 51 (north-south) grid of cells is used to represent
the variations in conductivity. Starting from the background reservoir structure our
inversion algorithm converged rather quickly, in just under ten iterations (Figure 13).
The initial 5 iterations (0-4) are associated with matching the arrival times while the
final iterations (5-9) invoive amplitude matching. As is apparent in Figure 13, the
arrival time iterations produce the bulk of the misfit reduction. In total, the arrival
time iterations took less than three CPU minutes on a 200 MHz workstation. The
ensuing amplitude match took approximately one hour and did not improve much on
the pressure match or change the model significantly.

The permeability variations resulting from the inversion are indicated in Figure 14.
The reservoir mode! is dominated by a linear, high permeability feature extending from

the vicinity of well GW-2 to just above GW-5. The nature of the high permeability



JNC TY8400 2000—007

structure agrees with the orientation of mapped fractures in the region. One satisfying
feature of the solution in Figure 14 is the simplicity of the solution. Even though the
inversion of the full data set contains sensitivities to permeabilities in all cells of the
model, only a linear subset of blocks between GW-2 and GW-5 are required to have any
significant variation. Previous efforts at matching these head variations did not produce
such a simple structure [Datta-Gupta et al, 1995]. Rather, the reservoir model contained
a complex arrangement of high and low permeabilities. The pattern of conductivities,
which were derived using the stochastic simulated annealing algorithm, were sensitive
to the initial permeability model [Datta-Gupta et al., 1995]. This sensitivity may be
due in part to the fact that head amplitudes were matched directly, a highly non-linear
procedure. We should note that a conjugate gradient algorithm produced a similar
pattern of permeabilities, with the largest variations near the wells. The stochastic
approach of Datta-Gupta et al. [1995] required extensive computation, upwards of
10,000 forward funs and more than 24 hours of CPU time.

We should note that seismic measurements and additional drilling both support a
narrow, high conductivity structure just to the north of the central well (GW-3) of the
five-spot [D’Onfro et al., 1998]. In particular, seismic crosswell experiments between
wells the central well (GW-3), the northernmost well (GW-1), and the southernmost
(GW-4), provide direct evidence for a fracture or fracture zone just to the north of
GW-3 [Majer et al., 1996]. In these experiments air was injected into well GW-5 while a
borehole pump in well GW-2 kept the water level below the Fort Riley Limestone (the
unit thought to contain the fracture). There was a dramatic reduction in amplitude for
seismic waves probagating to the north of GW-3 while those propagating to the south
were relatively unaffected. In fact, energy reflected off a fracture to the north of GW-3
was detected. Examination of seismograms from a single-well experiment in GW-3 |
confirmed a reflection from a fracture near this well. The time delay of 3.5 ms associated

with the reflection implies that the fracture is approximately 14 meters north of GW-3.
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This location is in very good agreement with the location of our high conductivity
feature (Figure 14). The final, most conclusive evidence for a narrow conductive feature
to the north of GW-3 is provided by a slant well which was recently drilled into the Fort
Riley Limestone [D’Onfro et al., 1998]. Commercial air drilling equipment was used to
actually penetrate the fracture. Indeed, a single, narrow fracture was recovered during
coring at the targeted depth (Figure 15). A near vertical fracture, containing euhedral
mineral crystals (indicating an open fracture), was observed. Recent well tests in the
new slant well, in which air was injected into the observed fracture, resulted in water
flowing out of both GW-2 and GW-5. This indicates a conductive flow path between
the fracture and these wells. On the other hand, there was only a slight change in water
level in the much nearer central well (GW-3). A more recent experiment supports the
increased permeability in the western half of the fracture. Injection of water into the
slant well blew the cap off well GW-5, while the water level in GW-2 only underwent
a moderate change [Kurt Nihei, personnel communication]. Taken together, our head
inversion, the geophysical observations and the well data provide compelling evidence

for a narrow conductive fracture at the Borehole Test Facility.

Conclusions

The asymptotic approach described here should complement existing techniques for
inverting head observations. Some insight is offered by the methodology. In particular,
the inverse problem partitions into an inverse problems for arrival times and an inverse
.problem for amplitudes. The arrival time is associated with the moment the peak slope
in the transient head curve is observed at a particular borehole. The inversion of the
arrival times is particularly efficient. Furthermore, in applications to both synthetic
head values and actual field measurements we find that the inversion of the arrival times
produces the largest misfit reductions. In just a few CPU minutes we are able to deduce

reservoir models which match the observations. For the synthetic interference tests the
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resulting model revealed the large scale variations that are present in the model used to
generate the data. In the actual field case the reservoir model agrees with independent
geophysical and borehole observations. The inversion of arrival times should work best
in three-dimensional situations, where there are a large number of observation points
and many interference tests. Such situations are likely to tax conventional methods for
directly inverting head amplitudes.

Amplitude matching, even using the asymptotic approach, is still a fairly
computationally intensive endeavor. For example, our implementation of the Born
inversion of amplitudes is not significantly faster than some other current techniques
[Carter et al., 1982]). However, there are enhancements which could substantially speed
up our approach. Most computation is associated with the calculation of trajectories
from the source to all cells of the model and from all cells to the observation wells. It
turns out that the sensitivities associated with many cells are quite small and may be
neglected. One possibility is to roughly estimate sensitivities using straight line paths
between the cells and the wells. Then, sensitivities could be computed only for cells
which have estimated values above some cutoff. This would be particularly helpful
in three-dimensional problems. Alternatively, the paths could be recomputed after a
specified number of iterations, rather than at every cycle. We are currently working on
a perturbation approach for the inversion of amplitudes. The perturbation technique
should significantly speed up the pressure amplitude inversion. Finally, our experience
with both synthetic tests and field data indicates that the inversion of the travel times
often succeeds in providing an approximate match to the amplitude values.

In our derivation and applications we have assumed a constant flow rate. A
constant rate is not really necessary for application of the technique. Using an estimate
of the flow rate one can convolve the times series with the sensitivity functions in order
to invert the amplitudes. Alternatively, deconvolution could be used to remove the

effects of the flow rate variation, either in the time or frequency domain.
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In our current tests and application the permeability varied by one to two orders
of magnitude. Future work is planned on testing the approach for contrasts of four or
more orders of magnitude. Based on our experience using a similar formalism for solute
transport [Vasco and Datta-Gupta, 1999] and multi-phase flow [Vasco et al., 1999;
Vasco and Datta-Gupta, 2000], we anticipate that the asymptotic approach will work

for contrasts of three or more orders of magnitude variation in flow properties.
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APPENDIX A: Computation of the Trajectories

The trajectories, defined by the normals to the iso-surfaces, are generally obtained
by a procedure much like optical raytracing [Luneburg, 1966; Kline and Kay, 1965].
That is, a system of ordinary differential equations for the components of the trajectories
s are derived. A trajectory, also known as a bi-characteristic [Luneburg, 1966, p. 25],
is found by solving a system of ordinary differential equations in terms of the curve
itself s(7) and its tangent vector p(7). Our development starts from equation (19) [with
¢ = 1] and the eikonal equation (14). From equation (19) we have our first relationship
between s(t) and p(7),

= <p (A1)

A second set of relations may be derived by considering second derivatives of s(r).
First, we shall make a slight modification in our notation for the trajectory in order
to facilitate an identification of the path coordinates with the spatial variables. That
is, we shall denote the components of s = (31, 82, 83) as (z(7),y(7), 2(7)). Here z,y,2
are the variables of global coordinate system, we are just referencing the path to these

variables. Now the second derivative of s becomes, under the above identification

dr \dr /] oz dr e dr = dr

dsy dss dss
= oo ¥ g T O (42)

From equation (Al) and the fact that p = Vo(x) we may write (A2) as

d {ds
'&’; d_T = Orz0z + CyzOy + 020,
19
=550 (02 + ot +0.). (43)

T
Making use of the eikonal equation (14) we arrive at

() =57 (44)

&
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From the relationship (A1) we have our second relationship

P - v (45)

Equations {A1) and {A5) constitute a system of first-order ordinary differential equations
for s(7) and p(r). These equations are subject to the two-point boundary condition that
the trajectory start at the source point x; and end at a particular location y. We may
solve the system of differential equations using numerical techniques such as shooting or
bending methods [Keller, 1968]. In our applications we use an iterative shooting method
with a bisection technique to solve the two-point problem.

In general, the trajectories are curves in three-dimensional space. Usihg arguments
from the calculus of variations one may show that the trajectories are extremals
[Luneburg, 1966; Kline and Kay, 1965]. That is, the trajectory corresponds to the
path which minimizes the travel time, as given by (24). Note that the trajectories
are generally not identified with streamlines [Datta-Gupta and King, 1995; King and
Datta-Gupta, 1998].
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APPENDIX B: Sensitivity Computations

Storage Sensifivities

Given an initial reservoir structure, characterized by K°(x) and 5°(x), consider a

model in which the storage coefficient is perturbed
S(x) = §%(x) + 65(x) (B1)
there will be a corresponding change in the transformed hydraulic head, H°(x,w),
H(x,w) = H(x,w) + 6H(x,w). (B2)
Substituting expressions (B1) and (B2) into équa,tion (3) produces the equation
Kx)V?H (x,w) + VKO(x) - VH(x,w)
+K°(x) V3 H(x,w) + VK°(x) - VEH(x,w)
—wSUx)6H (x,w) (B3)
= w8 (x) H°(x,w) + 1w S (x) H(x, w)

where the second order quantity §5(x)6H(x,w) has been neglected. Because H%(x,w)

satisfies equation (3), equation (B3) reduces to
Kx)V*H(x,w) + VK°(x) - V6 H (x,w) (B4)

—1wS°(x)6 H (%, w) = iwdS(x) H°(x,w)

a partial differential equation for § H(x,w). Note that equation {B4) is of the same form
as equation (3) with the coeflicients of the background medium, K°x) and $°(x), but
containing the source term 1wéS(x)H"(x,w) on the right-hand-side. Therefore, given a
Green’s function solution for the background medium, that is, a solution of the equation

for an impulsive source located at position y

K°(x)V?G(x,y,w) + VK (x) - VG(x,y,w) (B5).
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—iwS (x)G(x, y, ) = §(x — ¥),

we may construct a solution of equation (B4). In particular, we may represent the

solution of equation (B4) as the integral
5H(x,w) = iw [ Glx,y,0)H(y,w)55(y)dy. (Bo)

This equation is a linear relation between a perturbation in reservoir storage 65(y)
and the change in the residual transformed head 6H(x,w). As such, it provides the
sensitivities in the frequency domain, they are just the coefficients relating these
perturbations, the quantity iwG(x,y,w)H(y,w).

Up to this point we have not discussed the time variation of the source. The
source-time function is contained in the background pressure field H%(y,w). In
particular, we solve equation {3) for the coefficients of the background medium and a
source term F'(w) on the right-hand-side. For our work we shall consider a step-function
source because this best represents the source used in our field application. Furthermore,
such sources are frequently used in many pump tests. Note also that the location of the
source is implicitly contained in the background field term H%(y,w).

In order to calculate the sensitivities efficiently we now turn to our asymptotic
solutions (36) and (40). As noted above, we shall assume that the time variation of our
source is a step at time zero. As such, our asymptotic solution for the background head
distribution is given by equation (38). Our Green’s function solution is associated with
an impulse or delta function source. As discussed previously, moving the iw coefficient
onto H%(y,w) corresponds to differentiating the step function source in the time domain.
This converts the step function source to a delta function source. Thus, the expression
associated with the delta function source, equation {36), may be used to calculate the
sensitivities. Qur specific asymptotic expressions for the terms in equation (B6) are of

the form

G(x,y,w) = Ao(y, x)eV 7l (BT)
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and

HO(y,w) = Ao(x,,y)e’/ @ xs¥) (BS)

as given in equation (15). The amplitude term Ao(y,x) represents propagation from the
internal position y to the observation point x. Similarly, A¢(xs,y)} denotes amplitude
changes associated with propagation from the source x; to the internal position y. One
may think of y as denoting the location of an imaginary source, a source producing a
perturbation in head equivalent to that produced by the perturbation in storage at that
point. Our notation for o(y,x) is similar, it represents the integral of equation (37)
along the trajectory from internal point y to observation point x. According to equation

(B6), the sensitivities are the result of multiplying expressions (B7) and (B8), producing

Hs(y,x,w) — AD(XS,X)B —iwo(Xs,X) (Bg)
where
AO(XS: X) = AO(Xsa Y) bt AO(Y: X) (B]'O)
and
J(XS)X) = U(Xs,y) +J(Y:X)' (‘Bll)

The time domain expression for the sensitivities is the inverse Fourier transform of (B9),

given by

Is(y,x,t) = Ao(xs,X)U(X“X)e"”z(x“"”‘”- (B12)
PAVE w4

The time domain equivalent of equation (B6) is

Sh{x,t) = / Ts(y, x,t)65(y)dy. (B13)

We can summarize what these expressions represent in words and a picture (Figure 2).
In order to calculate the sensitivities due to perturbations in storage we construct a
trajectory from the source to the perturbation location. The amplitude, Ao(xs,y), and

phase, a(x;,y), effects of this propagation are calculated along the trajectory. A similar
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calculation is conducted from the perturbation to the observation point, Ag(y,x). In
Figure 2 we draw the trajectories from the pumping and observing wells to a vertical line
of points in a two-dimensional model. Along these trajectories, the amplitude and phase
terms are combined according to equations (48) and (49), respectively. As shown below,
in many regions the sensitivities are essentially zero. One could use an approximate
estimate of the propagated values to eliminate certain cells in the calculations, reducing

the overall computation.

Conductivity Sensitivities

We now consider a slight change in reservoir hydraulic conductivity
K(x) = K°x) + 6K (x) (B14)
and derive an expression for the change in H(x,w)
H(X,ug) = H%(x,w) + §H(x,w). (B15)

As for the storage coefficient perturbation, we substitute {B14) and (B15) into equation
(3). Again, neglecting second order quantities and making use of the fact that H%(x,w)
satifies equation (3) for the background medium we arrive at the differential equation
for 6 H{x,w)

K°(x) Vi H(x,w) + VK®(x) - V§H(x,w)

—iwS(x)6 H (x, w) (B16)
= -§K(x)V - VH’(x,w) — V[§K(x)] - VH(x,w).

This equation is of the same form as equation (B4). That is, it has the mathematical
structure of equation (3) but with the background distributions of storage 5°(x) and
hydraulic conductivity K°(x). Note that the source terms on the right-hand-side are

different from that of equation (B4). It is still possible to express § H(x,w) in an integral
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form, though the representation is somewhat more complicated than equation (B6)
6H(x,w) = —jG’(X,y,w)V -VHy,w)6 K (y)dy

~ [ G(x,y,0)VH(y,w) - V[EK(y)ldy. (BL7)

Treating the terms in the integrands as distributions we may transfer the gradients from

both VH(y,w) and §K(y) onto G(x,y,w). The resulting expression is
§H (x,w) = —2 j VG(x,y,w) - VH(y,0)5K (y)dy. (B18)

Thus, the component terms in the integrand are gradients of the terms in the integrand
of (B6). In addition, expression (B6) contains a factor of iw representing a temporal
derivative in the time domain.

As we did for porosity we may use our asymptotic expressions for the Green’s
function and the head field. In particular, we have the impulse source solution (35)

Which represents the Green’s function, which we write as
G(x,y,w) = Aoy, x)e/ ™70 (B19)
We compute the gradient of this term
VG(x,¥,w) = VAo(y,x)ev o) (B20)

+vV—1wAo(y, X)Vo(y,x)eV oy,
In addition, there is the step response which expresses the head distribution,
H(y,w) = Ao(Xs, y)eV 709 H(w) (B21)

where H(w) represents the Fourler transform of the step function. The spatial gradient
of H(y,w) is
| VH(y,w) = VAg(X,, y)e/ 797 (0) (B22)

ViAo (Xs, Y) VO (X, y)eY T3 H(w)
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Taking the inner product (B20) and (B21), retaining only terms of highest order in w
gives

VG- VH = Ay(x,, x)ev’—_i_u?a(xg,x)
xiwH{w)Ve(xs,y) - Vol(y, x) (B23)

where Ao(x,,x) and o(x,,x) are defined in equations (B10) and (B11), respectively. As
before, we may transfer the 7w term onto H(w), the equivalent to differentiating the step
function with respect to time. Thus, we may take the inverse Fourier transform of the

integrand (B23) to arrive at the time domain expression

_ : J(XS‘JX) —o2(xe,x) /4t
HK(y,x,t)—I(xs,x)Ao(XS,x)We - (B24)

where we have defined the inner product
T(xs,x) = —2Vo(x,,¥) - Vo(y, x). (B25)
The time domain equivalent of equation (B18) is
Sh(x,t) = ] Ux(y,x,t)5K(y)dy. (B26)

We conclude this section by pointing out the similarity of the storage and hydraulic
conductivity sensitivities. The primary modifications are a change in sign and the

presence of the inner product factor Ve (x,,y) - Vo(y,x).
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Figure Captions

Figure 1. (A) Synthetic transient head values for sensitivity calculations. The points
A (0.2 days), B (0.4 days), and C (0.9 days) denote samples for which the sensitivities
have been calculated. (B) Estimates of the slope of the transient head curve, derived by
differencing.

Figure 2. Paths used in calculating transient head amplitude sensitivities to variations
in storage and conductivity. Quantities are computed along the trajectories from the
source to the grid point of interest and then from the grid point to the observation point.

Paths are shown for a vertical line of grid points.

Figure 3. Storage sensitivities for the three sample points designated in Figure 1.

Figure 4. Conductivity sensitivities for the three sample points denoted in Figure 1.
Figure 5. Stochastic realization of spatially correlated random permeability field. The
injection and observation wells are indicated by stars. The correlation half-width was
seven grid blocks and the random deviates were drawn from a log-normal distribution.
Figure 6. (A) Transient head variations for the 6 observing wells associated with inter-
ference test 1. (B) Calculated temporal derivative (slope) of the head variations.
Figure 7. (A) Predicted transient head values for interference test 1, based upon a
uniform permeability distribution of 70 milli-darcies. {B) Calculated temporal derivative
of the head variations. The head variations associated with the model in Figure 5 are
indicated by the individual points. The values predicted by the initial uniform model are
indicated by the corresponding lines.

Figure 8. The mean squared misfit to the (A) arrival time and (B) transient head data

as a function of the number of linearized iterations.

Figure 9. (A) Permeability estimates resulting from the arrival time inversion. (B)

Permeability distribution produced by the amplitude inversion.
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Figure 10. Predicted transient head values (A) and their slopes (B), based upon the
final model shown in Figure 9b. As in Figure 7, the head variations associated with the
actual model (Figure 5) are indicated by the individual points. The values predicted by
our final model are indicated by the corresponding lines.

Figure 11. Transient head observations associated with two interference tests conducted
at Conoco’s Borehole Test Facility.

Figure 12. Head slope estimates produced by differencing the values in Figure 11.
Figure 13. Mean squared head misfit as a function of iteration number. The initial 5
points are associated with a fit to the arrival time, the latter points are misfits resulting

from a fit to the transient head observations.

Figure 14. Final estimate of the permeability distribution in the Fort Riley Limestone
at the Borehole Test Facility. The locations of the boreholes are denoted by stars.

Figure 15. Core containing an open fracture, obtained while slant drilling through
the location indicated by seismic reflection data. The fracture location agrees with the

inversion result in Figure 14.
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Abstract

Adequacy of the description and the qualitative prediction of flow and transport processes in
subsurface systems essentially depends on how well a model represents the heterogeneity that is
intrinsic in real field. One of the simplest models to describe the heterogeneity structure is a.so-
called composite system. In this model it is assumed that the whole media is composed of
homogeneous components that are distributed in space randomly or in a particular periodic
manner. Flow and transport simulation in composite systems can usually be reduced to solving
partial differential equations with variable discontinuous coefficients and averaging the
solutions, which can be accomplished by numerical simulations using the Monte-Carlo approach.
A different approach, related to averaging the differential equations of flow and leads to new
equations that link averaged fields in composite media. This description is designated as mono-
continuum or global description. If the homogeneous components of a composite system, so-
called phases, have essentially different hydrodynamic and/or geometric parameters, it is natural
to study averaging of the fields on the individual phases of the composite along with the global
averaging. This approach reduces to a more detailed description of processes in multi-continua.
It takes into consideration the mean fields in the individual continuum phase as well as the cross-
flows and cross-forces between continua. However, this description is usually non-closed
because the number of equations is less that number of unknown functions (mean fields and
exchange terms). To overcome this difficulty, the phenomenological theory of unsteady motion
in heterogeneous media (dual-porosity media, fractured porous media) postulates a special
interaction mechanism for closing the equations. This paper presents the exact equations of
mass-balance and moment-balance for each phase of the composite. The exact physical sense of

exchange terms in the multi-continua models is explained. We then demonstrate that joint
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consideration of the mono-continual and the multi-continual systems of equations in the case of
two-phase random composite leads to a closed description, and from that, we can find the
exchange terms. For periodic composite system the same approach leads to a closed description
for any number of phases. We successively study the composite systems with a random and
periodical structure. The terms describing the interactions between contirua (such as the
exchange of fluids and momentum between phases) are calculated. Finally, we examine the
hypothesis customarily made in the phenomenological models that the cross-flow is proportional
to the mean pressure difference. We find the hypothesis as generally unsatisfactory considering

its region of applicability (micro and macro isotropic composite medium).

