計算化学の援用による高度分離材料の創製 ー高レベル放射性廃棄物の高度処理を目指してー

(核燃料サイクル開発機構 共同研究報告書)

2002年5月

九州大学

核燃料サイクル開発機構東海事業所

本資料の全部または一部を複写・転載する場合は、下記にお問い合せください。 〒319−1184 茨城県那珂郡東海村村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課 Inquiries about copyright and reproduction should be addressed to: Technical Cooperation Section, Technology Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu,Tokai-mura,Naka-gun,Ibaraki 319-1184

Japan

© 核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute) 2002

計算化学の援用による高度分離材料の創製 -高レベル放射性廃棄物の高度処理を目指して-

(核燃料サイクル開発機構 共同研究報告書)

後藤 雅宏¹、上江洲一也²、青嶋 厚³、駒 義和³

要 旨

本研究では、計算化学の手法を駆使した新しい分離材料(抽出剤および吸着剤)の創製 を、抽出法ならびに吸着法といった核燃料リサイクルで中核をなす分離操作を例として検 討した。具体的には、計算化学の手法を駆使して、ランタニドとアクチニドを高選択的に 分離する新規の抽出試薬を設計合成した。さらに、吸着剤の表面に、ランタニドイオンの 大きさや形状を精密に記憶させた高選択性の吸着樹脂(金属鋳型樹脂)を開発した。

本研究の成果は、大きくわけて二つある。一つは、計算化学の手法を活用して、アクチ ニドおよびランタニド元素を高選択的に分離できるような抽出試薬を分子設計し、それに 基づき新しいタイプの抽出試薬を合成した。本研究では、従来の抽出試薬の概念とは異な る新規抽出剤を計算化学の手法に基づき分子設計し、核廃液中に存在するランタニド元素 に対して高い選択性を有する新しい抽出試薬を開発した。合成した新規抽出剤に対し、計 算化学の手法を用いてスペーサー構造の及ぼす影響について理論的解析を行った。結果は、 それぞれの分離性能について計算結果と実験事実とが比較的良い相関関係を示していてお り、計算化学的手法が、超ウラン元素のリサイクル技術を確立するための新しい抽出剤の 分子設計に有効であることが示された。

2つめの研究では、吸着剤の表面にランタニドイオンの大きさと配位形態を精密に記憶 させた高選択性の吸着樹脂を開発した。鋳型樹脂の調製においては、界面分子 Imprint 法 (分子刷り込み法)を利用した。この場合、油水界面におけるランタニド錯体の分子配向 が、選択性の発現に極めて重要な因子となった。つまり、樹脂内部に埋め込む機能性分子 が、大きな界面吸着特性を示す場合にのみ、優れた鋳型樹脂が得られた。Imprint 法によ って樹脂表面にランタニド元素の最適配位空間を記憶させ(錯体形状を表面に刷り込ん で)、高選択的なイオン交換樹脂を調製することに成功した。

具体的に、この分子 Imprint の手法を用いて、ネオジム(Nd) 錯体を刷り込んだ結果、 樹脂の表面には抽出剤とNdの最適配位空間が記憶され、Ndの選択性が飛躍的に向上した。 本手法は核燃料廃棄物からの超ウラン元素のリサイクルプロセスを確立する上で、今後非 常に有効な手法となると期待される。

本報告書は、九州大学と核燃料サイクル開発機構との共同研究により実施した研究成果 である。

¹ 九州大学

² 北九州市立大学

³ 東海事業所 環境保全・研究開発センター 先進リサイクル研究開発部 先進再処理技術 開発グループ

Highly Efficient Separation Materials Created by Computational Approach – For the Separation of Lanthanides and Actinides – (Document on Collaborative Study)

Masahiro GOTO¹, Kazuya UEZU², Atsushi AOSHIMA³, Yoshikazu KOMA³

Abstract

In this study, efficient separation materials have been created by the computational approach. Based on the computational calculation, novel organophosphorus extractants, which have two functional moieties in the molecular structure, were developed for the recycle system of transuranium elements using liquid-liquid extraction. Furthermore, molecularly imprinted resins were prepared by the surface-imprint polymerization technique.

Thorough this research project, we obtained two principal results: 1) design of novel extractants by computational approach, and 2) preparation of highly selective resins by the molecular imprinting technique. The synthesized extractants showed extremely high extractability to rare earth metals compared to those of commercially available extractants. The results of extraction equilibrium suggested that the structural effect of extractants is one of the key factors to enhance the selectivity and extractability in rare earth extractions. Furthermore, a computational analysis was carried out to evaluate the extraction properties for the extraction of rare earth metals by the synthesized extractants. The computer simulation was shown to be very useful for designing new extractants. The new concept to connect some functional moieties with a spacer is very useful and is a promising method to develop novel extractants for the treatment of nuclear fuel.

In the second part, we proposed a novel molecular imprinting technique (surface template polymerization) for the separation of lanthanides and actinides. A surface-templated resin is prepared by an emulsion polymerization using an ion-binding (host) monomer, a resin matrix-forming monomer and the target Nd(III) metal ion. A host monomer which has amphiphilic nature forms a complex with a metal ion at the interface, and the complex remains as it is. After the matrix is polymerized, the coordination structure is "imprinted" at the resin interface. Adsorption of Nd(III) and La(III) ions onto the imprinted resin was examined and the imprinting effect was characterized. The Nd-imprinted resins exhibited a high adsorption ability and selectivity to the Nd ion. It was considered to be important to fix recognition sites rigidly and to create strong interactions with transuranium element. The molecular imprinting technique will be a promising way to establish the separation process for lanthanides and actinides.

This work was performed by the joint research between Kyushu University and Japan Nuclear Cycle Development Institute.