- 122 —



JNC TY&400 2000—007

1. INTRODUCTION

The problem of rationally describing flow and transport in real, macroscopically essenﬁally

inhomogeneous media is of considerable interest in the theory and its technical applications.

Stochastic approach for flow and transport in heterogeneous random systems (including
random composite media) involves the probabilistic treatment of percolation parameters and
flow and transport equations, the determination of the functional from the statistical solution or
the analysis of equations relating the unknown and given functionals [e.g., Shvidler, 1985;

Dagan, 1989; Gelhar,1993 ]

Inhomogeneous systems having periodic structure are a convenient model for studying processes
in heterogeneous media. The theory of averaging the processes in periodic (as distinct from
stochastic) structures is well established, and constructive methods for analyzing many processes
in periodic media have been developed [e.g., Bensoussan et al, 1978; Bakhvalov and Panasenko,

1989; Jikov at ai., 1993]

The description in terms of averaged fields represented by the theory of homogenization leads to
equations that relate these fields to the effective characteristics of the inhomogeneous medium.
Under certain conditions, the averaged equations can be treated as conservation laws, and their
system as a mono-continuum model of the process. Obviously, this description must contain and
utilize sufficient information on the fields in the individual phases of the periodic or random

composite system and the inter-phase transfer processes.

A more detailed description involves the determination of the mean fields in each phase, i.e. the
conditionally averaged fields and the equations relating these fields. If it is possible to construct

such equations and treat them as the equations of certain process in a phase of the composite
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system, such a description would be a multi-continua one in accordance with the number of

phases.

Irrespective of the method of realizing the multi-continuum description, it is necessary to solve
the central problem of closing the systems of equations associated with terms responsible for

inter-continuum transfers of mass, momentum, energy, etc.

The phenomenological theory of the unsteady motion of a homogeneous fluid in heterogeneous
composite systems (media with dual porosity, fractured porous media), which postulates the
special interaction mechanism, is well studied. In this approach, the flow in each phase of the
composite is characterized by its own mean pressure or head and mean flow-velocity fields, the
relation between which takes the form of Darcy's law. The rate of fluid transfer among the

phases is assumed to be proportional to the difference of the mean head of each phase.

We examine the problem of conditional averaging of a system of flow equations for a weakly
compressible fluid in a random and periodic composite medium. The equations of the multi-
continua model were developed, and the parameters regulating the interactions between the

phase continuum were calculated.

For those cases in which, for.one and the same process, a mono-continuum description can be
realized and the conservation laws of the multi-continua model can be obtained, it has been
shown that the splitting of the globally averaged fields is possible, that the closing transfer terms
for the binary random system can be expressed in terms of the characteristic of the mono-
continuum and the mean fields in the phase continua , and that their interactions can be
calculated. The information thus obtained for some random and periodical systems makes it
possible to evaluate and refine the phenomenological closing hypothesis. As an example, we

show that when a heterogeneous system is locally isotropic and macro-isotropic, the hypothesis
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of the proportionality of the cross-flow between the phases to the difference of phase pressures
or head can be regarded in some cases as an approximate rule. On the other hand, this relation is

generally inadequate in the cases of overall anisotropy.

The article is consisted of 5 sections, with this introduction being section 1. In section 2 we
examine the flow in random composite systems. Here, we consider the exact conditional
averaged equations of fluid transport and averaged equations of momentum for each phase of the
composite random media. These equations make up a non-closed system that is interpreted as a
multi-continua model of the process. For a binary composite system, the inclusion of the
equations of mono-continua (global) model in this non-closed system of the equations for the
same process in the same composite system enables the closed multi-continua description, which
makes it possible to directly compute the parameters a multi-continuum models that respond for
interaction between continua. We examine a partial but important case of "meso-equilibrium”

system and obtain the simple relations for cross-flows between phases, cross-forces, etc.

In section 3 we examine some examples of random composite systems and present the analysis

results.

In section 4 the above analysis approach is applied to periodical composite media. Here we also
examine the multi-continua model and present conditional averaged equations. In contrast to the
stochastic approach, the system that joins the equations of mono-continuum and multi-continua
models together with explicit expansion of the local fields with respect to fast and slowly
changing variables makes a closed description possible for fhe composite system with any

number of phases.

In section 5 we present some examples of periodic composite systems, for which we can obtain

exact expressions for phase heads and their differences. Also examined in detail is the two-phase
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layered system for which pressure difference and cross-flows are obtained quantitatively. Here

we discuss the same method of closing the equations of phenomenological models.

The approach that is presented in this article for random and periodic composite media was
briefly published by Shvidler [1986a,b; 1988] and Shvidler and Karasaki [1994,1999]. In this
paper we set forth the problem in more detail and present new theoretical results and some

applications.

2. RANDOM COMPOSITE MEDIA

2.1.Mono-continuum (global) description of flow in random medium

Let us consider the unsteady flow of a homogenous, compressible fluid in a heterogeneous, in
particular, composite deformable random medium in a three-dimensional domain Q with

boundary 8Q . The problem is mathematically described by the equations:

div v{x.t) +a(x)%fﬁ-_- 7). @)
o™ (x) v(x, ) + Vu(x,t) = 0, 2.2)
u(x,0) = up(x), =0 ®H, 2.3)

Here u(x,t) is the head, v(x,¢) is the Darcy's velocity vector, o (x) is the symmetric and
positive definite conductivity tensor, whose components are a random functions of x , and
scalar ¢(x) is the specific storage of the porous media—ﬂuid system, which is also a positive
random function. We assume that both random fields a(x) and o (x) are stochastically

homogeneous, that is, all probability density of these random functions are invariant to

translation in unbounded space. The source density f (x,t) is a square integrable function. In the
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present paper we only consider non-random initial and boundary conditions (2.3) for u(x,t). It

should be noted that non-random flux condition lead to random boundary condition for u(x,7) |

and requires special analysts.

We introduce the fields U(x,t) and V(x,#), unconditionally averaged over the ensemble of

realizations of the random fields o(x) and a(x):

Ux,t) = (u(x,0)), V{x.H) = {v(x,1)) (2.4)
If we assume that & - so-called micro-scale of the stochastically homogeneous fields o(x) and
a(x) - satisfies the condition & <</, , where [, is the macro-scale in region €, then averéging
over the probability measure in (2.4) can be replaced by averaging over the volume of the region

@, , whose meso-scale A satisfies the inequalities:

§ << A << I, (2.5)

It is knbwn [e.g., Bakhvalov and Panasenko,1989 ] that unconditional averaging of the system

(2.1),(2.2) and (2.3) can be obtained by expanding the fields u(x,#) and v(x,¢} in powers of the
small parameter u =6/1, that is a dimensionless length scale of heterogeneity for the random

fields a(x) and o (x). Thus the averaged equations (2.1) and (2.2) can be represented in the

form:

divV(xt) + & a[;(x;’) +u 6at,1[DU(x,t):|x (0 (2.6)
(") V() + VUG =p (*)" 7[ DU (%.0)] 2.7)
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Here the scalar " = (a:(x)) is constant and the tensor ¢’ = const is so-called the effective

conductivity tensor. It should be noted that the non-random constants scalar " and tensor ¢

fully define the connection between the vector-field ¥ (x,7) and scalar field U(x,?) in the

limiting case of wx—>0 only. The expressions - the scalar-correlation
HA[DU(x,0)] = ([a (x)~ (a (x))] |:u (x,6)-U(x, r)]) and the vector-correlation

yy[DU(x,z‘)] =([o~‘ —(a(x))][Vu (x,t)—VU(x,t):D are asymptotic series in power of the
parameter 4, whose coefficients are linear combinations of the derivatives of the field U(x,#)
with respect o x and ¢. Because both series are infinite and contain the derivatives of any order,
the equations (2.6) and (2.7) are non-local.

Obviously, we must add the non-random conditions (2.3) to the equations (2.6) and (2.7)
and refer the (2.3) to the function U(x,t), that is: U(x,t)=u,(x), U(x0)] =e(x1).
Thus, in terms of U(x,t) and V{(x,t) there exists a closed description of the process of non-
stationary flow in héterogeneous porous media. The chief difficulties in realizing this description

are (a) determining the tensor ¢° and (b) constructing the series l[DU (x,t)] and
y[DU(x,1)].

The unconditional averaged system: the equation of mass balance (2.6) and the equation of
momentum balance (2.7), describes the mono-continuum model of flow in the medium, in

particular, in composite medium, which is a closed description in terms of the mean fields

U(x,t) and ¥ (x,1).

2.2. Multi-continua description of flow in random composite medium
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For a more detailed description for composite medium we go over to conditional averaging of

the fields w(x,f) and v(x,f) over the composite phases and introduce the random indicator

function

z(x)={l,if xeQ ,and 0, if xg Q} (2.8)

where Q, is the portion of the domain Q occupied by the i ~th phase, i=1,...,m.

For any x the indicator functions satisfy the relations:

2a® =1, (z(x) =46, 2.9)
where @, is the volume fraction of the i-th phase in the composite, and for stochastically

homogeneous medium &, = const . Then from (2.9) we have

> 6 =1 (2.10)

If the phases are homogeneous ,we can write a(x)= ia, z,(x) ando (x) =Y o,z (x) ,where

for each i-th phase ¢, = const and o, =const , and they are non-random scalars and tensors

respectively. If the fields a(x) and o(x) are stochastically homogeneous , after averaging

these equations we have (a (x)) = ia,ﬂ,. and (o (x))= io;@‘. :
i i

For describing the conditional averaging of the any random field y(x) we use the following

relation:

(y(x), =(y(x), FreQ, @.11)
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and for any random field we can write

(yx0), = (7 ¥=0) 16, 2.12)
Thus, for the conditional averaging of y{x,f), it is sufficient to unconditionally .average

z,(x) ¥(x,t) and renormalize the result by dividing by ,. (It should be noted that here in (2.12)

and elsewhere we do not assume summation on repeating indices!)

Taking (2.12) into consideration , we introduce the phase parameter ~ conditionally averaged

head in the i-th phase:
U,(x0) ={ u(x,1)), | (2.13)
[t is obvious that unconditionally and conditionally averaged heads are bound by the relation :
UCx,t) = 26U (x,1) (2.14)
For conditionally averaged flow velocity in the i-th phase:
Vi =(vx.0), (2.15)
and we have
Vi) = 3.6V, (x.1) ~ (16)

We introduce the continuum i-th phase flow velocity which is analogous to Darcy's velocity, that

is the mean velocity of liquid in pores distributed (spread) in all space.

Vi (x,0) = 6V (x,0) (2.17)

And from equation (2.16) we have
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V{x,t) = ilf;'(x,t) (2.18)
It is easy to see that | |
(z,(x)divv (x,t)) = d¥ (x,8) + O, (x,1) (2.19)
0, (x.t) = —{v (x,1)Vz(x)) | (2.20)
Then
(z:(x) Vu(x,n)) = V[oU, (0] + P,(x,0) (2.21)
P, (x,1) = ={u(x,1) Vz,(x)) ' (2.22)

According to the definition (2.8) the vector Vz; (x) 18 non-zero only on the boundary 9Q,; that
separates the i-th phase from the different phases. To study the behavior of the vector Vz, (x) on
the almost everywhere smooth surface 8€2; we introduce at an arbitrary point 4, € 8Q, a local
orthogonal coordinate system where the axis ¢, is orthogonal to o€, at point 4, and directed
inside €2,, and the axes 77, and ¢, are tangeﬁtial to 0K, .

If the equation ¢, = f,(7,.¢,) describes the face 8Q,, we can write z, = H[g,, SIACENIP
where H|[ | is Heaviside's step-function. In vicinity of origin we have expansion

£ (na:$a)=[8(0,0)/0m, |n, +[(0,0)/¢, ]¢, - Because the axes 7, and &, are

tangential, the above derivatives are zero and near point 4, the indicator-function

z,(¢4.14.¢ ) =H(c,) .Therefore Vz, IA{ = 5(gA)ng where 5(c,) is the Dirac’s & -function,

S
and e, isa unit-vector on the axis ¢, .

The scalar correlation @, (x,¢) and vector correlation P, (x,#) have a clear physical
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significance. Let @ be an arbitrary subdomain of the domain Q. For each realization inside the

subdomain @ the surface S;° separates i-th phase from other phases that are distributed in @

and ,generally speaking, S is multiply connected. We consider the expression

o =l JQ,. (x,t)dew =-|o[" J‘(v(x,r) Vz, (x))do = o] <Iv(x,t) vz, (x)dcu> and after

@

taking into account that Vz, {x) is zero everywhere excepting the points of surface S , we can

5w 1S the continuos projection of the vector

write Q° = —|a)|_l < J.vn (x,t)lsf dS,.”>. Here v, (x,t)

s
V(x,t)

s onthe normal # (x) to surface S7’ that is directed inside Q.

Thus, the covariance O, (x,#) is the specific mean cross-flow of fluid from the i-th continuum
phase to the rest. Because the vector Vz, (x) inpoint x € §; is perpendicular to S and directed
inside €,, the positive cross-flow O, (x,t) denotes that mean flow from €, is more than the

flow into Q,.

Similarly we consider the expression P? = |aJ|dl I P, (x,t)do =—|o|" Ku (x.1) Vz, (x))do

o @

= [a)|_1 < J u(x,t)Vz,(x) daJ> and again taking into account the characteristics of the vector

1]

Vz,(x) , we can write Py = —[a)[“1 < J.u(x,t)lsr, n, (x)de’) .

5
Thus the vector P, (x,¢) is the mean specific cross-force from the i-th phase acting on the

surface that separates the other phases from the i-th phase.

And’ obviously, because Y z,(x)=1 we have from (220) and (2.22) the conditions of
compatibility:

iQ,-(xJ) =0, iPi(x,f) =0 (2.23)
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Now, multiply the equations (2.1) and (2.2) by z,(x) and taking into account the relations (2.13),

(2.15), (2.17), (2.19), (2.20), (2.21) and (2.22), after averaging we have for the i-th phase

div ¥, (x,f) + a,.e,%i(i’tl +

G (x,0) =6,1(x.0 (2.24)

o' V. (x,0) + V[GU.(x,1)] +P,(x,1) =0 (2.25)

Although the conservative system of equations (2.24) and (2.25) is non- closed (because the
cross-flows Q (x,f) and cross-forces P,(x,f) have not been evaluated in terms of U,(x,f) and
V.(x,t) ), this system can be treated as the exact flow equations in the i-th continuum-phase.
For this case in the mass balance condition (2.24) the term Q.(x,f) determines the rate of mass
transfer between the i-th continuum-phase and the other continuum-phases. Equation (2.25) is
the modified Darcy’s law in the form of momentum balance and the vector P, (x,#) is the specific
cross-force from the i-th continuum-phase to the other continuum phases.
Such interpretation of the system of equations (2.24) and (2.25) for all composite phases together
with (2.23) — the conditions of compatibility for cross-flows and cross-forces-provides a
possibility of a statement about the multi-continua description for transport of flow in the
composite media. In this description the conditions of mass and momentum balances in each
continuum-phase are realized, and moreover, the continua exchange the fluid and momentum
between them.

The system of equations (2.23), (2.24) and (2.25) looks like the phenomenological equations
presented earlier by Rubinstein [1948] (who studied the heat transport in heterogeneous media)
and Barenblatt at al. [1960]. But there exist signiﬁéant differences. For example, the exact

equation of balance of momentum (2.25) contains the vector-functions ¥, that represent the
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force interaction between the i-th phase and the other phases that were ignored by these authors.
Moreover, contrary to the phenomenological models, the coefficients of the averaged equations

are defined exactly through the parameters of the composite media.

For a physical interpretation of the mono and multi-continua models it is possible to use the
averaged equations as the balance conditions for any volume when the volumes are sufficiently
small. In examination of one representative realization the averaging is derived on surfaces or
volumes. For statistical regularity of the results a different kind of averaging is necessary that

applies some conditions.

One of these conditions with respect to scales of hierarchy is presented in the inequality (2.5).
This condition is sufficient for the mono-continuum description, but for multi-continuum
description some conditions that guarantee the stability of conditional averaging should be
added. For example, let the compbsite system be the matrix with randomly or regularly

distributed inclusions (so- called granular media) (Fig.1). It is obvious that a control volume @,
must contain a sufficient number of inclusions, and that the surface of control volume 8w, must

dissect some part of inclusions and the fraction of the dissecting surface must be similar to
volume fraction of the inclusions. Only under these conditions for volume or surface the
averaging is stable and identical to the ensemble averaging. Similar condition must be met for

the control volume and surface in a layered system (Fig.2).
2.3.Alternative multi-continua model

Along with the multi-continua model that represént non-closed system of equations (2.23),

(2.24) and (2.25), it is possible to construct an alternative and equivalent multi-continua model.

In this case we introduce a scalar function
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g, (x,t) =(z, (x)divv (x,1)) (2.26)
and vector-function G, (x,1)
G, (x,t) =(z (x) Yu(x,1)) (2.27)
From equations (2.19) and (2.21) we find that
g (x,t)=div¥; (x,t)+ O, (x.1) (2.28)
G, (x,1) =V[QU, (x,) ] +P, (x.1) (2.29)

Obviously, the cross-flow O, (x,} and flow g, (x,) have different physical meanings. Whereas

the g, (x,¢) define the total flow from the i-th phase to the rest, the @, (x,¢} describes the flow

transfer between i-th phase and different phases.

Using the functions ¢,(x,7) and G,(x,t) we can rewrite the system of equations (2.23),

(2.24) and (2.25) in the different form

a,.ei?—U(;—(tx’—” + q,(x,0) = 6,f(x,0 (2.30)
ol V() + Gl =0 (2.31)
iq,- (x,0) = idiv Vi (x.0) (2.32)
iG,.(x,t) = VU (x,t) (2.33)

The equation (2.30) is the flow balance and the equation (2.31) is the momentum balance for the

i-th phase. The equations (2.32) and (2.33) are the conditions of the compatibility for flows
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q,(x,t) and forces G, (x,1). We conclude that the multi-continua description (2.23), (2.24) and
(2.25) are preferable because it is more convenient for understanding the process and will be
used in the subsequent analyses. In some cases we use the above relations in addition to

computing the flow g, (x,f) and G, (x,1).

2.4. Closure problem

In order to close the conditionally averaged system and to determine the fields
U(x,t) , V(x,t), the cross-flows O(x,f) and the cross-forces P,(x,#), it is natural to employ
the results of unconditional averaging of the system of equations (2.1),(2.2) and (2.3) (i.e. , the
global averaged system of equations (2.6) and (2.7) and compare the number of dependent

variables and equations for them.

It should be noted that after changing variables U(x,#) and V (x,t) in the global averaged closed
system (2.6) and (2.7) according to equations (2.14) and (2.16) the new system is non- closed

with respect to the variablesU, (x,¢) and ¥, (x,t) .

In addition we should note that although the global averaged system of equations (2.6) and (2.7)
and conditional averaged system (2.23),(2.24) and (2.25) are joint the mono-continuum and
multi-continua models of the same composite media and non-steady flow , both systems are
independent in the sense that the equations of global averaged system in the form (2.6) and (2.7)

are not dertvable from the system (2.23),(2.24) and (2.25) .

Let us consider the three-dimensional flow process in a composite medium with m-phases.

In this case to describe flow in one phase of mﬁltiphase media we use two scalar functions

U,(x,t) and QO/(x,t) and two vector functions V(x,?) and P,(x,#). That results in a total of 8
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(1+1+3+3=8) dependent variables for each phase, and Sm unknown functions for the m-phase
composite. On the other hand, for the description of the process in each phase we can use one
scalar equation of conservation of mass and one vector equation of conservation of momentum,
that is 1+3=4 equations and for m-phase system —4 x m equations. Furthermore, for the m-phase
case we have one scalar equation of the compatibility of the cross-flows and one vector equation

of the compatibility of cross-forces, that is altogether 4m+4 equations.

The globally averaged system contains one scalar function U(x,f) and one vector function
V(x,t), i.e. 4 unknown functions and two equations: one scalar equation (2.6) for conservation

of mass and for the composite system as a whole we require the averaged vector equation (2.7) -

the condition of conservation of momentum. This globally averaged system is closed and can be

solved separately with respect to mean head U (x,f) and mean velocity ¥ (x,t).