¹ Kyushu University

² The University of Kitakyushu

³ Recycle Process Technology Group, Advanced Fuel Recycle Technology Division, Waste Management and Fuel Cycle Research Center, Tokai Works

目 次

第一部 計算化学的手法を利用した新しい抽出剤の設計	1
1. はじめに	1
1.1 リン酸およびホスホン酸系抽出剤によるランタニド元素抽出の一般論	2
 1.2 計算化学的手法の分類 	2
1.3 抽出分野への分子モデリングの適用	5
2. 新規二座配位抽出剤の合成	6
2.1 緒言	6
2.2 リン酸基-エチレングリコールスペーサーをもつ抽出剤の合成(A タイプ)	7
2.2.1 トリエチレングリコール-0, 0'-ビス(p-tert オクチルフェノキシリン酸)	の合
成	7
2.2.2 1,2,ジ(2 ヒドロキシエトキシ)ベンゼン 0.0' ビス(p tert オクチルフェ	ノキ
シリン酸)の合成	7
2.2.3 1,4,-ジ(2 ヒドロイシエトキシ)ベンゼン 0,0'-ビス(p-tert オクチルフ	フェノ
キシリン酸)の合成(以下 p-type)	8
2.3 ホスホン酸基-アルキルスペーサーをもつ抽出剤の合成(B タイプ)	9
2.3.1 1,4-ブタンジオール-0,0'-ジフェニルホスホン酸(BDP)の合成	9
2.3.1.1 実験操作	9
2.3.1.2 実験結果	9
2.3.2 1,8-オクタンジオール-0,0'-ジフェニルホスホン酸(ODP)の合成	10
2.3.2.1 実験操作	10
2.3.2.2 実験結果	11
2.3.3 1,4-シクロヘキサンジメタノール-0,0'-ジフェニルホスホン酸 (ChDMDP)	の合成
	12
2.3.3.1 実験操作	12
2.3.3.2 実験結果	12
2.3.4 1,2-ジ(2-ヒドロキシエトキシ)ベンゼン-0,0'-ジフェニルホスホン酸(o-F	EBP)の
合成	13
2.3.4.1 実験操作	13
2.3.4.2 実験結果	14
2.3.5 1,3-ジ(2-ヒドロキシエトキシ)ベンゼン-0,0'-ジフェニルホスホン酸(m-F	EBP)の
合成	15
2.3.5.1 実験操作	15
2.3.5.2 実験結果	16

3. 計算方法	17
4. 実験および分子モデリングの結果および考察	19
4.1 Aタイプ二座配位抽出剤の分子モデリング	19
4.2 Bタイプ二座配位抽出剤の分子モデリング	24
5. おわりに	29
参考文献	30
第二部 ランタニドイオンを高選択的に認識する界面鋳型樹脂の開発	31
1. はじめに	31
1.1 分子刷り込み (molecular Imprinting) 法とは	31
1.2 界面鋳型重合法とは	33
 ホスホン酸型機能性分子の合成 	35
2.1 緒言	35
2.2 機能性分子の合成	37
2.2.1 1, 12-ドデカンジオール-0, 0'-ジフェニルホスホン酸(DDDPA)の合成	37
2.2.1.1 実験操作	37
2.2.1.2 実験結果	38
2.2.2 フェニルホスホン酸モノドデシルエステル (n-DDP) の合成	39
2.2.2.1 実験操作	39
2.2.2.2 実験結果	40
2.3 結言	40
3. 界面鋳型重合法を利用したランタニド認識材料の調製	42
3.1 緒言	42
3.2 界面鋳型樹脂の調製	42
3.2.1 試薬	42
3.2.2 重合操作	43
3.2.3 実験結果	45
3.3 界面鋳型樹脂の特性評価	46
3.3.1 構造特性	46
3.3.2 膨潤率の評価	48
3.3.2.1 実験操作	48
3.3.2.2 結果及び考察	48

3.4 結		49
4. 界面錄	寿型樹脂のランタニド吸着分離特性	50
4.1 緒		50
4.2 実	験操作	50
4.2.1	ホスホン酸型機能性分子を利用した液-液抽出実験	50
4.2.2	2 各鋳型樹脂及び非鋳型樹脂を用いたランタニド金属イオンの吸着分離実験	51
4.2.3	3 ランタニド鋳型樹脂における有効イオン交換容量と吸着平衡定数の評価	51
4.3 結:	果及び考察	52
4.3.1	機能性分子を用いた液ー液抽出における Nd(III)、La(III)抽出挙動	52
4.3.2	2 ランタニド鋳型樹脂における Nd(III)、La(III)吸着分離挙動	54
4.3.3	3 ランタニド鋳型樹脂の吸着定数	59
4.3.4	Imprint 効果を得るための機能性分子における必要条件	62
4.4 結		64
5. おわり	りに	65
参考文献		67

第一部 計算化学的手法を利用した新しい抽出剤の設計

1. はじめに

原子力発電において、未利用の有効な元素を回収し再び燃料とする「再処理」は、 資源の有効利用及び環境負荷の低減等の観点からも非常に重要な技術である。この再 処理技術の主要プロセスは溶媒抽出法からなり、超ウラン元素を効率よく抽出分離す るような抽出剤の開発が強く求められている。これは、抽出プロセスの効率が、用い る抽出剤の性能に大きく依存するためである。

本研究では、これまでにない新しいタイプの抽出剤として、「多官能基+スペーサ ー」という抽出剤設計コンセプトを提案し、一分子内に二つのリン酸基あるいはホス ホン酸基を有する二座配位抽出剤を新たに分子設計し合成した。新たに合成した抽出 剤を用いて、超ウラン元素と性質の類似した希土類金属について抽出分離実験を行い、 抽出剤の分子構造がおよぼす影響について、抽出能力と分離性能の観点から詳細な検 討を行った。

本二座配位抽出剤は、二つのリン酸基あるいはホスホン酸基をスペーサーによって 連結したこれまでにないまったく新しい有機リン酸系抽出剤である。本抽出剤は、キ レート効果による抽出能力の向上、およびスペーサーの立体的制約による金属イオン 選択性の向上を目的として設計した抽出剤である。本研究では、リン酸基-エチレン グリコール(+ベンゼン環) (A タイプ)およびホスホン酸基-直鎖アルキル鎖 (B タ イプ)の組み合わせの抽出剤 (図 1-1)に着目した。これら2組の抽出剤では官能基 が異なるが、単座配位抽出剤ではリン酸系とホスホン酸系とでランタニド分離能に大 きな差がないことから、この違いはそれほど重要ではない。したがって、スペーサー が分離能に大きな影響を与えると考えられ、非常に剛直なスペーサーをもつ A タイプ と比較的フレキシブルだと考えられるスペーサーをもつ B タイプのスペーサー効果を 評価可能である。このスペーサーの役割をコンピュータを利用した分子モデリングに よって明らかにすることができれば、「多官能基+スペーサー」という抽出剤設計に おいて大きな前進となる。

図 1-1 本研究で着目した 2 座配位抽出剤の代表的分子構造

1.1 リン酸およびホスホン酸系抽出剤によるランタニド元素抽出の一般論

Pearson の HSAB 理論(Hard and Soft Acids and Based Principle)において、ラ ンタニド元素は硬い酸に属し、リン酸とホスホン酸は硬い塩基に属する。したがって、 ランタニドイオンとリン酸およびホスホン酸との相互作用は、主として静電的相互作 用であると考えられる。通常ランタニド元素は水中で3価のイオンとして存在し、周 期表の左側から順にイオン半径が小さくなっている。同じ電荷をもちながらイオン半 径が小さくなるとその分電荷密度が大きくなるので、抽出剤との相互作用が大きくな り、安定な金属錯体となる。さらにランタニドイオンに配位する抽出剤(通常、単座 抽出剤なら6個、二座抽出剤なら4個)との距離が近くなるため、抽出剤同士が密に パッキングされ疎水性の高い錯体となる。これらの理由で、周期表の右にいくほど抽 出されやすくなる。