So far we have 4m + 4 + 4 = 4m+8 equations. We can add some more equations: the scalar

condition (2.14) —the relation between U(x,t) and U,(x,f) and the vector condition (2.16) - the

relation between V' (x,#) and V,(x,f).

Thus, for unsteady flow we finally have 8m + 4 unknown functions for 4m+12 independent
equations. It is obvious that for binary composite media, that is for m=2, we have 20 independent
equations with 20 unknown functions. The system is closed and, after solving it, we can express

all the unknown functions in terms of U(x./).

By summing the equations (2.24) over all i, we obtain the mass balance equation for the entire

composite system of the multi-continua model:

3 U,(x,b)

2D — £ (2:34)

div V(xt) + y ab,
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which contains the conditionally and unconditionally averaged fieldsU,(x,#) and V' (x,f).

Similarly, we can obtain the equation of momentum balance for the whole composite systém in

terms of U(x,t) and ¥,"(x,t) as

ol Ve )+ VU@EH=0 ‘ (2.35)

i

Then after comparing the equations (2.6) and (2.34), we can write one equation for U,(x,f):

ul oU, (x,t) L OU(x,0) 0
e - = + u—A(DU(x,t 2.36
R T N TR G
And after differentiating the equation (2.14) we have
l (x,t) OUlx,t
$4 200 _ (x.1) 237

ot ot

For two phases i and j and ¢;#a; the system of equations (2.36) and (2.37) have unique

solutions of 8U,(x,r)/d¢ and U (x,t)/dt. Integrating them with respect to time and using the

initial conditions U, (x,t,)=u,(x) and /II:DU (x,£,)]=0, we obtain

U,(n,t) = Ulxt) +ub (o, -a,)” MDU (1)), (2.38)

U, (x,6)=U(x,t)+ ub, (czj —a, )_] A(DU(x,t))
Combining the globally averaged equation (2.7) with equation (2.23) and the second equation

from (2.23) and taking into account the solution (2.38), we find the vectors: P, (x,f) and P, (x,t)

P,(x,1)= (0, -0, )" [((a) — " ) VU (x,0)+ py(DU (x, t))] + (0 ~a )'1 VA(DU (x,1)) (2.39)

P,(xt)= 0, -0, )“' [((a) —0" VU (x,8) + py(DU (x, r))] + (e, -0 )’1 VA(DU (x,t)) (2.40)
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We can derive the relations (2.38),(2.39) and (2.40) someWhat differently after
computing 1A DU (x, £)]={a' (x)u'(x.£)) ;where u'(x,t) = u(x,t) - U(x,f)and

a'(x) = ax) —{a(x)) . For a two-phase composite, we have a(x) = ;z,(x) + a,z;(x) and
after computing (o:' (x)u'(x, t)) , we find
pAUDU (x,6)) = 8,8, (e, -a,))| U, (%) = U, (x,f)] and the relation (238). It is
appropriate to note that for each component of tensor o (x) of two-phase composite
medium the correlation moment between ™ (x) and fluctuation of head u'(x,7) can be
written as <cr”" (x)u’(x,t)) =06, (J,.”" —O';")[Ui (x,t)-U, (x,t)] and it is proportional
to (a’(x)u'(x,t)) _This results from the fact that for two-phase composite the coefficient
of correlation between any component o (x) and a(x) is +1 if
K™ = (o‘f”' -o) )(ai -a ) is positive, and —1 if K™ is negative. Similarly we find
('(x) V') =(0, -0, {88, [YU,(x0)-VU, (rO)]+P,(0}.  Using  the
relationship (¢’ (x) V' (x,£)) = (0" = (o)) VU (x,1) — sty (DU) which derived from (2.7),

we can directly obtain the relations (2.39) and (2.40) .

The mean phase velocities are

i

where the mean phase forces are

G, (x,1) = (O'j ~0o, )_] [(crj A )VU(x,r) + ,uy(DU(x,t)):| + 2;1(04 ~a; )—‘ VA(DU (x,t))
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(2.42)
G, (xt)=(o,~0,) [(01 ") VUGN + ur(DU (5.0) | + 20(e, — &) VADU (x,1))

Substituting (2.38) in (2.24), it is possible to determine the cross-flows Q.(x,f) as

_ o 1 aU(x g BADU(x,1))
Oxn=26 {f(x,t) divV,(x,t) af,.li Py + 5 (a,. —a*j) 5 }} (2.43)

So, let the mono-continua description of flow in a random composite system is realized, e.g.

are known the tensor of effective conductivity for all system o, the expressions : the scalar
/.M.[DU(x,t)] and vector yy[DU(x,t)] .

We have shown here that in this case for two-phase i and composite. random medium we can
Find these fields: the phase mean heads U, (x,¢) and U, (x,¢) , the phase mean Darcy's velocity
V. (x.t) and ¥ (x,¢) , the cross-flows O, (x,t) and Q, (x,¢) , cross-forces P, (x,¢)

and P, (x,t) , phase flows g, (x,) and g, (x,7) , phase forces G, (x,t) and G, (x.1) .

2.5. Steady-state flow

Let the source density f(x,r) and boundary function ¢(x,z) for large ¢ >> 1

weakly depends on ¢. In this case the flow tend to steady-state and we can use for steady-state

stage the above results . All one has to do is to set all derivatives with respect to time ¢ to zero in

equations (2.6) and (2.24) and in the expansions EEDU (x, t)] and y[DU (x, t)] :

It is significant to note, that because the correlations (a’(x)u’(x, t)) and (a"“ (x) u'(x,t)>
are proportional, these correlations for £ — <o have fintte limits. Generally speaking, these

correlatons are different from zero at these points x, where the conductivity components o' (x)
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are correlated with field u{x) = lim (x,¢) . It is obvious that at these points x the mean heads
Ui(x) = U, (x) .

2.6. Meso-equilibrium approximation

It is a common knowledge that for basic processes in a natural heterogeneous system flow
velocities are typically small. When a some perturbation is applied into the flow, the relatively
short transition stage in the system creates a slowly changing process in time. Naturally, this

stage of the process has been the main interest for appliéation.

Bearing in mind that by applying sufficiently small # on the meso-scale the system tends fast to
a local equilibrium of mean phase heads. This state can be called as meso-equilibrium state.

However, for a finite x this is not to say that the mean phase heads are locally equal or are

constant in space and time. As we shoved above, even when the flow is in steady-state, for finite

M in some cases the mean phase heads can be different. And only for z -+ 0 the mean head

difference tends to zero.

In this limiting case in all presented equations all terms containing small parameter y and its

positive powers can be neglected. Under these conditions, when a very strong heterogeneity
exists, the terms to be neglected can contain large parameters and possibly impose some

restriction on the small parameter u, such that accuracy of the averaged equations is sufficient at

least outside the temporal border layer { e.g..Bakhvalov and Panasenko, 1989 ].

Let us consider the process of flow in a heterogeneous medium in which the scale of
heterogeneity u is so small that in the averaged equations (2.6) and (2.7) it is possible to retain

only the dominant terms, i.e. & — 0. Then, from (2.38) it follows that

U (x,0) = U, (x,t) = U(x,1) (2.44)

— 141 -



JNC TY8400 2000~007
and from (2.39) and (2.40) the cross-force vectors P,(x,#) and P,(x,f) take the forms
-1 . - . .
P.(x,¢f) = (aj -—cr,.) ((0')—0' )VU(x,t) , Pi(x,0) = (o*,. —crj) 1((0‘)—0‘ )VU(x,t) (245

It follows from (2.45) that in a medium with heterogeneous conductivity, the cross-force

P,(x,t) iszero only in a layered system, provided that VU(x,t) is directed along the layers.

For the mean phase velocities ¥, (x,1) we have
V. (x,t) =~0;VU(x,t) (2.46)

where the tensor o is

o =6"0, (0' - O"-)Vl (0' - o") (2.47)
which can be called the phase conductivity. It satisfies the relations

>c7oi=1 , Yboi=co (2.48)

i

For the cross-flows in the meso-equilibrium approximation we have from (2.43)

Q. (x,1) =0, { flx,t)+ div[ofVU (x,t)] -q, ?_[_%(}El} (2.49)

or after replacing the 8U(x,£)/8t from global averaged system (2.6) and (2.7) by setting u= 0

and substituting into (2.49) we have the cross-flow in another form

0,(x,) = (Z—"; {(2)-a) r(0)+ aiv [(@)o; a0 VU (x,1)] (2.50)

If for large time the flow is steady-state, the dependence of the cross-flows {,(x) in (2.50) on
the parameters ¢, is only by appearance because in this case div (o" vU (x)) +f(x)=10 then

we have from (2.50):
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0 =6 [/ + dv (o VU()] (2.51)

For meso-equilibrium stage, the general equation of phase flow g,(x,?) is

g,(x,0) = Z%- (@) - ) £ e.0) - e div(o” VU0 (2.52)

)

If the composite system is micro and macro isotropic, and the tensors ¢,and ¢’ are isotropic,

then for f(x,£) =0 we have

gxn=96, (—Q’%{j ViU (x,1) (2.53)
g,(x,t)=—86, %sz(x,r) (2.54)

or, in another form,

{a)o; - 0" BU(x,0)

0,(r0)=6, -~ y (2.55)

oU (x,1)

- (2.56)

q,(x,0) = -6, ¢,

It is obvious that in a fully isotropic medium the phase cross-flows Q.(x} = 0 and phase flows

g,(x)=0 when the flow is steady-state.

We can rewrite equation (2.55) as

K —x" U (x,1)

= (2.57)

O, (x,1) = 8¢
where " =c"/{a) is effective diffusivity for all system, and ;= o, /¢, is the effective phase

diffusivity, which is obviously different from x,= o,/ c,, the phase local diffusivity.
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As can be seen from equation (2.57) the sign of cross-flow 0,(x,f) is defined by the relation
between parameters x; , « that are dependent on the quantities o, /o, and @, / a, as

well as on the geometry of heterogeneity.

Let the conductivity of the composite system be homogeneous, that is o,=0o,=0c. For any

f(x,t) we have from (2.55)

oU(x,1)

= (2.58)

0xn=6,,(a,-a)
If o, <e; the cross-flow Q,(x,t) has the same sign as dU(x,¢)/0¢, that is when the mean

pressure increases in time, the i-th phase deliver flow to the j-th phase. Conversely, when the

mean pressure falls, the i-th phase obtain flow from the j-th phase. If ¢, > «; the signs are

opposite and , when the mean pressure increases, the i-th phase obtains flow, and when mean

pressure falls , the i-th phase delivers flow to the j-th phase. In the case where ¢, > a, @, = «,

but o, #0,, we have

o, —o" oU(x,f)
o’ ot

0,6 2.59)

It is easy to show that o] <" when o0, <o,and for o, > o, the inequality is o] >o". So,
when o, <o, the signs of the cross-flow Q,(x,f) and the derivative 8U(x,f)/0t are opposite
and for o, > o, the signs are identical. It is interesting to examine the case o, <<o, and
g, >> ¢, that in some sense can be related to the i-th porosity system with the j-th fracture

system. Neglecting some terms in general system of equations we obtain
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g OUGD

i ot Qi(x:t) =9if(x3t) s gjdiv V:,.(x,t) ——Q,.(x,t) = ij(x:[) (2.60)

Vi, =0 , V.(x,6)= —9;‘ o VU(x,t) (2.61)
The system of equation (2.60} and (2.61) bears similarities to the phenomenological equations of
flow in fissured porous media derived by Barenblatt at al. [1960]. The difference lies in the fact

that the system of (2.60) and (2.61) is closed, and all it parameters are completely defined.

Eliminating the phase cross-flow (,(x,f)leads to the global averaged equation of pressure

U(x,t)

o g 2U&®D _
Jt

[ §

o VUL + £(x,6) (2.62)

After determining U/ (x,t) from (2.62) under appropriate initial and boundary conditions we can

determine the i-th phase cross-flow

0.1 =6, [f(x,r)—a,- -a—ggt-)} (2.63)

and from (2.61)-the j-th phase flow velocity ¥,(x,#), the phase flows g,(x.5)=0,(x,t),q; = 0.

We now examine the steady-state flow when f(x)=0 in an binary composite system that is

anisotropic for mean phase flow. There can be three variants in this case.

1. Either one or both of the tensors o, and o, are anisotropic, and the tensor ¢ is anisotropic.
2. Either one or both of the tensors o, and o, are anisotropic, but the tensor ¢” is isotropic.

3. Tensors o, and o, are isotropic but the tensor o’ is anisotropic.
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In all of three cases the tensors o] and o are anisotropic and the globally averaged equation is

div (J' vU (x)) = 0, where the tensor ¢ as noted in case 2 can be isotropic. Analysis of the

expression for O,(x) in (2.51) shows that for steady-state flow with f(x) =0,

0,(x) = e,dfv(a,.‘vzf(x)) (2.64)

Because in the case of phase flow anisotropy the tensors ¢, and ¢ are non-similar (i.e., the
components of these tensors are non-proportional ) and if V. U{(x) # const, the phase cross-
flow Q,(x) is non-zero.
This result is paradoxical at first sight, but besides the demonstrated calculation, the detailed

qualitative analysis explains this effect.

Let the composite medium be a granular medium, that matrix conductivity be o, and the

conductivity of the inclusions be o, (Fig.1). It is obvious that for steady-state flow, the cross-

flow from each i-th phase inclusions in the j-th phase matrix is zero. On the other hand, here we
argue that the mean cross-flow from the i-th continuum into the j-th continuum is finite and

differ from zero under these conditions.

This contradiction stems from the expanded incorrect transfer of the mechanism of cross-flow
from individual inclusion to the aggregate of many inclusions that are contained in the
representative control volume. As indicated above, for those inclusions the basic part is
completely confined in the control volume and the cross-flow from these inclusions into the
matrix is zero when flow is steady-state. But there exists the cross-flow inside the control volume

at the surface of those inclusions that are dissected by the control volume surface. If the
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composite medium is anisotropic for mean phase flow and V U(x) #const, the cross-flows on

the cut are not compensated for meso-scale control volume.

We now study a more clear example of layered system that contains homogeneous layers with

conductivity o, and o, (Fig.2). Such a system is micro or macro anisotropic. Each layer

intersects the border of control volume at least twice and since it is assumed that the gradient of
the mean pressure is not constant, the flow from layer outside the border of the control volume is
statistically non-compensated. This means that the cross-flow from i-th layers to j-th layers is

statistically non-compensated.

The discussions above show that the multi-continuum deseription has non-trivial exceptions. For
example, the mean cross-flow in granular composite system with isolated inclusions under some
conditions is non-zero, whereas for each inclusions the cross-flow is zero, is a peculiar kind of

“payment® for continual description of flow in inclusions that do not compose a connected space.

3. EXAMPLES

Let us now study some cases where the meso-equilibrium globally averaged systems can be

easily constructed, thus the computation of simple closing relations for the phase cross-flows

O,(x,#) and the phase cross-forces P,(x,f) are possible.

3.1Casel

Let a two-dimensional infinite random heterogeneous systern be composed of two subdomains

with isotropic conductivities ; and ¢, that are stafistically equivalently distributed in the plane

( for example, like an unbounded chess board with randomly distributed “white” and “black”

squares). In this case the mean concentration of the phases are equal andf, =8, =1/2.
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It is well known (e.g., Shvidler, 1985) the effective conductivity for such a systems is isotropic

and ¢’ =.jo, o, ,then from (2.46) and (2.47) :

/

20"\/— ZU.J; G.1)
R R ey |

2‘7;‘\/;:
e,

VU@ED  (32)

V. (x.t) = ~ \[i \/_\/_ VUL, V,(xt) = -
Jo, -
o T

P, (x,t)=

% ‘/:/—__VU(A: 1), P,(x,f) =-P,(x,0) (3.3)

Further, by setting f(x,) =0,

_Joo oo ~a o)) , )
Q;(x:t) - 2(0! (\/——,-‘*‘\/_J,) Vv U(x f) b Qj(x’r) - _Qi(x:t) -(3-4)

GO T, VZU(JC,I‘) ) q,(x ) R, WS "G"'VzU(x ) (3.5)

Ay &;+a;

qi(xat) ==

It is easy to see that when o,/0; = /e the mean cross-flow Q,(x,f)=0 at any time ¢
when flow is transient. The mean cross-force P,(x,#) =0 only if o, = o;. Because the system is

micro and macro- isotropic, the phase mean cross-flow Q,(x) = 0 for steady-state flow.

3.2.Case2

The second case is different from the previous one only in the sense that conductivity of

subdomains are anisotropic

a 0 b 0
oo (e - ) o
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This system is globally isotropic and o =~/ab (Shvidler 1985). After simple manipulation we

obtain

b2 [JE OJ P (J‘ oJ 67
Tl &) T Tanklo Vb e
 2ab (Va0 _ 24ab (b0
-V;(JC,[)-—- —,\/E+JE( 0 \/EJVU(X,I.‘) , V}(x,t) = —m( 0 JE]VU(I,f) (38)
Jb-a (1 0
Pj(x,t) = 5'(7;-[——\/3)[0 _1] VU(x,t) (39)

1 2Jab Ja o oU (x,1)
Qa(xs[)“a{f( ) + \/— 'J— |:[ -\/-Z;]VU(x’t)]_ai 5t } (3.10)

g, (x,0) = —;—[f(x,t) -q, Ql_fé;c,_t)} (3.11)

It is obvious that when f(x) = 0 and under steady-state ﬁo§v the globally averaged equation is
V?U(x) = 0 and the phase cross-flow Q,(x) = 0 only if a=5 or VU(x)= const. .The phase
cross-force P, (x) = 0 only when a=5.

3.3.Case3

The next example involves three-dimensional, two-phase layered medium composed of

homogeneous anisotropic layers. Let the layers be directed perpendicular to the x;-axis, and the

phases conductivity be such that
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a 0 0 a, 0 0
o= |0 b 0 , c,=[0 b5 0 (3.12)
00 ¢ 0 0
Then
(@) 0 0 a 0 0
c=|0o (B o |o={0 5 0 (3.13)
0 o () 0 0 ()
Where
(@ = a6+a,06, , ()=b6+56, . () =cc(c8+co)" (3.14)

and the global averaged flow equation is

U (x,t U (x,t U (x,t 10U (x,t
(a)%: (a)% + (b)% + (c) az(x’}) +  f(x1) (3.15)

Then, from (2.46) and (2.45), we compute the components of the i-th phase flow velocity and

cross-force as

Valad) ==a S22 g =4 Sy () EED g
X X X3
P, (50)=0,P,(x,0=0, Ps(xt) =6 () ~(e") auten (3.17)

¢, —¢ d x,
Notice that the longitudinal components of the phase cross-force are zero. This is partly because

in our example the longitudinal main axes of the tensors o, and o, are aligned with the layers.

For the mean phase cross-flow and phase flow we can write

Q,(x,r)=6',-[f(x,t)+a,. QUGN 4 UG ()1 0UGD UG
3] ox,

b, 3.18
dx} B :I G.18)

X
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OU(x,1)

{xt) = —a, 6, 3.19
2,(x,0) 2 (3.19)
If the averaged flow is one-dimensional and perpendicular to the layers, the cross-flow is
oU(x,¢

0,(x6 =6, (a)-a,) —% (3.20)
and is proportional to g,(x,#}.
Let the averaged three-dimensional flow be a steady-state. Then the averaged equation is

U (x) U (x) -1 AU (x)

a) ———=+{b) —=+(c ——Zt+ f(x)=0 .
(a) P (6) o (c) 5 3.21)
and for the cross-flow Q (x) we have

U (x) *U(x) -1 O U(x)
(x)=6| f(x)+a +5 +{c — 3.22
0, (x) ,[f() o i g (™) ox (3.22)

1t is obvious that for f (x) =0, if the longitudinal components of tensors o, ,o;are not equal

and when VU({(x,7) # const, the phase cross-flow Q,(x)=0.

3.4.Case 4

We consider a model that imitates some porous space with system of fractures. Let an

unbounded porous media — a matrix with isotropic conductivity o, and diffusivity «, be

randomly and statistically uniformly dissected by three infinite and mutually orthogonal systems

of plates with parameters o, and «, that simulate the infinite fractures along each Cartesian

axis. In this case the Cartesian axis are principal axis for the global effective conductivity tensor.
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We assume that the matrix conductivity o, is significantly smaller than the fracture
conductivity o, and the concentration of each parallel system of the fractures ¢, (orthogonal to
the k-Cartesian axis ) is significantly less than unity.