抽出性能は,抽出能(低い pH で抽出できるほど高性能)と分離能に分類される。両 性能ともに、「ランタニド元素錯体の安定性」と「その錯体の疎水性」で決まる。

1.2 計算化学的手法の分類

計算化学手法には大別して1)分子軌道法、2)密度汎関数法、3)分子力学法、 および4)分子動力学法の4種があり、研究者はそれぞれの特徴を考慮しながら、研 究対象分子の計算を行っている¹⁾⁻³⁾。

1)分子軌道法

分子軌道法は、近似の方法によって3種類に大別できる。

<ab initio法 (From the beginning法) >

・系に対する Schroedinger 方程式(正確には、Hartree-Fock 方程式)を、計算で現

れるすべての積分を省略せずに解く方法。基底関数の選び方による種々の近似法が あり、解の精度はそれらの方法に依存する。

- ・系の大きさ N(たとえば、原子数、電子数、軌道の数)の4乗に比例する。計算の
 限界:数十原子
- ・代表的なプログラムパッケージ

GAUSSIAN98 (開発者: John A. Pople)

<semiempirical 法(半経験的方法)>

- ・すべての積分を考慮するのではなく、重要な項のみを取り入れる。さらに、原子やある典型的な分子についての実験値(たとえば、イオン化エネルギー、電子親和力など)を積分の代わりにパラメタとして用いる。
- ・系の大きさ N(たとえば、原子数、電子数、軌道の数)の3乗に比例する。計算の 限界:数百原子
- ・具体的な方法

Θ 電子系: Pariser-Parr-Pople 法

全価電子系: CNDO 法、INDO 法、MINDO 法、MNDO 法

・代表的なプログラムパッケージ

MOPAC97 (開発者: J.J.P. Stewart)

<empirical 法(経験的方法)>

エネルギー行列の要素の値に、系を再現するような適当な経験値を用いる。

・具体的な方法

Θ電子系:ヒュッケル 法

全価電子系:拡張ヒュッケル 法

- 2) 密度汎関数法
- ・系の基底状態の全エネルギーが電子密度の汎関数として表すことができる数学的定理に基づいた方法
- ・遷移金属を含んだ化合物の計算に威力を発揮する
- 計算の限界:100原子程度
- ・Walter Kohn 教授の業績

- 3) 分子力学法
- ・分子内の原子に経験的な力場(結合伸縮、結合角の曲がり、二面角のねじれ、van der Waals 相互作用、静電的相互作用、水素結合など、図 1-2)を仮定してエネルギー を計算する。
- ・計算の限界:数千原子
- ・軌道の概念がなく、相互作用などの解析には使えない
- ・計算速度がはやい
- ・うまくパラメータ化された分子系では、実験値に近い値が得られる。しかし、分子のパラメータがないと計算できない。

総ひずみエネルギー=結合伸縮+曲げ+ねじれ+非結合相互作用 図 1-2 分子力学法の概念図

4) 分子動力学法

- ・周囲の分子によるポテンシャルの場の中で運動する多数の分子に対する運動方程式
 を同時に数値的に解き、各分子の位置座標と速度の値から成る調和のとれた分子配
 置を形成させ、これにより系の諸種の平衡および動的性質を計算する手法。
- ・タンパク質や DNA など熱による揺らぎをもった生体高分子の機能や特性をシミュレートすることができる。
- ・化学反応のように結合の生成消滅を伴う解析はできない。

1.3 抽出分野への分子モデリングの適用

金属イオンの分離・濃縮操作において中心的な役割を果たしている抽出の分野でも、 コンピュータケミストリーを「抽出現象の本質的理解」や「高性能な抽出剤の開発」 に利用しようとする動きがある⁴⁾。また、放射性同位元素の抽出分離研究(ホットエ クスペリメント)が制限されてきたため、過去にある膨大な抽出やX線解析などのデ ータを解析して、この分野の分子モデリングを確立する機運が高まっている。

抽出は水相と有機相との界面が分離場となるため、抽出後の金属錯体の安定性だけでなく抽出剤の油水界面での配向性が分離性能を支配している。したがって、抽出挙動をコンピュータケミストリーで表現するためには、油水界面を再現し、その近傍における抽出剤、金属イオン、および金属錯体の動きを計算する必要がある。おのずと巨大な系を計算することになるので、現状では計算速度がはやい古典力学をベースとした分子力学法(Molecular Mechanics、MM法)や分子動力学法(Molecular Dynamics、MD法)が妥当であると考えられる。

分子動力学法に関する先駆的な研究として、渡会らと Wipff らの研究がある。渡会 ら⁵は、ニッケルイオン抽出剤がトルエンとヘプタンにおいて油水界面での配向性が 異なることを明らかにした。さらに、その配向性の違いが抽出速度を支配していると している。Wipff ら⁶は、包接化合物のセシウムイオン抽出挙動をクロロホルム-水系 でシミュレートし、セシウム錯体が界面活性剤のように油水界面近傍で安定であるこ とを示した。これらの研究成果により、分子モデリングが抽出挙動の解明に有用であ ることが認められつつある。しかしながら、現在の MM や MD 法は有機化合物の分子モ デリング中心に発展してきたため、計算可能な金属イオンが限られている。遷移金属 やf-元素(ランタニド元素およびアクチノイド元素) は、ほとんど計算できない。

近年、金属錯体の分子モデリングを目指した MM 法である MOMEC が、Comba ら⁷によって開発された。MOMEC は、錯体化学の知識を盛り込んでおり、従来の MM 法と比べて 計算可能な金属元素が圧倒的に多いことが特徴である。吉塚ら⁸⁰は、この MOMEC にラ ンタニド元素のパラメータを加え、リン酸系抽出剤のランタニド元素選択性を分子モ デリングで説明した。MOMEC は、ランタニドおよびアクチノイド元素の錯体を取り扱 うことができる現在最適な MM 手法といえる。 2. 新規二座配位抽出剤の合成

2.1 緒言

過去、溶媒抽出において、β-ジケトンや第4級アンモニウム塩など様々な抽出剤が 開発されてきたが、有機リン系化合物は、非常に高い抽出能力を有する抽出剤として 知られており、特に希土類金属およびアクチニド金属に対する溶媒抽出の研究例に関 しては枚挙に暇がない。有機リン系化合物の合成については、18世紀末から19世 紀初期における、Fossick、James ら⁹⁾によるホスホン酸の合成をはじめとして、 Arbuzov¹⁰⁾によるホスホンジェステルの合成、Kosolapoff ら¹¹⁾¹²によるトリアルキル ホスフィンからのホスホンジェステル、及びホスホン酸の合成、そしてこれらに基 づき、Peppard ら¹³⁾によって抽出剤としてのホスホン酸モノエステルの合成法が確立 されて以来、さまざまな有機リン化合物が合成されてきた。その中でも、リン酸トリ ブチル (TBP)、ジ-2-エチルヘキシルリン酸 (D2EHPA)、2-エチルヘキシルホスホン 酸モノ2-エチルヘキシルエステル (PC-88A)等は、その抽出能力、分離能力の上で高 く評価され、工業的な抽出剤として広く市販されている¹⁴⁾。しかし、これらの抽出剤 が 30 年以上も前に発見されたにも関わらず、いまだに溶媒抽出の主役として用いられ ているのは、現在までの新規抽出剤の開発において、画期的な分離能力の向上が実現 されるに至っていないためである。

本研究室において合成されたジリン酸型およびジホスホン酸型抽出剤は、2つのリ ン酸あるいはホスホン酸基を1分子として連結することによって、キレート効果によ る抽出能力の向上、および立体的な制約を与えることによる分離性能の向上をねらっ たものである。これまでの研究において、ジホスホン酸型抽出剤が、希土類金属に対 して市販の抽出剤よりも極めて優れた抽出能力を有することが報告されており、また 金属イオンサイズの認識にスペーサーの分子構造による立体障害が影響するという、 新規抽出剤の設計に関する指針が与えられている¹⁵⁾¹⁶⁾¹⁷⁾。本章では、本研究にて使用 しているスペーサーおよび官能基の構造が異なる有機リン系二座配位抽出剤の合成法、 収率および帰属結果について述べる。 2.2 リン酸基-エチレングリコールスペーサーをもつ抽出剤の合成(Aタイプ)

2.2.1 トリエチレングリコール-0, 0'-ビス (p-tert オクチルフェノキシリン酸) の合成

トリエチレングリコール-0, 0'-ビス (p-tert オクチルフェノキシリン酸) (以下 EG₃PA) の合成に先だち、p-tert オクチルフェノキシジクロロホスフィンオキシドを以 下のように合成した。

CaCl₂を取り付けた 500ml ナスフラスコにオキシ塩化リン 150ml (1.64mol)、p-tert オクチルフェノール 51.5g (0.25mol)、無水 AlCl₃ 0.1g (0.7mmol)を置き、4時間、油 浴温度 120~130℃で加熱還流した。pH 試験紙によって HCl が発生していないことを確 認後、過剰のオキシ塩化リンを減圧留去した。残渣を減圧蒸留によって精製し、目的 物を得た。

無色液体 収量 39g(48%)

沸点 105~107℃・3mmHg

トルエン150ml に溶かした上記の化合物 9.0g(28mmol)に乾燥ピリジン10ml を入れ、 氷浴にて冷却した。トリエチレングリコール 1.9g(13mmol)を滴下ロートより1時間か けて加え、溶液が白色に懸濁したことが確認された。さらに4時間攪拌した後、反応 混合物に、水相が酸性(pH≒2)になるまで塩酸を加え、トルエンで抽出した。有機相を 分取し MgSO4 で乾燥後、カラムクロマトグラフィー(シリカゲル; CH₂Cl₂)で精製し溶 媒を留去後、目的物を得た。

粘性液体 収量 3.7g(37%)

2.2.2 1,2,ジ(2 ヒドロキシエトキシ)ベンゼン 0.0' ビス(p tert オクチルフェノキ シリン酸)の合成

1,2,ジ(2 ヒドロキシエトキシ)ベンゼン 0,0' ビス(p tert オクチルフェノキシリン酸) (以下 o-type) の合成に先だち 1,2,-ジ(2-ヒドロキシエトキシ)ベンゼンを合成した。

窒素気流下、300ml ナスフラスコ中のカテコール 7.0g(64mmol)、DMF 溶液(150ml)に

Cs₂CO₃ 50g (16mmol)を加え、室温にて攪拌した。溶液は、一度青くなった後に白濁した。 これにブロモ酢酸エチル 24g (140mmol)を滴下し、尚、24 時間攪拌し続けた。TLC によ り、原料がなくなったことを確認し、反応溶液を希塩酸で洗浄、エーテルで抽出した。 無水 MgSO₄ で乾燥後、溶媒を減圧留去した。

一方、無水 THF150ml 中に LiAlH₄ 5.0g(130mmol)を置き、反応物を注意深く氷浴下で 滴下した。24時間、加熱攪拌し、放冷後、メタノールで過剰の LiAlH₄を失活させ、20% 硫酸水溶液を加え、クロロホルムで抽出し、溶媒を減圧留去後クロロホルムーへキサ ンで再結晶した。

白色針状結晶 収量 5.1g(40%)

融点 80~83℃

トルエンに溶かした先の化合物 19g(59mmol)にキノリン 13g(100mmol)を入れ、氷 浴にて冷却した。ジエチレングリコール 2.8g(26mmol)を液化ロートより1時間かけて 加え、溶液が青白色に懸濁したことが確認された。さらに 2 時間攪拌した後、酸性に なるまで塩酸を加え、塩化メチレンで抽出した。有機相を分取し MgSO4 で乾燥後、カ ラムクロマトグラフィー(シリカゲル; CH₂Cl₂)で精製したが、元素分析と¹H-NMR か ら最後の P-C1 結合が加水分解されていないことが判明したため、反応物にもう一度塩 酸を加え、加熱撹拌を2時間行い、有機相で抽出し溶媒を留去後、目的物を得た。

粘性液体 収量 10.5g (63%)

2.2.3 1,4,-ジ (2 ヒドロイシエトキシ) ベンゼン 0,0'-ビス (p-tert オクチルフェノ キシリン酸) の合成 (以下 p-type)

1,4,-ジ(2 ヒドロイシエトキシ) ベンゼン 0,0'-ビス (p-tert オクチルフェノキシ リン酸) (以下 p-type) を先の o-type と同様な方法より合成し、精製した。

粘性液体 収量 8.7(68%)

2.3 ホスホン酸基-アルキルスペーサーをもつ抽出剤の合成(Bタイプ)