Under these assumptions the ¢, - mean component of the effective conductivity tensor

that are associated with k-axis is defined mainly by the matrix and the fractures that are parallel
to k-axis. The contribution in the k-component of effective conductivity from the fractures that

are orthogonal to k-axis is significantly less if the o, << o, and if the fracture concentration

c =¢+¢ +ec <<l

Thus effective conductivity tensor o is approximated by

o = (O‘)I—O‘IC (3.23)
where (0) = o,(l-¢c) + o,c, andthetensor C is
g 0 0
C =40 ¢ 0 (3.24)
0 0 o

Then the global averaged flow equation in a fractured medium with porous parallelépiped blocks

has the form

Vo' VU] + fxp = (a)?%f—)- (3.25)

After using for o the expression (3.23) we have

Oy

o, =0, li]+(1_c)(af —O'M)CJ , O = Jf[f—mc}

(3.26)

— 152 —



JINC TY8400 2000—007

- s C = %
V. (x.1) crm|:1+(l_c) (O'I“O',,,) }VU(x,t), V,(x,1) o~f|:l - (crf—cr )C}VU(x,t)

m

The mean m-th and f-th phase cross-forces are

P (x,0) = —L CVU@D , P (x,0) = i CVU(x,1) (3.27)

op—0, Opn =0y

Then for mean phase cross-flow

050 = (1=0) () + 0,(1=0) V3| I+ T ——C VU0 |-a, (1) D)
(I—CXO'f—o'm)

ot

(3.28)

It is obvious that if the effective conductivity tensor 1s non-isotropic (for this it is sufficient that

not all concentrations ¢, are equal), the source density f(x) is zero under steady-state flow, and

if VU(x) # const, then the mean phase cross-flow O _(x) #0.
If the porous medium with fractures is fnacro-isotropic (¢ =¢, =¢; =¢/3 ), wehave

o' = lonli-c)+ o, ez (3.30)

. - _ a,
O-m_o-m|:l+3(1—c)(o'f—o'm)}j s g O'flil m:'f (331)

V. (o) = o, {1+ ifai JVU(x,r) V(5 =0, [1—-—‘1——}%'(;;,:)
3(1—0)(0}—0,,,) 3 (O'f‘o'm)
(332)
P, (5) = —— VU (%) (3.33)

3 (crf—crm)
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(3.34)

oU(x,1)
ot

o co, _
0, (xt)=(1 c){f(x,t)+0'm [1+3(1—c)(0'f—cr )}VU(x,t) a,

m

In this case Q, (x)=Q,(x) =0 when f(x)=0 and the flow is steady-state.

We have now completed the analysis of the mesoscale equilibrium approximation for multi-
continuum models’in stochastic media. It should be noted again that the more exact description
that takes into account the deviation from the mesoscale equilibrium resulted in a better

representation of global averaging.

4. PERIODIC COMPOSITE SYSTEMS

4.1. Problem formulation. Mono-continuum description

Let us now introduce a positive length-dimension parameter ¢ and detérmine the functions
of(x)=oc(x/e) and a®(x)=a(x/e), for which Y -periodic functions o(y) and a(y) are
£Y - periodic in the variable x. As ¢ — 0 the edges of the period of these functions tend to zero
and, consequently, o°(x) and «’(x) are a model of the system with small-scale periodic
heterogeneity.

Following Bakhvalov and Panasenko [1989 ], we use the standard method of solving the
equations (2.1), (2.2 ) and (2.3) in which a(x) and o(x) are periodic functions. The solution is
found in the form of two-scale expansion in the fast y=x/¢ and slow x variables asymptotic

with respect to the parameter ¢

u":(x,r)=i gu(x,y,t) , YV(xh)= ia”vn (x, .6 (4.1)

n=(

where the functions u, (x,y,f)} and v,(x,y,!) are Y-periodic in the fast variable y.
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Substituting (4.1) in the system (2.1), (2.2) and (2.3) that describes the flow in periodic media
also, if e(x) and o (x) are periodic functions, and expanding the operators in the powers of ¢,
we can obtain é set of equations for u, (x,y,1),v, (x,,1) whose solutions satisfy the expansion
(4.1). Averaging these equations over the representative volume of the region @, (whose meso-

scale A satisfies the inequalities e<<A<<, ) is equivalent to averaging over the domainY-cell

period by means of the operator ( J(x, y,t) =|Y I-l I f(x,y,t)dy ,where |Y | is volume of domain ¥ .
¥y
The averaged system for the mean functions U/ (x,t)z(u‘(x, t)) , V{x,0) =(v‘ (x,z‘)) is

o U, Bxl(xz‘)(

a f =1, I(x,r)v = (af(y)(ul +EU, +)) (4.2)

awV +a

(o ) Ve, )+ VU(x,t) = &7 (x,8) , 7 (x.0) == o)V +V,u, +6V,,+...) ) (43)

The effective storage capacity a” = const and conductivity tensor " = const can be written in

the form:

a ={a(y)) , o, =(a,j(y))+< > a,k(y)aW > - (4.4)

k 3

where W'(y) is the Y-periodic generalized solution of the problem

0 ow'

The expansion (4.1) for u°(x, y,f) can be written in the form:

u (x,8) = 1y (6, 8) + £, (e, Y, 1) + 20, (%, y, 1) + ... (4.6)

where
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u, (x,0) =U(x,1) , u(x,p,0) = ZW‘(y)@% 4.7
wGeyt) = W) (T 0 (4.8)
Here W(y) and W7 (y) are the Y-periodic solutions of the following equations
o[ W (y)
Ma‘_ oy (») 5y, = a(y) —{a(») (4.9
o [ W™ . 3 oW?
T e 02 D)oo 0,05 2 W ]-0, )T ) o

that satisfy the conditions
{7 () =0,(w(»))=0 @.11)

Then for v*(x,#) we have

Ve (x, ) =~ () {quo (5.8) + V0, (51,0 + 6] V00, (3, 3,8 + V10, (35, 3,0) |+ €2V 0, (2, 7,0) + }

_ (4.12)
The averaged system in equations (4.2) and (4.3) has the same form as the globally averaged

stochastic system of equation (2.6) and (2.7). The difference is that, in the periodic case, an
explicit procedure for calculating the tensor ¢~ and the parameters of the averaged equations
scalar A(x,f) and vector 7 (x,z) are shown. Furthermore it is especially significant that the
explicit expansions (4.6) and (4.12) for fields »°(x,f) and v* (x,f} are shown here.
As demonstrated by Sanchez-Palencia (1980), the U(x,#) and V(x,f) fields, the means over a

small representative volume @, in the space of the slow variable x containing sufficiently

number of cell-periods, are macroscopic fields. The usual integral conservation conditions for
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arbitrary macroscopic domains can be written in terms of U(x,f) and V(x,). The identity of the

volume and surface averaging of the velocity field is ensured by satisfying the condition

div, vy(x, y,t) = 0, which follows from equations (2.1), (2.2) , (4.7) and (4.12)

Thus the closed system of equations (4.2) and (4.3} together with the equations from (4.4) to

(4.12) describes the mono-continual model of flow in a periodical composite medium in terms of

mean head U (x,t) and mean flow velocity ¥ (x,¢).

4.2.Multi-continua description

In order to analyze the fields in the phases of a composite system, we infroduce the indicator

function z; (y) of the fast variable y defined as

z()={1ifyeYand0 ifye¥\Y, } (4.13)
and the mean value of the function gp(x, y,t) of the i- phase, that is local in the space of slow
variable x and time ¢

0,(x.1) = (p(x,y:0), = (@G 2.0 2(0)6 . 6, =|¥|/]Y] (4,14)

where 8 = const, which is the volume fraction of the i-th phase in the cell-period.

Now for periodic case we discuss the conditional averaging of the initial system (2.1) , (2.2) and
(2.3) over the representative volume @, , taking into account the fact that the conditional
averaging operation commutes with differentiation with respect to time and the slow variable x,
we obtain the ‘following system of equations for each i-th phase from m-phase composite

medium:

divV; (e, + a—(g%’iw,-(x,r) ~6, f(x.0) @.15)
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o'V (x,t)+6,VU,(x,1)+P,{x,6)=0 (4.16)
Here
U (x0)=(u (x0)) , ¥ (%1)=-06 (Ve (x1)) @.17)

0, (x,1) = —(VE (x,1) Vz (y)) JPix,t) = —([us (x,) - U(x,r)] Vz, (y)) (4.18)

Since iz,. (x)=1, wehave

i=]

310,(x1)=0, 3%, () =0 (4.19)

i=l
At this point we need to take into account that any representative volume ‘w, consists of two
parts - @, and @} . The first part @, includes all whole internal cells and the second part
@} includes non-integer cells inside the representative volume @, and adjoining to the border
Ow, . In some of the non-integer cells, the border dw, intersects only one phase, in the rest of

the cells the border intersects at least two phases. As indicated earlier, in the stochastic case, the
cross-flow from dissected inclusions under some conditions (e.g. in steady-state flow) 1s
significantl.

It is easy to see that the conditionally averaged system (4.15), (4.16) and (4.19) is completely
identical to the conditionally averaged system (2.23), (2.24) and (2.25), that corresponds to the
stochastic composite media. This formal expression is nonrandom because the media with
periodical structure are a special case of all the realization of the stochastic field formed by
random shift of one periodical structure. In the stochastic problem the treatment of the equation
in (2.1) as continuum conservation laws is based on the obvious fact of the multiple and fairly
arbitrary dissection by the surface of the representative control volume of various subdomains in
the heterogeneous random system . In contrast, in the periodic system, the identity of the

conditional means over the macroscopic volume and surface requires the satisfaction of certain
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additional conditions. It can be shown that for phase flow the equality of the means over the

volume and the surface of the cell-period is satisfied by the condition div, vy(x,y,£) = 0 in the

absence of sources of the field z, (y)v, (x,,f), which is equivalent to the orthogonality of the

velocity v, (x, Y.t ) to the phase surface. This is also equivalent to (2) the condition o, =0, or

(b) when o, = 0 , the system is layered and the flow occurs in the directions of the layers.

These conditions considerably limit the class of media in question, which again emphasizes the
point that, in the multi-continuum approach the requirement that surface and volume means over
each cell be equal is physically unjustified. It should be replaced by the natural condition of
equality of the surface and volume means in macroscopic domain containing not only many
whole cells but also fractions of cells dissected by the surface of the control volume, which,

therefore cannot be arbitrary.

The scalar function O, (x,f) and the vector function P, (x,f) have a clear physical significance.
The O, (x,t) is the specific mean cross-flow of fluid from the i-th continuum-phase to the
different phases and P, (x,t) is the mean speéiﬁc force from the other phases acting on the
surface bounding the i-th phase.

The system (4.15), (4.16) and (4.19) is closed since after substitution of the expressions (4.6) and
(4.12) into equations (4.17 and (4,18) the functions @, (x,¢) and P, (x,¢) have been evaluated
in terms U, (x,f) . The system can be treated as the exact flow equations in the i -th continuum.

Equation (4.15) is the mass balance for the continuum-phase and equation (4.16) is the modified

Darcy’s law — the impulse balance for the phase.

Considering the system (4.15), (4.16) and (4.19) together with the system (4.2}, (4.3) in the

multiphase case results in a closed set of equations, that link the conditional mean fields
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U(xt), Vi(x1), O (x1), P(x1) and G, (x,)=6,(Vu(x,r)) with the conditional phase
flow g, (x,¢) by the relation
q,(x1) = Q(x)+ div V. (x1) (4.20)

in terms of the averaged fieldU(x,)that can be found from global system (4.2) and

(4.3).Combining the systems (4.2),(4.3) and (4.15),(4.16) and (4.19) we can write the two-phase

composite meso-scale approximation of the phase fields and the interaction parameters as

U xt)=U(xt), ¥ (xt)=— 60;VU(x1), o =6"0(0,~0)'(c,-c") (421)

O (x,6)=6,| flx,1) + dz'v(o-;VU) - g, E%(*ii)} (4.22)
P, (x,t)= (crj. - o, )_l ((0') -o’ )VU(x,t) . G (x,1)=00]'0,VU(x,t) (4.23)
aU(x, t) o

g,(x.t)= 6,1 (x.t)-a}, or g (xt)= 6 f(x0)-0dv(c"VU(x,t))  (424)

(@)
The identity of the globally and conditionally averaged equations for periodic and stochastic

media leads to the complete formal coincidence of the characteristics presented in section 2 of

this paper. The result concemning the finiteness of the cross-flow g, (x,z‘) in systems with
anisotropy for steady-state process remains valid. Note if o*/{a) = 0} /¢, that is «* = o /{c)
- the effective diffusivity for composite is equal to i-th phase effective diffusivity «’ =0, /¢, ,
th;e cross-flow Q, (x,1) =0 for any non-steady-state flow.

S.APPLICATION EXAMPLES

As already mentioned above, for closure purposes of the phenomenological theories , the

hypothesis concerning the structure of the transfer terms between the phase continua are used . In
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particular, Rubinstein [1948],Barenblatt, Zheltov and Kochina [1960], Khoroshun and Soltanov
[1984] assumed a proportional relationship between the cross flow and the phase pressure
difference (the phase temperature difference in similar heat transport problems ). In the case of
periodic systems this hypothesis can be tested by direct calculation.

Applying the conditional averaging operator ( )r_ to the expressions (4.6), (4.7) and (4.8) we

obtain the following quadratic (in &) expression for the mean i-th phase pressure :

aU(x 9, aU )

U, (x,6) = U(x,¢) +1~:Zﬂ +&%| B, Zﬁ"’ Ulxi) ] G.D

X, rp dx.0x,

B =) . B=W), . BF =W (5.2)
As can be seen from the system of equations (4.5),(4.9) and (4.10), the signs and the modules of

the vector components f’ and the tensor-components 3,” depend on the conductivity field

o(x) only , but the scalar 3, depends on both o(x) and a(x) fields.

[f the cell-period Y contains two phases i and j , we have

6, B +6,5,=0, 65+6,5=0, 657+6,pF=0 (5.3)

and the phase head difference 4, (x,t) = U, (x,t) — U, (x,t) has the form

5, () = 67 {EZ P aU(x I [ iaU(x ) LY g U (x, r)” 5.0

o 0x,0x

.F

and in general A, (x,f) is the first order in small parameter .

As shown by Bakhvalov and Panasenko [1989], if in the cell-period Y the tensor o(y) has

certain symmetry properties, then the functions #°(y) will possess corresponding symmetry. In
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particular, if the plane y, =0 is a plane of symmetry of the tensor o (y), then the function

W*(y) will be odd with respect to the variable y, , and consequently 8/ =0.

We will consider the case in which the tensor o(y) is symmetric about all the coordinate planes,
for example, there is a spherical inclusion at the center of the space cell. If o(y) is an isotropic
tensor, then this periodic system will be micro-isotropic and macro-isotropic and the effective

conductivity tensor is spherical (o, =0,6,). Because of symmetry £’ =0 , B7 =45,

a-rp

and the parameter 7y (x,8) = Ay (x,0)/ £ is obtained from (54) as

aU(x,t)
{

7, (x,0) = 67" [ﬂ,. + ﬂ,.'VZU(x,t)J ' (5-5)

The general conclusion that the vector S =0 and the tensor £,” is proportional to the unit-
tensor &,, is implied from the fact that the completely isotropic field O'(x) determines a unique
zero —vector and a unit-tensor.

Comparing the expression (5.5) with the globally avefaged system (4.2) and (4.3), and

eliminating V?U(x,f) from (5.5), we obtain with the same accuracy :

8U (x,t)
)T (5.6)

Ty (x’ t) = 9;'-1 [ﬂ: +/Bi‘ (a)

a5
It is easy to show that the when f (x, t) same approximation for microscopic and macroscopic

isotropic systems in (4.22) and (4.24) leads to relations

oU (x,t)
ar

- BU(x,t)

g (x, t) =-G.q, Y (5.7)

0] (xJ) =0, (O'(;)_l [(a)o'; _aio-{;]

Thus, 7, (x,¢) with the same accuracy is approximately proportional to Q,(x,¢) or g,(x,#) and
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06, [(a)cr,f —a,.o*;]
@ (x’r) ) & I:ﬁf‘g(; + (CZ)]

(U, (0)-U, (x.1)) . (5.8)

6.0.a.0,

e[ por + B (a

d; (x,t) =

Y (U, (x.0)=U,(x.1)), Q(x)= {1 - <Z)c: }L. (x,1) (5.9)
If the symmetry conditions are not satisfied for the tensor o(y), then, in order to estimate the
order of the pressure difference with respect to the parameter &, it is necessary to solve a fairly
complex problem for the cell-period.

5.1.Case 1

As an example we consider the problem of two-dimensional cell depicted in Fig.3 and let (a)
c(y)=o@ if y <y, and(b) o(y)=0 if y >y, where the arbitrary parameter @ >>1.
After solving the cell-problem asymptotically with respect to the large parameter @ (see

Bakhvalov and Panasenko, 1989 ) we determine that the head difference can be written as

A (5.8) = U (5,1) = Uy (5,1) = 0.0386470 e(a[;(:’ ). a(’;(;"t)] (5.10)

Obviously, the quantity A,,(x,t) is positive if the vector VU (x,¢) is directed from the domain
of high conductivity D, into the domain D, ; otherwise it is negative. If the vector VU (x,t) is

directed along the phase interface in the cell (3, = »,), then the head difference will be zero. We
note that for the global averaged steady and spatially homogeneous flow, the expression for

U, (x) ~U, (x) being linear in & is exact, and the cross-flow Q, (x) =0, (x)=0.

5.2.Case 2
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We will consider a problem that can be solved exactly as above. Let, the cell-period have the
form depicted in Fig.4. Solving asymptotically the corresponding problem for the cell, we obtain

the head difference:

Ay (x,6) = U, (x,8) U, (x,t) = 0.0338216 U (xt) (5.11)

X
which is positive for a vector VU (x,t) directed into the right-hand half plane ; otherwise it is

negative.

It is obvious that creating the finite quantity with dimension like cross-flow from the head

difference is possible after dividing the head difference by £°. In our case this operation leads to
an unlimited amount of cross-flow when &—0 and therefore, the linear proportional

dependence between cross flow and head difference does not exist.

5.3. Case 3

We will now consider the case of an inhomogeneous layered system for which all the

computations can be performed in by quadratic approximation in small parameter ¢ . In the cell-

period  (|ys]<1/2) let the parameters be as follows: the capacity
a(V)=aif y,>¥, and a(y)=0a,if y;<}¥, andr the temsor of  conductivity
o= if »3>y, and o) =01 y;<¥-.

For example, let y, =0, ie., 6, =86, =1/2. Solution of the equation (4.5), (4.9), (4.10) and
(4.11) leads to the determination of #*(y) , W (»), W7 (y). Because of symmetry B°=0

the expressions 7, (x,¢) = (U, (x,)~U, (x.t))/&* , O (x.1) . ¢,(x.?) take the form
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_ 2. _ 1 B 2 1 2
" (x t): [ a, al _o‘ 11 %11 o g U(x t)+ @y =&y 0'22 Ton oF o U(x,t)+
12 60.;3[ o o L oo2 | 1 oy 12 a +a, gl 2 227 5.2

1772 9 +o 1772 Oyt 2

& O':?s —0'31,3 . 82U(x,r)
J{a, +a, * o + 0% J0'33 8x} 1)
1 U NOU . U
Q] (x,t) = i—-(-a—)-|:(o']ll (a)—alo‘” )E-I*(O';z (0.’)—0!20‘22 )gg—+((a>—a, )0'33 -aTJZ:| (5.13)

(5.14)

@ BU(x,t) |, 8U(xt) ., &U(x1)
H=—
g (x ) 2( )[0'1 P 12 nT 5.3 + 0y ax:,?

2
We note that in these expressions the derivative with respect to time has been eliminated with the

aid of the globally averaged equation

aU(x . Z i 62U(x J , oy ={on), op =(on), oy = <(J33)_]) (.15

l

It is easy to see from (5.12) and (5.13) that in the general case of unsteady three-dimensional

flow for arbitrary layered systems, the head difference U, (x,t)-U, (x,f) is not proportional to

Q(x.1) or g,(x.t)-

However, under certain conditions proportionality may be observed. In concluding the present

study we make the following observations.

1. If the transverse component of conductivity of the layers are equal (0'.;3 =0 = 0'33), then

for three-dimensional non-steady flow

0 (5,1)=3 o5, 62 (U, (1)~ U, (x.1)) (5.16)
2. If the layers are isotropic but inhomogeneous and the globally averaged flow has a transverse

component, then the cross flow @, (x,t) and the head difference are not proportional.

— 165 ~



JNC TY8400 2000--007

3. If the global flow is purely longitudinal (8 U(x,f)/8x; =0), the cross flow and the head

difference are related trough the expression

0 (x.0)= 60‘? W, (%,1) =T, (x:1)) (5.17)

4. For purely one-dimensional unsteady transverse ﬂow(a U(x,,1}/8x =0 U(x,t)/0x, = O),

the relationship between Q, (x,¢) and (U, -U,) is given by

30, (e, ~1) 2

a,o, —1

0 (x,6) = (U, (x,6)~U, (x,1)) . -(5.18)

where o, =, /o, , o, =0,/0, .