2.3.1 1,4-ブタンジオール-0,0'-ジフェニルホスホン酸(BDP)の合成

2.3.1.1 実験操作

合成スキームを以下に示す。

窒素気流下で、乾燥ピリジン 10ml と二塩化フェニルホスホン酸 14.04g(0.072mol) と脱水 THF 15ml の混合溶液を撹拌しながら、滴下ロートを用いて氷浴中で乾燥ピリジ ン 10ml と 1,4 ブタンジオール 2.70g (0.030mol)と乾燥 THF40ml の混合溶液を十分な 時間かけて滴下し、約二晩撹拌した。

その後、系内を低温に保ちながら氷水約 200ml を加え 5 時間撹拌した後、pH が 1~2 になるまでゆっくりと 10N 塩酸を加え約1時間撹拌し、クロロホルム 300ml を加えさ らに 2 時間撹拌した。分液した後、水相をクロロホルムで数回洗浄し、有機相を採取 して 1N塩酸約 500ml で洗浄した。得られた有機相を硫酸マグネシウムにより乾燥し た後、エバポレーターにて溶媒及び未反応物を減圧留去し、カラムクロマトグラフィ ー (シリカゲル、クロロホルム:メタノール=9:1) により精製して目的物を得た。

2.3.1.2 実験結果

収量、収率を以下に、元素分析、IR スペクトル、および ¹H-NMR スペクトル結果をそれぞれ表 2-1、表 2-2、表 2-3 に示す。

粘性黄色液体 収量 2.37g 収率 20.86%

表 2-1 元素分析結果 表 2-2 IR (neat) スペクトル

	Н%	С%
計算値	5.44	51.90
測定値	5.44	51.62
誤差	± 0.00	-0.28

波数 (cm-1) 帰属	
2700	${m u}_{ m OH}$
2300	ν _{P=0} & δ _{OH}
1100	ν P-OR

表 2-3 ¹H-NMR (CDC13、TMS)

δ (ppm)	分裂	プロトン比 (理論比)	帰属	
12.4	S	1.8 (2H)	а	
7.8	m	4.0 (4H)	b	
7.4	m	5.8 (6H)	С	$a = \frac{d}{HO} = 0$
4.0	m	3.8 (4H)	d	
1.8	m	4.1 (4H)	е	c c

以上の結果より、BDP が合成されたことを確認した。

2.3.2 1,8-オクタンジオール-0,0'-ジフェニルホスホン酸(ODP)の合成

2.3.2.1 実験操作

合成スキームを以下に示す。

合成は2.3.1と同様の手法で行った。用いた試薬と重量を以下に示す。 1,8-オクタンジオール 4.39g (0.03mol) 二塩化フェニルホスホン酸 14.04g (0.072mol) 乾燥ピリジン 20m1

2.3.2.2 実験結果

収量、収率を以下に、元素分析、IR スペクトル、および¹H-NMR スペクトル結果をそれぞれ表 2-4、表 2-5、表 2-6 に示す。

粘性黄色液体 収量 8.39g 収率 65.60%

表 2-5 IR (neat) スペクトル

表 2-4 元素分析結果

	Н%	С%	がた米ケ (am=1)	這足
計算値	6.62	56.34	/ (Cm ⁻¹)	/ / / / / / / / / / / / / / / / / / /
測定値	6.77	56.08	2700	u _{OH}
誤差	+0.15	-0.26	2300	ν _{P=0} & δ _{OH}
	-		1100	ν _P -OR

表 2-6 1 H-NMR (CDC13、TMS)

δ (ppm)	分裂	プロトン比 (理論比)	帰属	
9.3	S	2.0 (2H)	а	a e d a
7.7	m	4.0 (4H)	b	HO-P-OH b d $e-f-e$ b
7.4	m	5.9 (6H)	С	c
4.0	m	4.0 (4H)	d	•
1.6	m	4.2 (4H)	е	
1.2	m	8.1 (8H)	f	

以上の結果より、ODP が合成されたことを確認した。

2.3.3 1,4-シクロヘキサンジメタノール-0,0'-ジフェニルホスホン酸 (ChDMDP)の合成

2.3.3.1 実験操作

合成スキームを以下に示す。

合成は2.3.1と同様の手法で行った。用いた試薬と重量を以下に示す。

1,4-ジクロヘキサンジメタノール 4.33g(0.03mol) 二塩化フェニルホスホン酸 11.70g(0.06mol) 乾燥ピリジン 20ml

2.3.3.2 実験結果

収量、収率を以下に、元素分析、IR スペクトル、および¹H-NMR スペクトル結果をそれぞれ表 2-7、表 2-8、表 2-9 に示す。

粘性黄色液体 収量 2.65g 収率 20.81%

	Н%	С%
計算値	6.19	56.60
測定値	6.29	56.32
誤差	+0.10	-0.28

表 2-7 元素分析結果

表 2-8 IR (neat) スペクトル

波数 (cm-1)	帰属	
2700	νoh	
2300	ν _{P=0} & δ _{OH}	
1100	ν _{P-OR}	

δ (ppm)	分裂	プロトン比 (理論比)	帰属
12.9	S	2.2 (2H)	а
7.8	m	4.0 (4H)	b
7.5	m	6.0 (6H)	С
3.7	m	4.4 (4H)	d
0.9-1.7	m	11.4 (4H)	feq
	m	(2H)	e
	m	(4H)	fax

以上の結果より、ChDMDP が合成されたことを確認した。

2.3.4 1,2-ジ(2-ヒドロキシエトキシ)ベンゼン-0,0'-ジフェニルホスホン酸 (o-EBP)の合成

2.3.4.1 実験操作

合成スキームを以下に示す。

窒素雰囲気下において、500ml 茄子型フラスコにカテコール 7.0g(0.064mol)の DMF 150ml 溶液および炭酸セシウム 50g(0.160mol)を加え、室温にて撹拌を行った。しばら くして溶液が褐色になったあと、これにブロモ酢酸エチル 24g(0.140mol)を滴下し、24 時間撹拌した。TLC によって原料がなくなったことを確認し、1N 塩酸を用いて溶液を 中性にし、エーテルによって生成物を抽出した。これを硫酸マグネシウムで乾燥させ た後、エバポレーターで溶媒を減圧留去する事で中間体を得た。

この得られた中間体を、三角フラスコ内においた無水 THF 150ml および LiAlH4 5.0g

(0.130mol)中へ氷浴中で注意深く滴下した。24 時間環留を行った後、放冷して室温ま で温度を下げ、メタノールで過剰の LiAlH₄ を失活させた。その後、20% 硫酸水溶液を 適量加え、クロロホルムによって生成物を抽出した。溶媒を減圧留去した後、カラム クロマトグラフィー(シリカゲル、クロロホルム: ヘキサン=9:1)により精製して目 的物であるジオール体を得た。

以降の 合成は2.3.1と同様の手法で行った。用いた試薬と重量を以下に示す。

1,2-ジ(2-ヒドロキシエトキシ)ベンゼン 5.95g (0.03mol)

二塩化フェニルホスホン酸 11.70g (0.06mol)

乾燥ピリジン 20ml

2.3.4.2 実験結果

収量、収率を以下に、元素分析、IR スペクトル、および ¹H-NMR スペクトル結果をそれぞれ表 2-10、表 2-11、表 2-12 に示す。

白色粉末 収量 11.12g 収率 77.48%

表 2-10 元素分析結果

表 2-11 IR (neat) スペクトル

R
周
ОН
& δ _{OH}
-OR

δ (ppm)	分裂	プロトン比 (理論比)	帰属		
10.9	S	2.2 (2H)	а		
7.9	m	4.4 (4H)	b	e^{f}	
7.4	m	6.0 (6H)	С		J O−P−OH
6.9	m	4.0 (4H)	d	b	
4.4	m	3.8 (4H)	e	c	
4.2	m	4.2 (4H)	f	·	

表 2-12 ¹H-NMR (CDC13、TMS)

以上の結果より、o-EBP が合成されたことを確認した。

2.3.5 1,3-ジ(2-ヒドロキシエトキシ)ベンゼン-0,0'-ジフェニルホスホン酸 (m-EBP)の合成

2.3.5.1 実験操作

合成スキームを以下に示す。

合成は2.3.4と同様の手法で行った。用いた試薬と重量を以下に示す。

1,3-ジ(2-ヒドロキシエトキシ)ベンゼン 5.95g (0.03mol) 二塩化フェニルホスホン酸 14.04g (0.072mol) 乾燥ピリジン 20ml

2.3.5.2 実験結果

収量、収率を以下に、元素分析、IR スペクトル、および¹H-NMR スペクトル結果をそ れぞれ表 2-13、表 2-14、表 2-15 に示す。 白色粉末 収量 9.37g 収率 65.29%

表 2-13 元素分析結果 表 2-14 IR (neat) スペクトル

	Н%	С%
計算値	5.06	55.24
測定値	5.15	55.09
誤差	+0.09	-0.15

波数 (cm-1)	帰属	
2700	${ m v}_{ m OH}$	
2300	$\nu_{P=0}$ & δ_{OH}	
1100	ν _{P-OR}	

表 2-15 1 H-NMR (CDC1₃、TMS)

δ (ppm)	分裂	プロトン比 (理論比)	帰属	d
10.9	S	2.2 (2H)	а	$0 \prod^{e} 0$
7.9	m	4.4 (4H)	b	
7.4	m	6.0 (6H)	С	b b
6.9	m	4.0 (4H)	d	c v
4.4	m	3.8 (4H)	е	
4.2	m	4.2 (4H)	f	•

以上の結果より、m-EBP が合成されたことを確認した。

3. 計算方法

ランタニド錯体の性質を最も正確に計算できる手法は、分子軌道法あるいは密度汎 関数法だと考えられる。しかし、両手法ともに分子中の電子の挙動を正確に描写でき るかわりに、それに要する計算時間が非常に長い。本研究では、200原子以上の巨 大な錯体を計算する必要があるので、両手法を採用するのは今のところ現実的ではな い。したがって、高精度で錯体の挙動を再現できる経験的パラメータをもつ分子力学 法を適用するのが妥当である。現在、ランタニド元素のパラメータを有する分子力学 法プログラムは、ドイツ・ハイデルベルク大学のコンバ教授が開発した MOMEC のみで ある。MOMEC は分子力学法に基づく分子モデリングソフトであり、Windows OS (Windows 95, Windows 98, Windows NT 4.0) 上で稼働する。今回の分子モデリングに使用した コンピュータは IBM IntelliStation Z-Pro (Intel PentiumIII 800MHz Dual, 2GB RAM) である。また、モデリングにおいて考慮した分子に働く力場は、結合伸縮エネルギー、 変角エネルギー、ねじれエネルギー、および非結合性相互作用のうちのファンデルワ ールスエネルギーである (図 1-2) 。静電相互作用エネルギー、および水素結合エネ ルギーは無視している。MOMEC が採用している力場の式を以下に示した。

$$U_{\text{total}} = \mathbf{\varphi}(E_{\text{b}} + E_{\text{x}} + E_{\forall} + E_{\text{nb}}) \tag{1}$$

$$E_{\rm b} = 1/2 k_{\rm r} \left(r_{\rm ii} - r_0 \right)^2 \tag{2}$$

$$E_{\mathbf{x}} = 1/2 k_{\mathbf{x}} (\mathbf{x}_{\mathbf{j}} - \mathbf{x}_{\mathbf{0}})^2$$
(3)

$$E_{\forall} = 1/2 k_{\forall} [1 + \cos\{\mathrm{m}(\forall_{ijk} + \forall_0)\}]$$

$$\tag{4}$$

$$E_{\rm nb} = a e^{-br_{\rm ij}} - cr_{\rm ij}^{-6}$$
 (5)

$$a = 2014 (@ @)^{1/2}$$
 (6)

$$b = 12.50 / (r_{vdWi} + r_{vdWj})$$
(7)

$$\mathbf{c} = \{2.55 \ (\ \mathbb{Q} \ \mathbb{Q})^{1/2} \ (r_{\rm vdWi} + r_{\rm vdWj})^6 \ \}/144 \tag{8}$$

ここで、 U_{total} は総歪みエネルギー、 E_b は結合伸縮エネルギー、 E_s は変角エネルギー、 E_v はねじれエネルギー、 E_{nb} は非結合性相互作用のうちのファンデルワールスエネルギ ーである。 k_r 、 k_s 、 k_v は、それぞれ結合伸縮、変角、ねじれに対する力定数であり、 r_0 、 る、 ∇_0 は歪みのない状態での値である。また、 r_{vdWj} はファンデルワールス半径、m は 周期性を表している。 分子モデリングにより実験結果をうまくシミュレートできたかどうかは、定量的構造特性相関(QSPR, Quantitative Structure-Property Relationship)を行うことによって評価できる。

抽出における QSPR では、分子モデリングで計算される抽出前後の錯体内部エネルギー差 OU と抽出平衡定数 K_{ex} と間に以下の相関式を用いる。

$$\mathbf{O}\mathbf{U}_{a} - \mathbf{O}\mathbf{U}_{b} = / \log \left(\mathbf{K}_{ex, a} / \mathbf{K}_{ex, b}\right)$$
(9)