In Fig.5, the first quadrant of the plane (a,,0,) is divided by the straight line o, =1, along
which the cross-flow is zero and the hyperbola @,5, =1, along which the head difference is
zero, into four regions, within which the sign of the proportionality factor is constant. Obviously,
in region II and IV the sign of cross flow O, (x,) and that of head difference are opposite, which
implies that cross flow occurs from the phase with the reduced head into the phase in which the
~head is higher than mean. We note that in phenomenological constructions using the
proportionality hypothesis it is routinely assumed that the signs are identical. It seems likely that

an analogous situation exist for fully isotropic systems. Because the denominator as well as the

numerator in (5.8) can be positive or negative, the coefficient in front of the head difference may

be negative by some combination of the o and « fields.

5. If in a layered system with isotropic layers the flow is in a steady-state limit, the cross-flow

and the head difference are proportional and have the same sign
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0 (x)= 57%8“2 (U (%)~ U, (%)) (5.19)
6. In all the cases involving the same layered system, when any of the derivatives entering into
the globally averaged equation (5.15) vanishes, the cross flow and the head difference will be
proportional. However, in accordance with (5.17), (5.18) and (5.19) the proportionality factor
will depend to a considerable extent on the process considered. In the case of a purely transverse
flow the proportionality factor may change sign depending on the relation between the
conductivity and the capacities of the layer. Thus, the proportionality factor depends not only on
the geometric and physical parameters of the layered system, but also on the process realized, or

more precisely, on the macroscopic boundary conditions.

Comparing the following examples we can see how sensitive this dependence is to the process.
Let us compare purely longitudinal flow in quasi-steady period with purely steady-state and
quasi-longitudinal flow (expression (5.17) and (5.19)). Obviously, the proportionality factors
differ by a factor of two. A similar comparison between purely transverse flow in the quasi-
steady period and steady-state, quasi-transverse flow leads to a comparison of expression (5.18)
and (5.19). In this case it is possible to observe not only a quantitative but also a qualitative
difference in the proportionality factors. We note that in accordance with (5.12),(5.13) and (5.14)
the proportionality factor is a ratio of linear combinations of the derivatives entering into the
global averaged equation. Obviously, in the neighborhood of zero values of all derivatives the
behavior of this ratio will depend on the rate at which each derivative tends to zero and, in
principle, may be arbitrary. In other words, the proportionality factor essentially depends on the
process presented in the composite system. Similar conclusions follow from an examination of

layered systems composed of anisotropic layers. Consequently, we can state that fairly generally
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the cumulants function ‘of flow-velocity random process. In general the exactly averaged
equation is non-local. In some exceptional cases the averaged equation is a differential or
integro-differential equation of finite order.

We presented and analyzed in detail two one-dimensional cases (for Gaussian and telegraph
random flow-velocity with the identical exponential correlation function) where the exactly
averaged equations are second order parabolic and hyperbolic types , respectively . We studied
the behavior of different initial plumes, the evolutions and convergence of them for'large time .
We illustrated the process how the mean concentration distribution for both flow-velocity cases

approaches a unique asymptotic limit.
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Calculation of Flow Wetted Surface Area in Single Fracture System

Guomin Li and Chin-Fu Tsang

Earth Sciences Division
E.O. Lawrence Berkeley National Laboratory
Berkeley, Ca 94720

May 2000

Introduction

Potential radionuclide migration into fractured rocks has inspired many studies- and much
research dealing with the different aspects of fluid flow and tracer transport in individual
fracture planes. The earliest conceptual models of fluid flow and tracer transport
idealized a fracture as a pair of smooth and parallel plates separated by a constant
distance representing the aperture of the fracture. The models lead to the well-known
cubic law to describe the hydraulic behavior of the fracture (Witherspoon et al. 1930).
Dispersion is incorporated in terms of both the transverse velocity profile across the
fracture (Taylor dispersion) and a small-scale surface roughness that locally perturbs the
mean flow. Some field experiments involving solute transport in single fractures showed
that flow is strongly nonuniform and that such a model may not be representative of the
in situ conditions. Tsang and Tsang (1987) proposed the variable-aperture channel model
for transport through fractured medium to explain strongly heterogenecous flow with

channels characterized by an aperture density distribution and a spatial correction length.

In recent years, numerical methods have become powerful tools used in many studies to
understand the behavior of tracer movement in fractured rocks. Using these tools, tracer
transport in fractured rocks can be described by the advection-dispersion equations as in a
porous medium. By seeking a solution to the equations, we can simulate fluid flow and

tracer transport. The stochastic approach to flow and transport analysis seeks approximate
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solutions of the stochastic partial differential equations for flow and transport in
randomly heterogeneous porous media. It does this by assuming that the hydrogeologic
parameters are random functions of space, i.e., random fields. Computational
experiments are done on.a hypothetical flow field with given statistical properties for the
hydrogeological parameters. Many researchers found that dispersion in porous media
results predominantly from the irregularity from microscopic flow paths and to the
macroscopic variations in microscopic velocities and the dispersivity increases with the
distance between the source and the scale-dependent observation point. A Lagrangian
type of simulation technique, which takes into account such effects, is a way to model

solute transport in heterogeneous porous media.

The particle-tracking method is one such approach. In this approach, a solute plume is
presented with a large number of particles that carry the tracer and move in the flow field
according to spatially variable local velocities. In our calculations, we focus on the single
fracture that was represented as a two-dimensional, strongly heterogeneous, permeable
medium to study the so-called flow wetted area where flow is studied to transport tracer.
This area provides for fracture-matrix intersection such as matrix diffusion and sorption.
This is recognized as an important quantity effect of flow and tracer transport in fractured

rock.

Definition of Wetted Surface Area

In this study, flow wetted surface area is defined as the area of those elements where one
or more particles have passed through. Thus it describes the particle distribution moving
through the flow domain. A fully heterogeneous model generated by the SISIM module
of GSLIB (Geostatistical Software Library and User’s Guide, by Deutsch and Journel,
1998) with a mean permeability of 0.71x10™* m* was used to perform the calculations of
flow and particle-tracking. All particles are placed at the left-hand high-piezometric head
boundary. The initial distribution of the particles in a cell on the inflow boundary is
weighted by flowrate into that cell. In this base case, the standard deviation of the log
permeability around the mean is 0.8748, and the correlation length is one cell size for

both directicns.
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Flow Model and Boundary Condition

The domain is 2.5 m in length and 1.0 m wide. The groundwater flow through this
domain is calculated for constant piezometric-head boundaries: the left-hand boundary is
assumed at a head of 0.0025 m and right-hand boundary at 0 m, with no-flow conditions

imposed on the upper and lower boundaries.

A finite-element grid comprised of 40 x 100 elements and 41 x 101 nodes. The 2-D
steady flow simulations are performed for the full heterogeneous permeability field with

geometric mean of 0.71 x 1072 m?.

- Particle Tracking Results

In the particle-tracking method, a solute plume is presented with a large number of
particles that carry the solute and move in the flow field according to spatially variable

local velocities.

From the above flow-potential-distributions results, the velocities of the fluid can be
calculated at every node or center of elernent. All particles are let in at the left-hand high-
piezometric head boundary and collected at the right-hand low-piezometric head

boundary.

At the left-hand boundary, we assumed a constant concentration. Then, 1,000 particles
were released into the flow domain, the particles moving mainly along preferred paths
while large parts of the flow field are not affected. It looks like transport has the
channeling characteristic, and many of the particles move slower than that in the
homogeneous model with the same mean permeability field as in the heterogeneous

mode].

A simple formula is used to scale the heterogeneous field:

K=fxX (K-K) + K (1)
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where K is the log;o permeability in the base case, ¥’ is the new scaled permeability in
(logip), K is the log;o mean permeability, and f is the scaling factor. In Equation (1), we
can get a different permeability field by choosing a different value for the factor f :

f =0, then ¥’ = x, homogeneous field;

f=1,then ¥’ =x, reference (base-case) heterogeneous field;

f> 1, higher heterogeneous field;

and f < 1, lower heterogeneous field.

We assumed that ¢ is the standard deviation of the log;o mean permeability in the base
case and ¢’ is the standard deviation in the scaled case. Then we get the following
relationship between ¢ and ¢':

o =fxo 2)

Figure 1 shows the wetted area distributed through the system at 5 x 10" seconds in the
base case. Figure 2 shows the wetted area distributed through the system at 5 x 105
seconds in the heterogeneous field, with the scaled factor 2.0. Flowrate weighting is used
to distribute the initial location of the particles. In the two figures, the upper one shows
the wetted area distribution with one or more particles moving through its domain, and
the bottom one shows the wetted area distribution with more than 10 particles moving
through the element. It is clear that particles primarily move along preferred paths,
through the high-permeability connected elements in the flow system, while large parts of
the field are not significantly affected. In Figures 1, the percentages of the wetted area are
91.7 and 70.5 from top to bottom. In Figure 2, the percentages are 67.5 and 51.2,

respectively.

Figures 3 shows the distance traveled by the fastest particle over the total transport
distance as a function of time in both homogeneous and heterogeneous fields. Figure 4
gives the percentage of the wetted area versus time in both a heterogeneous and
homogeneous field. The wetted area in the heterogeneous field was defined as one or
more particles moving through an element. The curves show the percentages tend toward

some limiting numbers after a certain time. The entire domain is wetted in the
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homogeneous field but only in some places in the heterogeneous field. Figure 4 shows
that in the higher heterogeneous field, we have a lower percentage of wetted area. On the
other hand, as shown in Figure 3, the stronger heterogeneous field, the faster the first

particle flowed out the right boundary.

Summary

The purpose of this preliminary work is to apply particle-tracking to potential
radionuclide migration in simple fracture systems. Simulations of particle tracking can be
used as a tool to understand potential radionuclide movement in a heterogeneous field.
Detailed simulations are underway to study the effect on flow wetted area resulting from
the degree of heterogeneity and the range of spatial correlation. Matrix diffusion and
sorption will be introduced to study the effect of flow wetted area on tracer transport and

its retardation by these process.

— 180 —



JINC TY8400 2000007

Reference

Deutsch, C.V., A.G. Journal, GSLIB — Geostatistical Software Library and User’s Guide,
Oxford Univ. Press, New York.

Tsang, Y.W., C.F. Tsang, Channel model of flow through fractured medium, Wafer
Resour. Res., 23, 467-479, 1987.

Witherspoon, P. A,, J. S. Y. Wang, K. Iwai, and J. E. Gale, Validity of cubic law for fluid

flow in a deformable rock, Water Resour. Res., 16, 1016-1024, 1980.

- 181 —



JNC TY8400 2000—007

30

)
4
o 20
£
> H
|
[ 1]
M
N
10 JuN
[T
|
T
[l
- EEERREERERRENEAY [] ERNMMNENTNE
o Lo~ -.ugﬁ..r- |l||||l‘|1|_l.rln|||||:1-|‘||1|||:av!|||.]
9 10 20 0 40 50 . 60 70 a0 20 100
x (nodes)
40
LT ]
EENENER
i
et
]
30
w
] SN _ERNEN NN
a 20 o T o
nEN NENNNESNWNE NN NN
£ K EEEASARN RWE
) 'y
10
EEEEEEN
ERENERN
Axmn M
NNEENGEEN RENN__EEEEEE T EERN u BUNNEENEN NN
EERAKZN NN EN ) AEANRREA LELLL O T EEEEEENEEEE
N oy oo Lo b 4y ) VRS B SR TS B BT R |
0 0 10 20 30 40 50 60 70 80 90 100
X {nodes)

Figure 1. The wetted area distributed through the flow domain at 5 x 10 seconds with
the scaled factor f of 1.0 (the base case). In the top part of the figure, the wetted area is
defined as one or more particles moving through an element. In the bottom part, the

wetted area is defined as more than 10 particles moving through an element. Total
number of particle tracks is 1,000.
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Figure 2. The wetted area distributed through the flow domain at 5 x 10" seconds with
the scaled factor f of 2.0. In the top part of the figure, the wetted area is defined as one or
more particles moving through an element. In the bottom part, the wetted area is defined

as more than 10 particles moving through an element. Total number of particle tracks is
1,000. '
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Figure 3. Distance traveled by the fastest particle over total transport distance as a
function of time in both homogeneous and heterogeneous fields.

- 184 —



JNC TY8400 2000—007

RS IS T I S Rt

Homogeneous field, f=0
— — -~ Helerogeneous field, f= 0.5

Heterogeneous field, f= 1.0
—-g—— Heterogeneous field, {=1.5
e Hedgrogeneous field, =20

Percentage (%)

00 7E+14 26414 3E+14 4E+14 BEs1d GE+14 7E+14 BEF14 BEF1E TE¢15
Time (second)

Figure 4. Percentages of the wetted area as a function of time in both homogeneous and
heterogeneous fields. The wetted area in heterogeneous fields is defined as one or more
particles moving through an element.
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Tracer Mixing at Fracture Intersections
Guomin Li and Chin-Fu Tsang
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May 2000

1. Introduction

This is a progress report on our study of the mixing behavior of tracers at fracture
intersections calculated by the particle-tracking method, presenting the progress of work

from the start of the study until now.

There are basically two types of fracture junction (fracture intersection): continuocus
junction and discontinuous junction. A continuous junction is characterized by each
inflow branch being connected by a corresponding outflow branch. At a discontinuous
junction, the sequence of inflow branches is interrupted by one or more outflow branches
(an example is a T-junction). Wilson and Witherspoon (1976) and Robinson and Gale
(1990) describe experimental studies of flow through a continuous junction, while Hull
and Koslow (1986) report a laboratory experiment for a discontinuous junction. In their
studies, the streamline routing was proposed to determine the advective mass transfer in
the intersection (Wilson and Witherspoon 1976; Robinson and Gale 1990; Hull and
Koslow 1986). Berkowitz et al. (1994) applied a random-walk particle-tracking method
to study mixing behavior at an idealized fracture junction. Philip (1988) has solved the
boundary-value problem that describes the microscale flow pattern at an intersection of
two equal-aperture orthogonal fractures. Philip (1988) characterizes the mixing process at

a fracture intersection in terms of a local Peclet number, expressing the interplay between
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advective and diffusive mass transfer. Li {(1995) applied a numerical lattice-gas automata
(LGA)ImodeI to study the relationship between mixing behavior and the junction Peclet

number.

2. Methodology

A two-dimensional inviscid and irrotational steady flow is assumed in this study (Figure

1). The pressure H in the domain is described by the differential equation
VH=0 (1)
subject to boundary conditions.

The fluid velocity can be defined for a chosen volumetric flow through the fracture
junction under chosen boundary conditions, for different permeability values of the
inflow and outflow branches. Then, the advective transfer of tracer spreading (resulting
from streamlines taking a two-dimensional configuration with differing path lengths

controlled under the distribution of velocities) can be estimated.

To compare different numerical results, we introduced the Peclet number P, to represent

the flow conditions. The local Peclet number can be defined as
P.= 1.414bv/D 2)

where v is the average velocity within the “cross-section” area, b is the width of the
fractures (where two intersecting fractures are assumed to have the same width), and D is
the molecular diffusion coefficient of the tracer. The Peclet number expresses the relative
importance between advection and diffusion within the intersection area. As the fluid
velocity increases, the Peclet number increases, and the influence of diffusion decreases.
On the other hand, as the fluid velocity decreases, the Peclet number decreases, and

diffusion tends to play a relatively more important role in the transport process.
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Diffusive processes within the individual fracture will depend upon the boundary
condition, the permeability distributions, the residence time of mass in the system, and
the magnitude of the fluid diffusion coefficient. Clearly if the residence time in the
fracture is sufficiently long, diffusion spreads mass across streamlines and results in a

transverse concentration profile.

- The general nonreactive mass-transport problem for a dissolved, neutrally buoyant specis

mvolves the solution of the mass balance equation
dc/ot+V(cev)-V( DseVec)=0 3)

for the concentration ¢ over a period of time, subject to a set of initial and boundary

conditions for c. D¢ represents the diffusion coefficient.

In the calculations that fellow, a random-walk, particle-tracking model has been
applied to simulate tracer transport in fracture junctions by moving particles through
space using individual advective and diffusive steps. This method is based upon
analogies between mass transport equations and certain stochastic differential equations.
A particle is displaced according to the following simple relationship (Thomson and
Gelhar 1990):

X" = X"+ A (XM At + BXTD)-Z VAL ' (4)

where X" is its position at time level nAt, A is a deterministic forcing vector, B is a
deterministic scaling matrix, and Z is a vector of random numbers with mean zero and
variance one. The motion of one particle will thus be statistically independent from that
of another. If a large number of identical particles associated with a particular component
are moved simultaneously, then their number density f (x, t) will approximately satisfy
the Ito-Fokker-Planck equation (Kinzelbach 1988):
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3f/3t+V (Aef)-VV:(1/2BeBTef)=0. (5)

Equation (3) represents the balance of mass for a conservative aqueous constituent. The
particle-tracking method succeeds if the particle pumber density f in Equation (5) is
proportional to ¢ in Equation (3), subject to A and B by

A=v+Ve Df (6)
and

Be B =2D; (7

Thompson and Gelhar (1990) discussed some of the issues concerning the computational

approximations required in applying a random-walk particle model, Equation (4).

3. Structure and Boundary Condition

Figure 1 shows the fracture intersection model and its boundary conditions. The
groundwater flow through this domain is also calculated for constant piezometric head
boundaries: the left-hand boundary and the bottom boundary are assumed to be at 1 [tm

head, and the right-hand boundary and the top boundary are assumed to be at O jim head.

The 2-D flow domain is a finite-difference grid comprised of 70 X 70 nodes, with each
grid block 1 x 1 pm. The domain is divided into two intersecting fractures of 10 pm
width and a high permeability of 1.0 um?®, surrounded by a very low permeability

background of 1.0 x 107 p.m2 representing impermeable rock matrix.

Let particles be applied at the left-hand high head boundary. The random walk method is
based on particle transport under the influence of both rock spatial fluid velocities and
diffusion, and is possible for some particles to go backward out of the left-hand inflow
boundary or to jump out of the upper and lower boundaries from one time step to the next

one. We assume that the particle will disappear once it goes out the left-hand boundary,
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and will be bounced back (perfect reflection) into the modeling domain if it goes out of

the flow domain into the low-permeability background region.
4. Simulation Results

4.1 Effects of Diffusive Process

We consider only the diffusion effect on tracer transport. Thus the dispersion term D is

D=D (8)
in which D¢ means the diffusion coefficient.

The permeability field in the model (Figure 1) is made up of a central high permeability
(1.0 um®) embedded in a very low permeability (1.0 x 10 pum?) background. The
permeability is the uniform value in the flow field. It means that the flow-rate in the left

fracture is same as that in the lower fracture (plug flow 50/50).

From the above flow model, the velocities can be calculated at any position in the
domain. All particles are let in at 5 pum from the left-hand high-piezometric head
boundary and collected at the right-hand low-piezometric head boundary. A plot of the
number of particles collected at the right-hand boundary and top boundary at different
arrival times constitutes the breakthrough curves. In these calculations, 20 particles were

used to show the solute flow lines and 5,000 particles to plot the breakthrough curves.

Figures 2 and 3 show the 20 particle traces with different Peclet number for the

intersection model.
Figure 2 shows that all the particles move from the left-hand boundary to the top

boundary, for the very high Peclet number of 118,000. It means the diffusion term is too

small to affect the particle movement in the flow field, so that particles follow the
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streamlines. Figure 3 shows that under the condition of the Peclet number with a small
value, some of the input particles jump into nearby streamlines. Some of these particles

then move out of the right-band boundary.

What percentage of particles can go through the right-hand boundary? It is clear that
more particles will go through the right-hand boundary if there is a very small Peclet
number. In these calculations, around 5,000 particles were used to investigatelthc
percentage of particles that moved through the right-hand boundary. Figure 4 shows the

percentage of particle distribution in the outflow branches versus the Peclet number.

Figure 5 shows the comparisons of tracer-mixing characteristics (the percentage of the
particles throughout the right-hand fracture branch) at the junction with other two
numerical results. The results compare well with the LGA calculation and the behavior
that there are numerical inaccuracies in Birkowitz et al. (1994). The comparison will be

further investigated.
4.2 Effects on initial position of the particles

To investigate the relationship between the initial position of the particles relative to the
left-hand boundary and the resulting character of tracer transport, the particles are let in at
5, 10 and 20 um from the left-hand high-piezometric head boundary. A plot of the
number of particles collected at for the three cases the right-hand boundary at different
arrival times constitutes the breakthrough curves. In these calculations, 5,000 particles
were used to track the tracer transport and to plot the breakthrough curves. The flow-rate
in the left-hand fracture branch is assumed to be same as that in the lower fracture branch

(plug flow 50/50).