ここで、a および b は金属イオンの種類を表している。QSPR 定数 / の理論値は、 25° C で 1.08 である。佐賀大・吉塚らは、単座リン酸系配位子についてランタニド元素錯体 の QSPR を行い、非常に高い相関性 (/ = 1.26) を見いだした⁸⁾。本研究では、同様な 手順で前述した A タイプと B タイプの二座配位子について、MOMEC を使って分子モデ リングを行い、QSPR によって実験結果と計算結果を比較・検討した。

4. 実験および分子モデリングの結果および考察

4.1 Aタイプ二座配位抽出剤の分子モデリング

合成した3種類の A タイプ二座配位抽出剤を,比較のために合成した単座配位抽出 剤とともに図 4-1 に示した。

図 4-1 合成したAタイプ二座配位抽出剤の分子構造と略号

9種類のランタニド元素の抽出平衡実験を通常の液-液分配法に基づいて行った。希 釈剤としては、トルエンを使用した。また、ランタニド元素濃度は ICP 発光分析法に より定量した。

まず,合成した4種類の抽出剤のランタニド元素抽出能力を検討した。図4-2には, ランタニド元素抽出能力の一例として,イットリウムイオンの抽出結果を示す。同図 には,市販抽出剤でランタニド元素抽出能力が非常に高いジー2-エチルへキシルリ ン酸(D2EHPA)の結果も合わせて示している。この図から明らかなように,リン酸基 を分子内に複数導入することによって,抽出能力が大幅に増大することがわかる。し たがって,二座配位抽出剤の抽出能力に対する有用性を示している。さらに,二座配 位抽出剤の中でも,二つのリン酸基を連結するスペーサーの分子構造によって,抽出 特性が大きく変化することが示された。特に, o-type と p-type の二つの抽出剤は分子式が同一(構造異性体の関係にある)であるが,抽出特性が大きく異なるという非常に興味深い結果が得られた。

次に、合成した抽出剤の分離性能について検討した。図 4-3 に、9種類のランタニ ドイオンの分離におよぼすリン酸基を連結する分子構造の影響について示した。縦軸 の pH_{0.5} は、抽出率が50%に達する pH 値を表わしている。各抽出剤の分離性能は、 ランタニド元素間の pH_{0.5} の差で議論できる。つまり、隣接元素間の値が離れているほ ど大きな分離性能を有すると言える。EG3PA と o-type の分離特性がほぼ同じであるの に対して、 p-type の分離性能が非常に大きいことがわかる。特に、Nd-Sm 間と Dy-Ho 間で大きな分離能がみられる。したがって、抽出能力と同様に、二つのリン酸基を連 結するスペーサーの分子構造によって、分離特性が大きく変化することが示された。

図 4-3 各Aタイプ二座配位抽出剤のランタニド元素分離能力の比較

スペーサーの分子構造によって抽出能および分離能が大きく変化した要因を明らか にするために、これらのランタニド元素錯体の分子モデリングを行った。抽出平衡実 験の結果に基づいて、ランタニド錯体の構造を EG3PA, o-type の場合はランタニド元 素:二座配位抽出剤=1:4の9配位構造, p-type の場合はランタニド元素:二座配 位抽出剤=1:6の9配位構造と決定した。また、異性体の関係にある o-type および p-type も含めてすべての抽出剤のリン酸基の電子密度環境がほぼ同一であることが実 験的に明らかとなっているので、MOMEC でのランタニド元素-リン酸基の酸素原子間 の配位結合力のパラメータを一定とした。分子モデリングによって求められたランタ ニド錯体の最安定化構造を図 4-4 に示した。MOMEC を用いた分子モデリングにより各 ランタニド元素錯体のひずみエネルギーを計算し、ランタン錯体を基準としたひずみ エネルギー差を図 4-5 に示した。p-type では, EG3PA および o-type と比較してランタ ニド錯体間のひずみエネルギー差が非常に大きい。さらに、Nd-Sm 間と Dy-Ho 間で特 に大きなひずみエネルギー差がみられる。この傾向は、図 4-3 に示した抽出分離実験 の結果と見事に一致している。したがって、抽出剤の分離性能の度合が、錯体構造の ひずみエネルギーの差によって説明できることが明らかとなった。すなわち、スペー サーの分子構造によって変化したランタニド元素錯体構造の立体的な因子が分離性能 の向上に大きく寄与したといえる。

図 4-4(a) La-p-type 錯体の最安定化構造

図 4-4(b) La-o-type 錯体の最安定化構造

4.2 Bタイプ二座配位抽出剤の分子モデリング

合成した 5 種類の A タイプ二座配位抽出剤を,比較のために合成した単座配位抽出 剤とともに図 4-6 に示した。

図 4-6 合成した B タイプ二座配位抽出剤の分子構造と略号

6種類のランタニド元素の抽出平衡実験を通常の液-液分配法に基づいて行った。希 釈剤としては、クロロホルムを使用した。また、ランタニド元素濃度は ICP 発光分析 法により定量した。

合成した6種類の抽出剤のランタニド元素抽出結果を図4-7に示した。縦軸のpH0.5 は、抽出率が50%に達するpH 値を表わしている。各抽出剤の抽出能力はpH0.5 が低 いほど高く、分離性能はランタニド元素間のpH0.5の差が大きいほど高い。

この図から明らかなように、ホスホン酸基を分子内に複数導入することによって、 抽出能力が大幅に増大することがわかる。したがって、Aタイプと同様にBタイプに おいても二座配位抽出剤の抽出能力に対する有用性が示された。さらに、二座配位抽 出剤の中でも、二つのホスホン酸基を連結するスペーサーの分子構造によって、抽出 特性が大きく変化している。特に、o-EBP とm-EBP の二つの抽出剤は分子式が同一(構 造異性体の関係にある)であるが、抽出特性が大きく異なるという興味深い結果がB タイプ抽出剤に関しても得られた。

図 4-7 各Bタイプ二座配位抽出剤のランタニド元素抽出・分離能力の比較

図 4-8 MOMEC による分子モデリング用に作成したパラメータ

Aタイプ二座配位子の場合と同様、スペーサーの分子構造によって抽出能および分離能が大きく変化した要因を明らかにするために、これらのランタニド元素錯体の分子モデリングを行った。抽出平衡実験の結果に基づいて、ランタニド錯体の構造をすべての抽出剤においてランタニド元素:二座配位抽出剤=1:4の8配位構造と決定した。MOMECには、ホスホン酸基のパラメータがなかったので、ケンブリッジ結晶構造データベース(CSD、The Cambridge Structural Database)から取得したホスホン酸の結晶構造を再現するように図4-8に示したパラメータを作成した。