Figure 6 shows the comparisons of the tracer mixing characteristics at the junction for the
different distances that the particles were initially placed from the east fracture. For the

three models, no significant difference is found.
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4.3 Effects of the flow-rate ratio

In the above model, the permeability is the same in all fracture branches. In other words,
the flowrate in the left fracture branch is the same as that in the lower fracture branch

(plug flow 50/50). This model is considered to be the base model.

Let us adjust the permeability distribution to get different ratios of the flowrate in the
right-hand fracture branch and the upper fracture branch. Two models, Model A and
Model B, were chosen to study the tracer mixing in the fracture intersection. In Model A,
we assume that the permeability in upper and lower fracture branches is two times that in
left and right fracture branches, including the junction area. The ratio of the flowrate in
left fracture to that in lower fracture is about 35/65. In Model B, it is assumed that the
permeability in left and right fracture branches is ten times the other two fracture
branches, including the junction area. The ratio of the flowrate in the left-hand fracture

branch to that in the lower fracture branch is around 35/65.

In Models A and B, all particles are let in at 5§ pm from the left-hand high-piezometric
head boundary and collected at the right-hand low-piezometric head boundary. In these
calculations, 20 particles were used to show the solute flow lines and 5,000 particles to

plot the breakthrough curves.

Figures 7 and 8 show the 20 particle traces with different Peclet number for Model A.
Figure 7 shows that all the particles move from the left-hand boundary and to the top
boundary for the very high Peclet number of 118,000. The 20 particle tracers follow the
streamlines that occupy nearly half of the flowrate in the upper fracture branch. Figure 8
shows that under the condition of the Peclet number with a small value, some of the input
particles jump into nearby streamlines. Then some of these particles have the chance to

move out of the right-hand boundary.

Figure 9 shows the percentage of particle distribution in the outflow branches versus the

Peclet-numbers.
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Figures 10 and 11 show the 20 particle traces with different Peclet number for Model B.
Figure 10 shows that particles move from the left-hand boundary to the top boundary
(upper fracture branch) for the very high Peclet number of 118,000. Some of the
particles incoming streamlines occupy the whole upper fracture and the rest of the
particles from the left-hand fracture branch flow into the right-hand fracture branch.
Figure 11 shows the tracer-mixing behavior in the fracture junction under the condition

of the Peclet number with a small value.

Figure 12 shows the percentage of particle distribution in the outflow branches versus the
Peclet numbers, and figure 13 shows the comparison of tracer mixing characteristics at

the junction in Model A and B, and the numerical results in base model.

5. Summary and Conclusion

The purpose of this preliminary work is to apply random-walk methods to potential
radionuclide migration in fracture intersections. A random-walk model can be used to
understand the diffusion process through fracture intersection and to investigate the

transport of particles to different outflow fractures, depending on the mixing behavior.

The above results show that the Peclet number is the key parameter controlling tracer
mixing at a fracture intersection. When the Peclet number is very small, the streamlines
are no longer important for particle migration calculations, so that the percentage of

particles moving across the right-hand boundary is near 50%, as would be expected.

Now that the method is shown to be locking properly, we are planning to perform further

studies of transport at fracture intersections under more complex conditions.
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Figure 2. Spatial particle trace in base model with plug flow 50/50 for Peclet number of
118,000.
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Figure 3. Spatial particle trace in base model with plug flow 50/50 for Peclet number of
118.
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Figure 5. Comparisons of mixing characteristics (the percentage of the particles
throughout the right-hand boundary) at junction with other two numerical results.
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Figure 6. Comparisons of mixing characteristics at junction in terms of the resulting
percentage of the particles from the left boundary exist the right boundary. The different
curves are for the different distances at which the particles were placed relative to the left
boundary (see Figure 1).
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Figure 7. Spatial particle trace in Model A with plug flow 35/65 for Peclet number of
118,000.

— 201 —



JNC TY8400 2000—007

70 RN O W

W P ()] ()]
o) o o o

Y (microns)

N
o

Figure 8. Spatial particle trace in Model A with plug flow 35/65 for Peclet number of

118.

10

| i

LI 1.1

10

20

30 40

50

X (microns)

- 202 —

60

70



JNC TY8400 2006—007.

100

90

80 - ——i— East fractura
= @ = North fracture ‘

70

60 [

50

Movement(%)

40

30

Particle

20

TTTTT

10

- A BT M R R
1073 - - © 108 10° 10*
Peclet-Number

Figure 9. The percentage of the particles passing through the boundaries over the total
particles is a function of the Peclet number for Model A. The low curve is the percentage
of the particles Passing through the right boundary. Particles were placed in west fracture
at 5 pm to the left boundary. '
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Figure 10. Spatial particle trace in Model B with plug flow 65/35 for Peclet number of
118,000.
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Figure 11. Spatial particle trace in Model B with plug flow 65/35 for Peclet number of
118.
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Figure 12. The percentage of the particles passing through the boundaries over the total
particles is a function of the Peclet number for Model B. The low curve is the percentage
of the particles passing through the right boundary. Particles were placed in the west
fracture at 5 pm to the left boundary.

— 206 —



JNC TY8400 2000—007

100

90

80

70

[ Y| —y— Q= Qn
: 7| e e = Qe/Qn =35/65
60 - @= = Qe/On=8317

50

40

30

Particle-Movement(%)

20

[N

10

RN 1] R S SR Nl 1it IH_L Wi FRR I 1 i i
10° 107 107 10° 10 10° 10° 10° 10°
Peclet-Number

Figure 13. Comparisons of mixing characteristics (in terms of the resulting
percentage of the particles from the left boundary exist the right boundary) at junction in
Model A and Model B with the base model.
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A Summary and Review of the TILA-99

Approach to Performance Assessment

Chin-Fu Tsang

Earth Science Division
Ermest Orlando Lawrence Berkeley National Laboratory
Berkeley, California 94720, USA

Introduction

This Summary and Review of the TILA-99 Report” is prepared at the request of the
Japan Nuclear Cycle Development Institute (JNC). The summary 's focus is on the
approach and methodology for geosphere flow and transport predictions in performance

assessment, as discussed in the TILA-99 report, and on lessons learned.

The TILA-99 project is a postclosure safety assessment for a potential nuclear waste
repository by the responsible Finnish organization POSIVA QY. Its focus is on the
normal evolution of the repository at candidate sites in Finland and on the potential
release and transport of radionuclides from the repository into the geosphere and

biosphere.

The TILA-99 report is organized as follows. After an introduction in Chapter 1,

Chapters 2—4 present a description of the spent fuel to be disposed, the disposal concept,

" TILA-99, Safety Assessment of Spent Fuel Disposal in Histholmen, Kivetty, Olkiluoto and Romuvaara,
by Timo Vieno and Henrik Norman, Report POSIVA 99-07, POSIVA QY, Helsinki, Finland; March 1999,
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and the general safety regulation being proposed by the Finnish regulatory agency
STUK. Then the selection and characterization of four candidate sites and a summary of
their characteristics are presented in Chapter 5. Chapter 6 discusses the expected normal
evolution of the repository, Chapter 7 introduces their regional-to-site scale analyses of
flow and transport. Then the performance of engineering barriers are discussed in
Chapter 8. Chapters 9 and 10 describe the approach of scenarios for release and transport
analyses of radionuclides and the dose conversion factors used to convert release rates to

indicative dose rates.

Site-specific analyses of release and transport of radionuclides from (1) a single
initially defective copper-iron canister and from (2} a canister assumed to disappear after
10,000 years are presented in Chapter 11. Chapter 12 evaluates a large number of
sensitivity and "what if" analyses, together with a discussion of the completeness of
calculated cases and other methodological ambiquities. Consequences of multiple
canister failures are given in Chapter 13. The concluding Chapter 14 contains a
discussion of the results in the context of the proposed regulatory criteria and their

implications for site selection and further research needed.

The current summary and review will follow the following outline. A list of overall
general comments will be given in the next section, which we hope will guide the readers
as we get into details in the following sections. Then the history of the Finnish nuclear
waste management program is briefly described so that we may understand the context of
the TILA-99 report and why four sites are being considered in this report. For each of the
four sites, the key factor is the presence of fracture zones. The method for their
identification and classification is described in the next section, with a discussion of how
a repository will be located within the site. The section following will present what

TICA-99 project calls the normal evolution scenario. Following this, the models used,
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scenarios and cases selected, and analyses made will be described, discussed, and

commented upon. A few general remarks will conclude this review.

Overall General Comments

The TIL.A-99 approach follows closely the KBS-3 of the Swedish nuclear waste
management program. The spent fuel assemblies are to be emplaced in copper-iron
canisters, which will be disposed in a repository excavated at a depth of about 500 meters
in crystalline bedrock. Because of the similarity in the basic disposal concept, the TILA-
99 report is able to make use of much information and data from the Swedish Nuclear

Waste Management Company (SKB) and the Swedish Nuclear Power Inspectorate (SKI).

On the other hand, the TILA-99 project has not followed the postclosure performance
assessment framework used by SKB in its SR-97 report or the one used by SKI in its
SITE 94 report. Instead, in TILA-99, simplified analysis using conservative conditions
and parameter values are emphasized. This is the reason that the TILA-99 methodology
does not appear to be as detailed or sophisticated as those found in, for example, the SR-
97 and the SITE%4 reports, or the NIREX95 report of NIREX, who is in charge of the
United Kingdom nuclear waste management. (The laiter two reports were summarized
and reviewed in the last two years under the same INC-DOE cooperative program as the
current report.) For example, the SR-97 report uses a detailed system of so-called
"THMC diagrams” for canister, buffer, near-field and far-field regions, while the SITE-
94 report contains gives good discussions on consistency among different types of data
and on comparison among alternative structural and conceptual models. The NIREX-95
report has a structure-based definition of different types of fractures and uses a formal
expert elicitation method to obtain some of their characterizing parameter values. In
contrast, while these methods and their issues are clearly in the TILA-99 authors'

thinking, they have not gone into them in detail. To supplement their simplified analyses,
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TILA-99 has performed a most interesting series of sensitivity and what-if analyses.
Furthermore, for some uncertain cases, TILA-99 has been able to "design away" some
significant problems. In other words by adjusting the repository design, some important

problems can be alleviated.

One problem with simplified analyses is that it is very difficult to validate the
applicability of these simplifications. What appear to be conservative assumptions may
turn out to be not so conservative if a full and detailed analysis is made under some

particular conditions. This can be a serious issue and needs to be evaluated carefully.

The TILA-99 report aims for a report that is "robust, transparent, traceable and
reproducible.” T believe that the authors have succeeded to a significant extent. Itis a

well-organized and relatively easy-to-read report.

A Brief History of the Finnish Waste Management Program

Very briefly, the history of the Finnish waste management program proceeds along
the following steps. During the period 19831985, site identification surveys were made,
and then from 1986 to 1992, preliminary site investigations were conducted. During
1993-2000, detailed site investigations of four sites were carried out. Two of the sites are
inland, Romuvaara and Kivetty, and the other two are coastal, Olkiluoto and Hastholmen.
The choice éf these four sites are based on the relatively fewer uncertainties on these sites
and that conditions for conducting exploratory investigation of these sites are more
favorable than others. Note that the characteristics of the site related to the performance
or safety of a repository to be located there play a relatively minor role in the selection

process.

The plan is that in 2000 one of the four sites will be selected for confirmatory

investigation, including the constructton of an underground rock characterization facility.
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If all goes well, construction of the repository will start in 2010 and the emplacement of

spent fuel canisters in 2020.

The TILA-99 report is dated 1999, before the selection of a single site for
confirmatory investigations. Thus this report covers the four sites, using at each the same
methodology for flow and transport calculations and allowing for the different site

conditions.

Site Characterization

The site characterization activities so far on the four sites selected for evaluation are
preliminary. Its emphasis is on fracture zones at the site. This characterization is based
mainly on surface geological and geophysical surveys aé well as downhole tests in about
30 wells at each site. The kinds of downhole well tests employed are double-packer
pressure transient testing with packer intervals of 2 m or larger; injection tests, flow
meter tests and long term pressure transient tests. General correlation exists between
permeablility measured in 2 wellbore section and the presence of "open” fractures.
However, they also found several exceptional cases where large permeability is measured
without significant "open" fractures. How to understand these cases and how to use this
information in modeling flow and transport and evaluating uncertainty are not

emphasized in this report.

From these surface and downhole surveys, fracture zones are identified. These are
defined as locations with a high density of fractures. The rest are defined as "intact rock."
In the context of this report, "intact rock" can contain fractures up to a density of 1-3
fractures per meter. In subsequent analyses described in the TILA-99 report, except for
the near field the flow and transport are assumed to be along the fracture zones, and the

role of "intact rock" is neglected. Whether this is an acceptable simplification or
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conservative condition needs careful consideration. In any case, this simplification needs

to be kept in mind when evaluating the final performance assessments.

TILA-99 groups the observed fracture zones in three ways. The first is "fracture zone
classes, " which is defined according to the confidence in the identification of these
features. The classes are: directly observed, probable, or possible. The second way is
according to fracture zone typeé based on the degree of fracturing. The types are: crush
zone, major fracture zones, fracture zones, and "open or more abundant fracturing.” The
third way of grouping is according to the dip angle of the fracture zones, defined as steep,
with dip angles greater than 60°, between 30°-60°, and smaller that 30°. As an example,
the categorization of the fracture zones observed at one of the four sites, in Kivetty
bedrock, is shown in Table 1 (TILA-99-99 Report: Table 5-1). At this site, the total

number of identified fracture zones is 29.
Locating Repository within a Site

To conduct performance assessment of a repository for a given site, one would need
to specify the location of the repository, since that defines the distribution of potential
sources for radionuclide leakage and migration. TILA-99 presents a few general but very
useful principles in locating the repository. First, with the identification and
categorization of major fracture zones at the site, we need to ensure that the repository

avoids the major fracture zones.

Second, the hydrogeologic and geochemical environment at the site needs to be
considered. For example, high salinity areas and depths should be avoided, since high
salinity would require expensive materials for some of the construction elements and
would also adversely affect the perfonﬁa.nce of engineering barriers. Third,
constructability is also an issue in repository siting. Questions such as lithology, bedrock

fracturing and engineering properties, and magnitude and orientation of regional in-situ
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stress field need to be taken into account. Fourth, we need to be ready to allow "real-
time" adjustments of repository siting, thus avoiding large-conducting features

discovered during excavation of repository tunnels and deposition holes.

These are all factors that should be borne in mind. For this reason, the repository at a
site could well have two or three parts. Figure 1 (TILA-99 Report Figure 5-7) shows
what a repository might look like at the Romuvaara site, showing a three-part repository,

and how it could avoid major fracture zones.

Normal Evolution and Major Physiochemical Processes

TILA-99 considers the normal evolution of a repository in a series of time scales:
0 - 100 years
100 — 10,000 years
10,000 - 100,000 years
100,000 - 1 M years
Beyond 1 M years

Most of the important processes occur during the first 100 years. Major processes

include:
s Temperature change about +2 to 3°
¢ Rainfall increase about +10 to 20%
¢ Sea level about the same
e Initial period: water drained from repository tunnels changing water chemistry
¢ Canister corrosion (copper canisters assumed to be initiaily intact)

¢ Fracture movements due to excavation
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» Engineering buiffer, bentonite, saturates in about 10 years

¢ Bentonite swelling pressure

s Surface temperature of canister to attain 100°C

¢ Thermal expansion

e Gas production at canister or engineering materials

e Resaturation of excavation disturbed zone (EDZ) tunnels, in a few years.

All the above factors and processes need to be considered in models for performance
assessment. For the longer time periods, additional factors will need to be considered. For
example, over the 100-10,000 year range, one would need to consider the next glaciation

which has a cycle of about 20,000 years.

The step of identifying the important factors and processes to be included in
performance assessment is an important one. Various organizations, such as SKB and
SKI, have used a formal process and framework. TILA-99 does not appear to do so, but
instead it takes advantage of these efforts, as well as efforts on this by the Nuclear Energy

Agency (NEA), to build up its list of factors and processes.
Models for Flow and Transport

In the simplified analyses that TILA-99 is using, two models are defined for the
calculation of flow and transport corresponding to scales. These are respectively models

from regional to site scale and then from site to canister scale. This is illustrated in Figure

2 (TILA-99 Report Figure 7-1).

- The regional-to-site scale model corresponds to the scaling from the repository scale
of about 10 km to the site scale of 2—3 km. At this level of detail, about 30 hydraulically

significant fracture zones (from interpretation of hydraulic testing and surface surveys)
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are identified. The repository itself is assumed to be a high conductivity feature. Thus .
there is a possibility that it may connect with fracture zones that are not connected prior
to repository construction. We may remark here that even if the tunnels are well sealed by
engineering buffer materials, the presence of higher-conductivity EDZ around the

repository still makes it a higher conductivity feature.

At this large scale, the computational model used is the equivalent single porous
medium model. Based on this, the overall flow pattern and evolution of the distribution of
groundwater salinity are calculated. Thus one is able to trace the flow paths from
different points of the repository to the biosphere. For one of the four sites under study in
TILA-99, 50 flow paths are traced, and for each of the other thfee, 150-200 such paths
are calculated. A few of the flow paths from a repository layout at Romuvaara are shown
as examples in Figure 3 (TILA Report: Figure 7-2). The analysis showed that the impact
on flow as a result of heat generation from the waste canisters is much less than that due

to topographical gradients, salinity variations or land uplift.

Because of its smaller scale, a fracture network model is used for the site-to-canister
model. Several conceptual models can be applied to build up the fracture network,
ranging from infinite fractures and a resistor network to stochastic fractures. The
boundary conditions and driving forces applied to the site-to-canister model are
abstracted from the results of the larger regional-to-site model. Based on this, flow
through "intact” rock, EDZ, and fracture zones in the near field of the repository is
calculated. The analysis shows that the key quantity is WL/Q along the flow paths, in the

fracture network, where
W = width of the flow path
L = length of the flow path

Q = flow rate along the flow path
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This analysis is illustrated in Figure 4 (TILA Report: Figure 7-5).
Scenarios and Analysis Approach

The calculated cases for the repository performance assessment are built up from a
list of relevant features, events, and processes (FEPs). Here the TILA project reviews the
FEP databases from SKB, SKI, and NEA.. Out of such reviews, they identified 1261
project-specific FEP's. These were classified into (1) related to scenarios, (2) related to
model, (3) primary data, (4) discussed or (5) excluded because of low probability. It is
commented here that such a classification decision at an early stage, based on one's
intuition without detailed analysis, could be lead to significant errors. We should bear the
classes of FEP's in mind as we progress through performance assessment and evaluate the
uncertainty of our predictions. TILA-99 appears to recognize this by its statement that
"completeness and robustness of a performance assessment can be assessed only by

considering the analyzed scenario assumptions, models, and data together."

The approach to analyses for repository assessment used in TILA-99 follows the
outline below. It is a good outline, though it can still be improved (see the Concluding

Remarks section below).
¢ Base case: copper canister initially intact
* Reference cases:
— Single initially defective canister with one hole - 5 mm?® or 1 cm?
— Copper canister disappears after 10,000 years
¢ Sensitivity studies
e '"What if" analyses

¢ Discussion of completeness of analyses
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¢ Evaluation of multiple-canister failure

The base case assumes no initially defective copper canisters. Apparently, this is not
an unreasonable assumption provided that there is careful quality control in the
manufacturing and checking process. In other words, if there are 1,400 canisters in the
repository, the probability of a defective canister is significantly less than one. The
reference case of a hole in the canister is illustrated in Figure 5 (TILA-99 Report: Figure
11-4). In this case, a hole is arbitrarily assumed from which fuel-element leakage out of
the canister interior can occur, and radionuclides can then migrate through the bentonite
buffer into the fractured rock. The disappearing canister case assumes that after 10,000
years, leakage from the fuel elements can occur all around the canister. To illustrate what
are the information involved in these calculations, the compartment data for thé "hole-in-
canister” and "disappearing canister" cases are given in Table 2 and 3 respectively

(TILA-99 Report: Tables 11-8 and 11-7).

Near-field Flow and Transport

For the near field, potential radionuclide migration starts at the canister. Here, three
escape routes are identified. These are illustrated in Figure 6 (TILA-99 Report: Figure

11-3):

Qg - from bentonite buffer around the canister to rock fissures intersecting the

- deposition hole
Qpz - from back{ill at the top of the deposition hole to EDZ below the tunnel floor
Qrpzn - from tunnel to the rock and EDZ

Beyond the deposition hole, there are also the migration routes from the tunnel to

nearby tunnels (Qq), and to the tunnel and EDZs in the N tunnel in general (Q ppmy)-
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To proceed with the calculations, TILA-99 utilizes the permeability data from
borehole measurements in packer tests at 2 m intervals and builds up 6 m sections to
represent the deposition holes. The data statistics on the hydraulic conductivity
measurements of 2 m sections in wells at the four sites under study are shown in Table 4
(TILA-99 Report: Table 11-11). When these 2 m sections are randomly combined to
form 6 m sections representing the deposition holes, permeability of the deposition holes
are calculated. Table 5 (TILA-Report: Table 11-12) shows a comparison of the
percentages of "dry" rock sections with K < 10"° m/s when we consider: (1) 2 m sections
directly from data, (2) random combinations of two 2 m sections to form 4 m cases, and
(3) random combination of three 2 m sections to represent the 6 m deposition holes.
Those particular 6 m deposition holes with very high permeabilities built up in this way
are rejected. In practice, they will be sealed and not used for waste-canister disposal.
From this exercise, we have multiple realizations of the permeability and fracture
distribution of the deposition hole. Then the flow rates around the deposition holes are

calculated using estimated maximum local hydraulic gradients.

To calculate the flow rate around the deposition hole, we must have the local
hydraulic gradients as well as the permeability or hydraulic conductivity. Values of these
gradients are obtained from results of the regional-to-site scale flow simulation. A range
of values are used, with the maximum gradient representing the gradient between the
repository (represented by a high-isotropic permeability feature) and the nearest fracture
zone in the bedrock. This is probably a conservative estimate for the gradient near a
canister within the repository. The total flow rates Qe arotnd a depository hole are

then calculated. These are illustrated in Table 6 (TILA-99 Report: Table 11-15).

A simple analysis is then developed in the TILA-99 report to calculate the flow from

bentonite into rock (Qr in Figure 6), using not only Qgeepnors flow velocity u, and aperture
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b, within the nearby fracture, but also two other transfer coefficients. The first is Q,,
which is the equivalént flow rate from the surface of the canister to the mouth of the rock
fissure. It is dependent on diffusion coefficient within the bentonite buffer. The second is
Qup, Which is equivalent flow considering boundary layer (film) resistance between the

stagnant water in the bentonite and the water flowing in the rock fissure. This is

dependent on molecular diffusion in water and water velocity in the fissure.

Putting all these together, Qg is calculated for various conditions at the four sites.
These are shown in Table 7 (TILA-99 Report: Table 11-16) as Q.. To be conservative,
they have chosen slightly larger round-off numbers, Qg in the Table, for further

calculations.

Note that TILA-99 found that the main transport resistance is the boundary layer
resistance, represented by Q,,, between the stagnant water in the bentonite buffer and the

water flowing in the rock fissures.

Similar type of analyses are applied to calculate Qp,, Qqpz. etc. These flow transfer

processes depend on a number of factors, each with significant uncertainties:

Absolute and relative permeabilities of rock, disturbed zone, and backfill

materials
¢ Orientation of tunnels relative to the local hydraulic gradient
¢ Effects of fracture zones intersecting the tunnels

« Hydraulic properties of backfill as a function of salinity (higher salinity at

coastal sites and lower at inland sites)
» Long-term properties of backfill and seals.

Estimates of Qp; and Qqpy, for the Finnish sites and shown in Table 8 (TIL.A-99
Report Table 11-17).
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In general, TILA-99 simulations are performed in the statistical sense using ranges of
factors (such as hydraulic conductivity and gradients) from different simulations and thus
obtain flow ranges. This is in contract to simulations of cases one by one, in which each
case is internally deterministic and specifically defined. The former, according to TILA-
99, represents a simplified ﬁnd conservative approach. It is interesting to consider
carefully the strengths and weaknesses of these two approaches in relationship to the

goals of repository performance assessment.

Far-field Flow and Transport

For the far-field flow simulations of flow and transport, once the migration pathways
have been calculated on the region-to-site model, the key process is matrix diffusion and
absorption. In TILA-99, a finite diffusion depth is assumed, ~10 cm. Then the key
parameter is WL/Q, which is called the transport resistance, and WL is the flow-wetted
surface. For conservatism, no dispersion along the routes, no fracture filling and no
stagnant pools next to the flow paths are assumed. It is believed that all these factors

would increase the transport times of radionuclide migration.

The anion-exclusion effect reduces mairix diffusion and thus enhances anion
transport in the far field. However, for the near field this effect impedes anion transport
through the bentonite buffer. The effect of cation surface diffusion, on the other hand,
decreases the far-field transport while promoting diffusion through the bentonite buffer in
the near field. In these cases, conservative alternatives are chosen in the simulations. For
example, estimates of cation surface diffusion are included in the near-field calculations,

but not included in the far field.

Again, estimates of WL/Q are made in the statistical sense. The range of flows Q is
obtained either from fracture network model simnulations or from calculations based on

the range of hydraulic conductivities in 6 m borehole sections representing deposition
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holes. The flow wetted areas WL are calculated from a fracture network model, using
unit Q value. The product of the two ranges gives estimates of the range of WL/Q for the
four sites under different scenarios. An example of the results is shown in Table 9 (TILA-

99 Report: Table 11-18).

Thermal effects are not considered in the simulations of the far field flow and
transport, since thy are shown not to affect the flow pattern significantly. Note that this

conclusion may not be valid in general and should be evaluated carefully.

Finally the flow and transport data calculated for the reference scenarios are shown in

Table 10 (TILA-99 Report: Table 11-19).
Sensitivity and "What if" Analyses

One of the main strengths of the TILA-99 report is its careful consideration and clear
presentation of sensitivity and "what if" analyses. Under sensitivity analysis, the

following cases are considered:

e Alternative canister failure times (canister disappearing at 0, 10°, 10°, and 10°

yearsj
¢ Alternative source term models
» Case of very high solubilities in reducing conditions
e Case of oxidizing conditions in the near field
e Case of transport along 10 tunnel sections each with a leaking canister
» Alternative penetration depths of métrix diffusion (1 and 4 cm)
e Alternative dispersion (Pe number = 2) along flow paths in the far field

* Alternative dose conversion factor (increased by a factor of 10)
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e Use of realistic retardation data in the near field and far field respectively
The "what if" scenarios include:

o (Case of combination of very high groundwater flow and high saline

groundwater chemistry
e Case of very poor performance of the bentonite buffer

e Case of gas production in a canister with its displacement of contaminant

water out of the canister

o Effect of glacial melt water involving very high flow and oxidizing conditions

in the geosphere, buffer, and backfill

» Effect of post-glacial faulting at 30,000 years, bfeaking canister, displacing
bentonite, enhancing flow and transport and bringing about oxidizing

conditions in the whole near field and geosphere.

As can be seen, some of these sensitivity and "what if" scenarios represent rather
drastic conditions. For each, the impact and probability of occurrence are evaluated.
TILA-99's conclusions indicate a consistent picture of performance for the modeled
transport system — the sj/stem is robust and can tolerate even much more conservative
assumptions without drastic impact on potential releases to the biosphere. Further, except
for certain very unlikely events, such as post-glacial faulting which cuts through several
barriers at the same time, the results are still orders of magnitude below the regulatory
limits. The only negative case is the combination of very high flow rate and high saline

groundwater chemistry conditions.

Beyond the sensitivity and "what if" analyses, TILA-99 also generally discussed

additional issues, ranging from microbe and colloidal transport, effect of concrete in the
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repository and high pH plume, gas bubbles and human intrusions. There is also a

discussion of completeness and risk estimation.

Concluding Remarks

TILA-99 is an interesting report. As noted above, it attempts to do performance
assessment of a potential nuclear waste repository using simplified, conservative
conditions. This is not easy, and care should be taken to ensure that simplifications used
are indeed conservative. Such simplifications should also be recorded, tracked, and borne
in mind all the way through analysis to predictions and conclusions, to ensure that they

are indeed conservative.

It is also interesting that TILA-99 does not perform multiple-case analysis, in which
each case is deterministic and specifically defined. Then ranges of predictions are built
from many such case calculations. Rather, in TILA-99, ranges of parameters and
conditions are used from data and submodel calculafions, and these are then combined to
give ranges of predictions. It is not clear which is a better approach for the purpose of
pe;rformance assessment. It is still an open scientific question. It is noted that the TILA-
99 approach needs to be done with great care to ensure that there is no internal

inconsistency.

One weakness in the analysis approach described in TILA-99 is the lack of evaluation
of alternative structural and conceptual models of the sites, as well as evaluation of
consistencies among different types of characterizing data. Such evaluations were done

very carefully by, for example, the SKT in their SITE®4 report.

On the other hand, one strength of the TILLA-99 report is its careful analysis and clear
presentation of sensitivity and "what if" analyses. I believe it is a good pattern that should

be followed by other performance assessment efforts.
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Table Captions

Table 1 (TILA-99-99 Report: Table 5-1) Number of fracture zones in each class, type and
dip category in Kivetty's bedrock model. The total number of fracture zones is 29,

Table 2 (TILA-99 Report: Table 11-8) Compartment data of the near-field transport
model in the "hole in canister” case.

Table 3 (TILA-99 Report: Table 11-7) Compartmeﬁt data of the near-field transport
model in the "disappearing canister” case.

Table 4 (TILA-99 Report: Table 11-11) Statistics of hydraulic conductivity
measurements (2 m sections) in intact rock below the depth of 200 meters (Poteri &
Laitinen 1999).

Table 5 (TILA-Report: Table 11-12) Percentage of "dry" rock sections where the
hydraulic conductivity is below the measurement limit (K<10™° m/s). The proportions of
the "dry" intervals have been calculated by combining randomly all measurements over 2
m sections, and alternatively on the basis of data sets where the highest conductivities
have been cut off (Poteri & Laitinen 1999).

Table 6 (TILA-99 Report: Table 11-15) Total flow rates in the rock around deposition
hole: values selected for TILA-99.

Table 7 (TILA-99 Report: Table 11-16) Transfer coefficient (Qg) from the bentonite into
the rock. The cases and the primary input parameters and the Qg values selected for use in
the near-field transport analyses are indicated by bold. Other entries are sensitivity
analyses and calculated intermediate results.

Table 8 (TIL.A-99 Report Table 11-17) Transfer coefficients (flow rates) from the top of
deposition hole and from the tunnel section above the deposition hole into the geosphere
and the corresponding water turn-over times.

Table 9 (TILA-99 Report: Table 11-18) Estimated transport resistances (WL/Q) of
migration paths (Poteri & Laitinen 1999).

Table 10 (TOLA-99 Report: Table 11-19) Summary of flow and transport data for the
reference scenarios.

— 225 —



JNC TY8400 2000—007
Figure Captions

Figure 1 (TILA-99 Report Figure 5-7) An example of locating deposition tunnels for
2,200 canisters containing 4,000 tU of spent fuel at the depth of 500 meters at Romuvaara
(Aikis et al. 19994).

Figure 2 (TILA-99 Report Figure 7-1) Analyses of groundwater flow and solute transport
in the regional-to-site and site-to-canister scales (Poteri & Laitinen 1999).

Figure 3 (TILA Report: Figure 7-2) Example of flowpaths from a repository layout at
Romuvaara. The upper and lower figures present the same situation. The fracture zone
R8 has been removed from the upper figure to show the flowpaths behind (Kattilakoski &
Koshinen 1999).

Figure 4 (TILA Report: Figure 7-5) Estimation of the ratio of the flow wetted surface and
flow rate along a flowpath in the fracture network (Poteri & Laitinen 1999).

Figure 5 (TILA-99 Report: Figure 11-4) Near-field transport model in the "hole in
canister” case.

Figure 6 (TILA-99 Report: Figure 11-3) Near-field transport model in the "disappearing
canister" case.
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Table 5-1. Number of fracture zones in each class, type and dip category
in Kivetly's bedrock model. The total number of fracture zones is 29.

Fracture zone class Fracture zone type General dip
Directly observed: 17 Crush zone: - Steep (>60°): 23
Probable: 9 Major fracture zone: 9 Moderate (30°-60°): 6
Possible: 3 Fracture zone: 18 Shatlow {<30°): -
Open or more abundant
fracturing: 4
Table 1
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Table 11-8. Compartment data of the near-field transport model in
the "hole in canister” case.

Canister interior

»  fuel: Loviisa: 1.44 tU, Olkiluoto: 2.14 tU

+ water volume: Loviisa 425 litres, Olkiluoto: 700 litres
* number of compartments: 1

Hole in the canister

*+  length: 5 cm

« area: 5 mm? ("small"} or 1 cm? ("large")

- filling: water; bentonite for cations in non-saline water (because
D, = 5107 m%s > D, = 2:10°° m?s)

- transfer coefficients through the hole are calculated from the above
data (the model contains thus no compartments in the hole)

Bentonite between the hole and rock

= hemisphere having a radius of 0.35 m

- number of compartments (hemisphere shells): 48

* transfer into the geosphere from the outermost compartment: Qg

Table 2
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Table 11-7. Comparment data of the near-field transport model in the
‘disappearing canister" case.

Canister inferior

a«

fuel: Loviisa: 1.44 tU, Olkiluoto: 2.14 tU
water voiumea: Loviisa 425 litres, Gikiluoto: 760 hires
number of compartments: t

Bentonite around the canister

height: Loviisa: 3.6 m, Olkiluoto: 4.8 m

inner radius: 0.53 m

outer radius: 0.88 m

number of compartments (in the radial direction): 22

transfer into the geosphere from the outermost compariment: Qg

Benionite above the canister

L3

height: 1.5 m
area: 2.4 m? (horizontal cross-section)
number of compartments (in the vertical direction): 20

Backfill in the top of the deposition hole

<

height: 1.0 m

area: 2.4 m° {horizontal cross-section)
number of compartments: 1

transfer into the geosphere: Qg

Backfill in the tunnel

-

-

number of tunqel sections modelied: N = 1
votume: 100 m°

number of compartments: 1
no difiusion resistance in the tunnel, ie. the diffusion distance

between the backfill compartments in the deposition hole and tunnel
is 0.5 m, and the diffusion area is 2.4 m?

transfer into the geosphere: Qpzy

transfer into the next tunnel section: Q7, =0

Table 3
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Table 11-11. Statistics of hydraulic conductivity measurements (2 m
sections) in intact rock below the depth of 200 metres (Poteri & Laitinen
1993).

Over measurement [imit (K > 10710 m/s)

Total Total Upper Upper
number of cut-off cut-off
measurements K<10 mls K< 108 m/s
Héastholmen 1400 3817/27% 332/ 24% 227 /1 16%
Kivetty 1370 197 / 14% 170/ 12% 113/ 9%
Olkiluoto 1719 175 71 10% 153/ 9% 126/ 7%
Romuvaara 771 74 1 10% 73/ 9% 61/ 8%
Table 4
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Table 11-12. Percentage of "dry" rock sections where the hydraulic
conductivity is below the measurement limit (K < 10° 9 mys }. The proportions
of the "dry" intervals have been calculated by combining randomly all
measurements over 2 m sections, and alternatively on the basis of data sets
where the highest conductivities have been cut off. (Poteri & Laitinen 1999).

All measurem. Upper cut-off Upper cut-off
Kom < 107 m/s Kom < 1078 mi/s

Number of combined 1 2 13 1 2 3 1 2 3
2 m seclions

Hastholmen 73 53 39 76 58 44 84 70 59
Kivetiy 86 73 63 88 77 67 91 83 786
Olkiluoto 90 82 74 91 82 74 93 85 78
Romuvaara 90 81 72 91 83 76 @2 86 80

Table 5
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Table 11-15. Total flow rates in the rock around deposition hole: values
‘selected for TILA-99.

Case Qdephole {l/yr)

Non-saline groundwater :
All sites: "median” 0.5

Romuvaara and future Olkiluoto: "95th percentile” 10
Kivetty and future Hastholmen: "95th percentile" 50.
A "very wet" location 200
Saline groundwater

Present-day Hastholmen and Olkilucto: “median” 0.5
Present-day Olkiluoto: "95th percentile” 5
Present-day Hastholmen; "95th percentile" 25
A "very wet" location 100

Table 6
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Table 11-16. Transfer coefficient (Qg) from the bentonite into the rock.
The cases and the primary input parameters and the ()¢ values selected for
use in the near-field transport analyses are indicated by bold. Cther entries
are sensitivity analyses and calculated intermediate results.

Qde hole 2bV u ch Obl QFcal OF

(I7yr (um) (miyr) (Wyr) (Wyo)  (lyn)  (liyr)
Sensitivity analysis 400 680 330 54 12 3.7 '
Non-saline sites, 200 540 210 53 7.4 3.1 5
very wet
Saline sites, 100 430 130 5.1 4.7 2.4 3
very wet '
Kl, 95% ' 50 340 84 5.0 2.9 1.9 2
HH-f, 95% '
HH-pd, 95% 25 270 53 4.9 1.9 1.3 1.5
SA: 2by, = 300 pm 10 300 19 4.9 1.2 0.98
RO, 95% 10 200 29 4.7 1.0 0.83 1
OL-f, 95%
SA: 2b, = 100 um 10 100 57 4.4 0.7t 0.61
OL-pd, 35% 5 160 18 4.6 0.63 0.56 0.6
Sensitivity analysis 1 93 62 43 0.22 0.21
All sites, median 0.5 74 3.9 4.2 0.14 0.13 0.2
Sensitivity analysis 0.1 43 1.3 4.0 0.047 0.046
HH = Hastholmen, Kf = Kivetty, OL = Olkiluoto, RO = Romuvaara
pd = present-day, [ = future, SA = sensifivily analysis

Table 7
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Table 11-17. Transfer coefficients (flow rates).from the top of deposition
hole and from the tunnel section above the deposition hole into the geo-
sphere and the corresponding water turn-over limes.

Top of deposition hole Tunnel
Qpzy Water turn-over Qpzy Water turn-over

(llyr} time (years) (Vye)  time (years)

All sites, "median" 2 240 100 200
All sites, "95th percenlile” 10 48 500 40
Saline sites, 30 16 1500 13
"very wet"

Non-saline sites, 50 9.6 2000 10
"very wet"

Table 8
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Table 11-18. Estimated transport resistances (WL/Q) of migration paths
(Poteri & Laitinen 1999).

Range of WL/Q based
on intact rock flow

rates from fracture net-
work simulations (yr/m)

Range of WL/Q based
on intact rock flow
rates based on hydr.
measurements (yr/m)

Hastholmen - present-day
- not including 50 m of EDZ

Héastholmen - future
- not including 50 m of EDZ

Kivelty
- not including 50 m of EDZ

Olkiluoto - present-day
- not including 50 m of EDZ

Oikiluoto - future
- not including 50 m of EDZ

Romuvaara
- not including 50 m of EDZ

8.0-10° - 4.0-10°
5.6-10% - 3.4.10°

1.8.10° - 7.1.10°
8.9-10° - 4.4.10°

1.3.10° - 8.6-10°
5.6-10% - 6.0-10°

5.8.10° - 1.1-108
2.0-10° - 8.0-10°

5.1-10° - 2.3-10°
2.0-10°% - 2.0-10°

3.6-10% - 5.6-10°
22.10% - 5.2.10°

9.1-10% - 1.6-108
5.6-102 - 9.9.10°

1.2.10% - 4.2-10°
3.0-10% - 1.5.10°

2.7-10° - 2.5.10°
2.0.10° - 2.2.108

1.4.108 - 4.5.10°
1.0-10% - 4.2.10°%

107

1.4-10%- 1.1
-1.1-107

1.1-10%

3.6-10% - 3.5.10°
22.10% - 3.5.10°8

Table 9
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Table 11-18. Summary of flow and transport data for the reference
scenarios.

Case Chemistry Near-field transfer coefficients  Transport  Canister

Qp Qp~ Qrpzy resistance

{l/yr) (fyr) {/yr) WL/Q (yr/m)
nsso0 non-saline 0.2 2 100 5.10*  Olkiluoto
sal50 saline 0.2 2 100 5.10*  Olkiluoto
K95=Hf95 non-saline 2.0 10 500 2-10* Olkiluoto
Hpdgs  saline 1.5 10 500 2.10* Olkiluoto
R95=0195 non-saline 1.0 10 500 210  Olkiluoto
Opd95  saline 0.6 10 500 2.10% Olkiluoto
vhflowns non-saline 5.0 50 2000 5.10° Olkiluoto
vhilowsal saline 3.0 30 1500 1-10% Oikiluoto
ns50Lo  non-saline 0.2 2 100 5.10* Loviisa
sals0Lo  saline 0.2 2 100 5.10° Loviisa

H = Hastholmen, K = Kivetty, O = Olkiluoto, R = Romuvaara
pd = preseni-day, f = future, ns = non-saline, sal = saline, Lo = Loviisa canister
50 = median, 95 = 95th percentite, vhilow = very high flow

Tab[’e 10
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Figure 5-7. An example of lecating deposition tunnels for 2 200 canisters
containing 4 000 tU of spent fuel at the depth of 500 metres at Romuvaara

(Aikds et al. 1999d).

Figure 1
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( ; : Site scale

Repository

Regional scale

Canister scale

Figure 7-1. Analyses of groundwater flow and solute transport in
the regional-to-site and site-to-canister scales (Poteri & Laitinen 1999).

Figure 2
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Repository B (z=—300 m); flow paths

Head [m]
223.2

Figure 7-2. Example of flowpaths from a repository layout at Romuvaara.
The upper and lower figures present the same situation. The fracture zone
A8 has been removed from the upper figure to show the flowpaths behind
(Kattilakoski & Koskinen 1999).

Figure 3
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View on a horizontal plane Discretisation planes

dL
AWLIQ) = (QW), 1 + (QW); ]/ 2

Flow route

Flow direction

Figure 7-5. Estimation of the ratio of the flow wefted surface and flow rate
along a flowpath in the fracture network (Poteri & Laitinen 1999).

Figure 4
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Canister interior

Bentonite

[— Hole

Figure 11-4. Near-field transport model in the “hole in canister" case.

Figure 5
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. |
Tunnel Section | i
I

 (Qrpzn)

Canister interior
Bentonite

Tunnet backfitl

Figure 11-3. Near-field transport model in the “disappearing canister” case.

Figure 6
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Modeling Groundwater Flow and Mass Transport in
Heterogeneous Media—Issues and Challenges

Chin—-Fu Tsang

Earth Sciences Division,
Ernest Orlando Lawrence Berkeley National Laboratory,
Berkeley, California 94720, USA

ABSTRACT

The need for predictions of groundwater flow and contaminant transport in the
subsurface—over large distances and long time periods—has imposed extraordinary
demands on the field of hydrogeology. Such a need arises in assessing the safety of a
geologic nuclear waste repository and in evaluating groundwater contamination and
remediation designs. One of the main difficulties in modeling groundwater flow and mass
transport is the heterogeneity of the flow system, both in terms of its characterization
through in situ measurements and its conceptualization and simulation. This paper
reviews some important issues and challenges in modeling flow and transport in
heterogeneous media, and discusses approaches to address certain aspects of the problem.
Topics discussed include dynamic flow channeling, tracer breakthrough curves, multiple
scales for flow in fractured rocks, different scales in measurement, modeling, prediction

and heterogeneity, and system characterization and analysis for predictive modeling.
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1. INTRODUCTION

The need for predictions of groundwater flow and contaminant transport in the
subsurface over large distances and long time periods arises in the safety assessment of a
geologic nuclear waste repository or in the evaluation of groundwater contamination and
remediation designs. These problems are of great concern in many countries. They
require calculations of flow and transport in-geologic systems over distances of tens to
hundreds of kilometers and time periods of 10,000-100,000 years. This need imposes
extraordinary demands on the field of hydrogeology. One of the main difficulties in
modeling groundwater flow and mass transport is the heterogeneity of the flow system,
both in terms of the system’s characterization through in situ measurements and its
conceptualization and simulation. This is also an important basic science problem in
hydrogeology. This paper reviews a number of scientific issues and challenges in flow
and transport in heterogeneous media and indicates possible approaches to certain aspects
of the problem.

Heterogeneity of groundwater flow systems may be considered in terms of large,
intermediate, and small features. The large features include major fault zones, layering
structures, or regional compartmentation of areas with different hydraulic conductivity or
permeability. Thé small features include permeability variations on a scale much smaller
than the scale of measurement. Intermediate features are those of the same order as the
measurement lscale. It is quite apparent that large features would have a significant impact
on flow and transport. They can be detected and characterized through a careful program
of surface geologic and geophysical surveys, downhole logging at a number of locations,

and short-term and long-term hydraulic tests. Once these large features are identified and
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characterized, flow and transport calculations may be made using numerical methods
such as the finite-difference or finite-element methods. Continued progress in
methodologies and techniques is being made to perform this kind of work, such as
geophysical tomography and joint inversion of hydrologic and geophysical data (e.g.,
Alumbaugh and Neuman, 1997; Smith et al., 1999; Wilt et al., 1995; Nekut, 1994;
Tichelaar et al., 1997; Walsh, 1993; Vasco et al., 1997, 1998; Lee, 1995; Hyndman et al.,

1994; Rector, 1995; Rubin et al., 1992, Karasaki et al., 2000).

rFor small-scale features whose dimensions are much smaller than the measurement
scale, some kind of averaging can usually be done. One well-known example is the
dispersion coefficient that can be used to describe solute-concentration spreading that
results from flow velocity variations (caused in turn by small-scale heterogeneity). A
number of authors have developed expressions for dispersivity in terms of permeability
variance and correlation length (see Gelhar and -Axness, 1983; Gelhar, 1986, Dagan,
1984, 1986, 1990; Neuman et al.,, 1987, Neuman and Zhang, 1990; Rubin, 1990).
However, for intermediate-scale features (typically 0.1 to 0.5 times the flow distance), the

situation is not so simple.

We note that in principle we know how to handle the large and small features. With
the former, we can use in size surveys and borehole measurements, followed by
deterministic medeling; with the latter, we can employ some kind of averaging and
representation. Intermediate-scale heterogeneity is the main scientific challenge. A

number of issues related to this challenge are discussed below.
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2. DYNAMIC FLOW CHANNELING
Conventional approaches to flow and transport in heterogeneous media, even for
intermediate-scale heterogeneity, assume the applicability of the well-known advective-

dispersion equation (e.g., Javandel, et al., 1984), which may be written as

9 [p, € |, 9€ €
x| Taxj| oXi o

where
__ ko
n ox;
and
2
a_% ~0
axi

In these equations, C is the solute concentration, v; is the average pore velocity in the
direction x;, Dy is the dispersion coefficient tensor, n is the effective porosity, h is the
hydraulic pressure head, K is the mean hydraulic conductivity and x; are the Cartesian
coordinates.

For two-dimensional cases, if the flow is in the x direction with velocity v, and D;;
can be defined as Dy, along the main direction of flow x and Dy transverse to if, one gets
the well-known solution for the spread of a tracer plume, which at t = 0 is a line

concentration C, with length 2a normal to the flow direction (Javandel, et al., 1984,

p. 19):
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C VX
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This indicates a simple-body plume of tracers moving along the x direction with
concentration smearing in the x and y direction, depending on the parameters Dy and D,
respectively.

However, in a system with intermediate-scale heterogeneity under a pressure
gradient, flow will seek out separate paths of least resistance. The resulting tracer plume
will not be a simple-body volume, but will follow a number of specific paths through the
heterogeneous medium. These are paths of least total resistance, and such behavior is the
flow channel phenomenon (Tsang and Tsang, 1987; 1989; Moreno and Tsang, 1994;
Birkholzer and Tsang, 1997). Since the main flow paths are dependent not only on the
heterogeneity field, but also on the orientation of the pressure gradient, we may call it
dynamic channeling (Tsang et al., 2000).

To illustrate this phenomenon and its dependence on heterogeneity, let us consider
a heterogeneous field that may be generated by using a geostatistical method (the
Geostatistical Library GSLIB, Deutsch and Journel, 1992). The hydraulic conductivity k

can be given by a lognormal distribution:

n(k)dk =

| (logk —logf)2 dk
exp| — —
J2rsnlo 262 k
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where k is the value at each spatial location and & is its standard deviation in log k,

around a mean k. The spatial variational structure may be described by an exponential

covariance function given by

E[Iogk(f]) _ logi][log k(fz) — IogE]‘—‘ 62 exP|:_ 211-2%_ rll:l

where E is the expectation value, r; and r; are two spatial points, and A is the spatial
correlation length. For the exponential variogram, the effective spatial correlation range
is three times the correlation length (see deMarsily, 1986). Let us define the ratio of the

effective spatial correlation range to the total line flow distance as A" = 3A/L. Thus we

can characterize the heterogeneous system by three parameters, k, o, and A",

Having generated the heterogeneous field, let us impose a pressure difference
between the upper and lower boundaries, with side boundaries closed to flow. This can be
solved straightforwardly by a finite difference or finite element method.

In Figures la—c, we show typical results for the 2-D case. The flow domain is
discretized into 200 x 200 grid cells, and A" is 0.15. The lines show the tracks of the
fastest 90% of the particles. For a small standard deviation of natural log permeability,
o = 0.5, flow is essentially vertical. The travel-time contrast is small among all the flow
paths. However, as G increases, this contrast greatly increases, and flow becomes
channelized (Figures 1b and lc), with exit flow at the lower boundary concentrated at
fewer and fewer locations.

Flow channeling also depends on the spatial correlation range as a fraction A" of
the flow distance. If A" is small, channeling does occur, but the channels are closely

spaced; there are many of them over the flow domain, and their effect is “averaged out.”
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However, for A" larger than ~0.1, it is found that flow channeling is important and is not
very sensitive to the exact A value. Some typical results are shown in Figures 2a—c for

the same G value of 2.0, but A" values of 0.015, 0.15, 0.3, respectively.

_ According to these results, intermediate-scale heterogeneity gives rise to flow
channeling, so that solute transport along these fast paths is much larger than the mean.
Furthermore, a strong spatial variation of solute concentration exists along the low-
pressure outflow area of the flow domain. How to deal with such variations in solute

transport is an open question.

Similar results are obtained in 3-D systems (Moreno and Tsang, 1994, and Tsang et
al., 2000). Further, flow channeling also occurs in unsaturated systems. In that case, it is
also a function of the degree of saturation in the flow domain (Birkholzer and Tsang,

1997).

3. TRACER BREAKTHROUGH CURVES

One characteristic feature of flow channeling is the highly asymmetric tracer
breakthrough curves at the exit boundary of the flow domain. Let a pulse of solute be
deposited at the upper inflow boundary (see Figure 1 or 2) at time t = 0, and let it be
followed by particle or tracer tracking. The particles representing the solute are then
collected as a function of time at the lower exit boundary, integrated over the lower
boundary area. Summing the arrivals of the particles builds up the tracer breakthrough
curves, which describe the arrival of the solute resulting from a unit release at the upper

boundary.
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Figures 3a and 3b show breakthrough curves for different standard deviations in
the permeability distribution over a 3-D flow domain and for two different ratios of
correlation range to travel distance. For the large correlation range (A" = 0.3; Figure 3b),
the breakthrough curves for small heterogeneity show a clear narrow peak at t = 1, which
is the time of arrival for a porous medium with uniform geometric-mean permeability.
When heterogeneity increases, the peak is wider and moves in the direction of shorter
travel time, with a longer tail at large travel times. If the heterogeneity becomes
extremely large (o =4 or 6), the curves again show a narrow peak, but at very short travel
times and with a long tail. When a very short correlation length is used (A" = 0.075 case,
Figure 3a), a clear peak at t = 1 is obtained only for porous media with small
heterogeneity. The solution of the conventional advective-dispersive equation accurately
describes the situation shown in Figure 3a or 3b for very small ¢ values up to
approximately ¢ = 1.0 (see curves labeled ¢ = 0.5 and ¢ = 1.0). The velocities peak
around the mean flow velocity (with a_rrival time t = 1) and are symmetric on either side
of the mean flow velocity. The spread of velocities about the mean increases with G.
However, as ¢ becomes much larger, with ¢ > 1.0, flow begins to be focused in a few
channels, and the breakthrough curves show a much earlier peak, quite distinct from the t
= 1 peak, and a long tail. The early peak arrives in as little as one-tenth the time of travel
for a constant-permeability medium (see' the o = 6.0 case in Figure 3b). Such a
phenomenon is believed to have been seen in a number of field experiments (see, for

example, the review by Tsang and Neretnieks, 1998).

These results have important practical significance. First, because of flow

channeling, the peak arrival of a contaminant plume could be as much as an order of
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magnitude sooner than expected. This is an important concem for evaluating the potential
migration of a contaminant plume, and its possibility needs to be accounted for in safety
assessments. Second, because of the emergence of flow channeling at strong
heterogeneity, the usefulness of the conventional advective-dispersive equation for

analyzing this class of tracer breakthrough curves is very much in question.

4. MULTIPLE SCALES FOR FLOW AND TRANSPORT IN
FRACTURED ROCKS

For a fractured rock in which flow occurs through a fracture network, multiple
levels exist for the scale of heterogeneity. At the small scale, equal to or less than the
dimension of a single fracture in the fracture network, there is the spatial range of fracture
aperture variability. At that scale, flow and solute transport are affected by a spatial scale,
Aa, characterizing the aperture variations over the single fracture plane. The next scale is
the mean spacing, s, between successive fractures in the fracture network. Beyond this is
the variation of fracture density over space with a correlation range of d. This is
illustrated by Figure 4, which shows schematically the dispersivity (assumed to reflect
the heterogeneity scale) as a function of flow distance. When the flow distances are
smaller than the single fracture dimension, the dispersivity of solute transport should be
of the order of A,. When the flow distances are greater than the mean fracture spacing, the
dispersivity will be of the order of s, meaning that solute may go through alternative
nearby fractures at a distance of about s apart. When the flow distances are even larger,
the dispersivity will reflect the spatial correlation range d of fracture density variation.
Thus, the dispersivity as a function of transport distance should display a multiple-step

structure and will level off at about d if no higher-scale heterogeneity exists. In practice,
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these multiple steps may merge with each other if the different scales, rather than being
represented by single values of A,, s or d, are ranges of values overlapping with each
other.

This concept is demonstrated by Nordqvist et al. (1996). In a detailed calculation,
they developed a fracture network model that includes the effect of fracture aperture
variation on each fracture in the network. One example of their results is shown in Figure
5, where the tracer breakthrough curves are shown for a number of transport distances.
Fracture spacing s ranges between 4 and 8 m. Note the different x-axis scales for the
different curves in this figure. At very small transport distances, less than 6 m, the
breakthrough curves show a sharp peak with a very narrow spread, corresponding to A,.
As the transport distance becomes larger than s (8—12 m), we see a two-peak structure.
The separation between the two peaks corresponds to the effect of two alternative paths
in the network separated by s. In these calculations, there is no spatial variation of
fracture density. Thus, as the transport distance becomes larger than s, the breakthrough
curves display a smooth single-hump structure, with its spread corresponding to the
fracture spacing. These alternative tracer breakthrough curves have been noticed in field

experiments (see the review by Tsang and Neretnieks, 1998).

5. DIFFERENT SCALES IN MEASUREMENT, MODELING,
PREDICTION, AND HETEROGENEITY

Predictive modeling of flow and transport in a heterogeneous medium involves a
number of scales besides that of the heterogeneity itself—from the scale of measurements
for obtaining medium parameters, to grid cell size of the calculational model, to the

sampling size or the scale for predictive quantities. These are illustrated in Figure 6.
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In this figure, the heterogeneity scale Sy is the separation between the gray circular
areas representing permeability heterogeneity. Measurements, with the measurement
scale Sy, may then cover different regions of the system. If the measurement data are
permeability data from cores, Sy will be on the order of core size, which is very small. If
the measurement data are from well testing, Sy will be larger. If they are from long-term
interference pressure tests, then Sy will be much larger. As can be seen, measurements
with different Sy will sample very different permeability properties, depending on the

relative value of Syt and Sy.

In performing predictive modeling, we need to account for two additional scales.
The first is the scale of the grid cell for numerical calculations, Sg; the second is the
dimension of the area over which the predictive or observation quantity is to be
calculated, Sp. It is by no means simple to extract paraﬁeter values from in situ
measurements and then assign them to grid cells if Sg is very different from Sy. Much
work has been done (Dagan, 1993; Désbarats, 1992a,b; Desbarats, 1994; Dykaar and
Kitanidis, 1993; Indelman, et al., 1996; Neuman, et al., 1992, Paleologos, et al., 1996;
" Rubin and Gomez-Hernandez, 1990; Pozdniakov and Tsang, 1999) on the so-called
upscaling that relates the grid-cell property to data of much smaller scale (i.e., Sg >> Sm).
However, there are cases where Sg < Sy, and perhaps in such cases further measurements
should be made with Sy smaller or of the same order as Sg. It is also an open question
whether Sy should be much larger than Sy. Much depends on the need of prediction, with

its observational scale Sg.

The lesson to learn is that in modeling, we need to be aware of these different

scales—Sy, Sm. Sg, and Sp. To conduct modeling calculations with input parameters
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without understanding these four scales could be an important source of error, one that is
very often overlooked. On the whole, how these four scales interplay and the proper way

to deal with them in predictive models are yet to be determined.

One example to illustrate the importance of this issue is the use of dispefsivity to
calculate solute transport. Very roughly, dispersivity may be used to represent the effect
of heterogeneity and corresponds to Sy. If we solve this problem with an advective-
dispersive equation and use an observation scale So much smaller than Sy, the answer
can be very wrong, because the advective-dispersive equation smooths out solute
concentration over the Sy scale. In other words, solutions of the conventional advective-

dispersive equation are only valid if So 2 Sy. It is possible to find examples in the

literature where the advective-dispersive equation has been incorrectly used (i.e., when

this condition does not hold).

6. SYSTEM CHARACTERIZATION AND ANALYSIS FOR
PREDICTIVE MODELING

Prediction of flow and solute transport in a groundwater system requires
characterizing the system to identify relevant features and processes and to obtain
parameter values for model inputs. The required types of in situ measurements and
observations depend on the predictive quantities to be calculated. The relationship was’
discussed in Tsang et al. {(1994). It is not a simple problem because we must ensure that
all the important features and processes are included in the model. In recent years, a
number of countries have tried to develop procedures and methodologies for ensuring
adequate characterization of a given site. These efforts have been made to enable

modeling that includes a proper uncertainty estimate. The goal is predictions on nuclear
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waste repository safety over tens or hundreds of thousand years. Nuclear waste
management organizations that have gone through such efforts include NIREX in UK
(NIREX95, 1995), SKI and SKB in Sweden (Site94, 1996 and SR97, 1999), and Posiva
in Finland (TILA 97, 1999).

The procedures developed by these organizations can be broadly divided into a

number of key steps:

(1) Identification of features, events, and processes (FEPs) relevaﬁt to the site under
consideration.

(2) Evaluation of the interplay and influence of FEPs with each other.

(3) Geologic surveying and evaluation of the site, especially identification of major
faults and fractures.

(4) Use of multidisciplinary data and information, such as geologic, geophysical,
hydrological, and geochemical input. Investigation of | their consistency in
developing site characteristics.

(5) Analysis of systern evolution under different scenarios that may occur over the next
10,000 to 100,000 years (including changes in rainfall levels and possible glaciation
over the site).

(6) Use of three kinds of models: (a) models used in data interpretation; (b) models used
in observation of system behavior and estimation of effective parameters; and (c)
regional ﬂdw models to be used for predictive calculations.

(7) Use of alternative models with different degrees of sophistication to analyze the

system and compare results.
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(8) Evaluation of uncertainties not only in parameter values, but also in FEPs that
describe the system and in scenarios and external pfocesses impact the system.
(9) Use of “expert opinions” and a structured expert elicitation process for parameters
and information that are not available for the particular site under study.
(10) Use of stochastic and probabilistic mocieling methods.

As we can see from this list, it is a complex procedure, made necessary by the
demand for defensible predictive modeling of flow and transport in heterogeneous field
sites. Overall, these are preliminary efforts using techniques that are still irnproving and
evolving. Much progress is needed before we can be confident in our prediction of

system behavior and its uncertainty range.

7. SUMMARY AND CONCLUDING REMARKS

In this paper, we have discussed key scientific issues in the modeling of flow and
mass transport in heterogeneous media, of which fractured rock is a particular class.
Permeability heterogeneity on a scale comparable with the scale of the flow domain
presents challenges, ranging from dynamic flow channeling, multipeak tracer
breakthrough curves, and multiscale dispersivity for fractured rocks; to issues related to
the interrelationship between measuremenf scale, heterogeneity scale, numerical grid
scale, and the scale for which predictive quantities are to be calculated. All these issues
are unresolved and deserve further research.

Finally, note that for the safety assessment of a nuclear waste repository or
remediation of a contaminated site, a system characterization and analysis is needed to
make a defensible prediction of system behavior, with a proper estimate of uncertainties.

Considerable work towards this end has been applied in different countries, and
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continued work is expected in the coming years. This work affords us further opportunity
to study the issues presented in this paper and to attempt to meet the need of society for
long-term and large-scale predictions of flow and mass transport in realistic geologic

systems.
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Figure 3a-b. Breakthrough curves for different standard deviation ¢ values and for a
ratio of correlation length to travel length A of .075 and 0.30 in figures a and b
tespectively. The x-axis gives the arrival time normalized to (i.e., in units of) the
expected time if the medium were of constant permeability. The y-axis gives the
coneentration as a fraction of the input pulse concentration.
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Figure 4. Schematic diagram of multiple-step dispersivity for flow and transport in fractured rocks.
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plot.
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