これらのパラメータを用いて、MOMEC の分子モデリングによって求められたランタ ニド錯体の最安定化構造を図 4-9 に示した。

図 4-9(a) La-o-EBP 錯体の最安定化構造

図 4-9(b) La-m-EBP 錯体の最安定化構造

図 4-9(c) La-ODP 錯体の最安定化構造

3章の式(9)に基づいた QSPR を行うために、MOMEC を用いた分子モデリングにより 各ランタニド元素錯体のひずみエネルギーを計算し、ランタン錯体を基準としたひず みエネルギー差と抽出平衡定数との関係を図 4-10 に示した。この図において、非常に 良好な相関が見られる。しかし、類似構造の抽出剤(o-EBP と m-EBP, BDP と HDP と ODP) は同じ相関が見られるが、すべてが同じ相関性を示していない。この理由としては、 以下に示した2つの可能性がある。

1) 配位形態が同じでも、類似構造の抽出剤においてのみ良好な相関が見られる。

2) 配位形態が同じなら同じ相関が見られるはずであるが、今回作成したパラメータの最適化が不十分である。

本研究期間ではこの問題を解決することはできなかったが、今後もこの手法によりさまざまな二座配位抽出剤の分子モデリングを行うことで明らかにしていきたい。

図 4-10 Bタイプ二座配位抽出剤ーランタニド錯体の QSPR
5. おわりに

本研究では、「多官能基+スペーサー」という抽出剤設計コンセプトで、これまで にない新しいタイプの二座配位抽出剤を分子設計し合成した。一分子内に二つのリン 酸基あるいはホスホン酸基をスペーサーによって連結した抽出剤を用いて、超ウラン 元素と性質の類似した希土類金属について抽出分離実験を行い、抽出剤の分子構造が およぼす影響について、抽出能力と分離性能の観点から詳細な検討を行った。

本二座配位抽出剤は、キレート効果による抽出能力の向上、およびスペーサーの立 体的制約による金属イオン選択性の向上を目的として設計した抽出剤である。本研究 では、リン酸基-エチレングリコール(+ベンゼン環)(A タイプ)およびホスホン 酸基-直鎖アルキル鎖(B タイプ)の組み合わせの抽出剤に着目した。これら2組の 抽出剤では官能基そのものよりもスペーサーが分離能に大きな影響を与えると考えら れ、非常に剛直なスペーサーをもつ A タイプと比較的フレキシブルだと考えられるス ペーサーをもつ B タイプのスペーサー効果を評価した。その結果、A タイプと B タイ プで同様なランタノイド元素選択性が発現した。これは、比較的フレキシブルなスペ ーサーであっても分子設計しだいで高い金属イオン選択性を付与することができるこ とを意味する。このスペーサーの役割をコンピュータを利用した分子モデリングによ って明らかにすることができれば、「多官能基+スペーサー」という抽出剤設計にお いて大きな前進となる。

二座配位抽出剤の分子モデリングにはランタノイド元素のパラメータが揃っている MOMEC プログラムを用い,その認識能と計算により得られるひずみエネルギーとの関 係を調べた。その結果,抽出剤の分離性能が錯体構造のひずみエネルギーの差によっ て説明できることが明らかとなった。すなわち,スペーサーの分子構造によって変化 したランタノイド元素錯体構造の立体的な因子が,分離性能の向上に大きく寄与して いる。したがって,立体的な因子の影響を表現できる分子力学法を用いて,新規高性 能抽出剤の開発が可能であると言える。

しかしながら,分離性能と錯体構造のひずみエネルギーの差との相関において,定 量的には不十分な点があった。この点は、パラメータの評価をさらに行うことと同時 に他の二座配位型抽出剤の分子モデリングを行うことで,より正確な分子モデリング を実現できると考える。

参考文献

- (1) 山口政仁, 鮫島圭一郎: "高分子用半経験的分子軌道プログラム", MOZYME, FUJITSU, 48(1), 47 (1997)
- (2) 岡田勲,大澤映二編:分子シミュレーション入門,海文堂(1989)
- (3) U. ブルケルト, N.L. アリンジャー著,大澤映二,竹内敬人訳:分子力学, 啓学 出版 (1986)
- (4) 吉塚和治:抽出技術集覧,化学工業社,32 (1995)
- (5) H. Watarai et al.: "Interfacial Mechanism in the Extraction Kinetics of Ni(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and Molecular dynamics Simulation of Interfacial Reactivity of the Liqand", Bull. Chem. Soc. Jpn., 70, 957 (1997)
- (6) G. Wipff et al.: "Migration of Ionophores and Salts Through a Water Chloroform Liquid Liquid Interface: Molecular Dynamics-Potential of Mean Force Investigations", J. Phys. Chem. B, 102, 245 (1998)
- (7) P. Comba and T. W. Hamble: "Molecular Modeling of Inorganic Compounds", VCH, (1995)
- (8) K. Yoshizuka et al. : "Molecular Mechanics Calculations and the Metal Ion Selective Extraction of Lanthanoids", Inorg. Chem., 37, 3310 (1998)
- (9) J.B.Conact et al. : "The Action of Phosphorus Trichloride on Unsaturated Ketones", J. Am. Chem. Soc., 39, 2679 (1917)
- (10) A. E. Arbuzov et al. : "Action of Dihalo Hydrocarbons on Ethyl Phosphite and the Salts of Diethyl Phosphite", J. Gen. Chem., 6, 283 (1936)
- (11) G. M. Kosolapoff: "Isomerization of Tri-alkyl Phosphites", J. Am. Chem. Soc., 66, 109 (1944)
- (12) G.M. Kosolapoff : "Isomerization of Alkylphosphites III. The Synthesis of n-Alkylphosphonic Acids", J. Am. Chem. Soc., 67, 1180 (1945)
- (13) D. F. Peppard et al. : "Preparation, Physical Properties, and Infrared Spectra of Several New Organophosphates", J. Inorg. Nucl. Chem., 12, 60 (1959)
- (14) 瀬戸 英昭:化学技術誌, 2, 30 (1990)
- (15) J.Yamagawa et al. : "Novel Organophosphorus Extractants for the Recycle of Transuranium Elements", Solv. Extr. Res. Dev. Jpn, 4, 12 (1997)
- (16)前田 達宏:新規抽出剤の設計と希土類金属分離への利用,九州大学大学院工学研 究科合成化学専攻修士論文(1995)
- (17) 松本 智志:二官能性抽出剤の設計と希土類金属の抽出分離,九州大学大学院工学 研究科合成化学専攻修士論文(1993)

第二部 ランタニドイオンを高選択的に認識する 界面鋳型樹脂の開発

1. はじめに

放射性核燃料の再処理技術において中核をなす単位操作は、抽出プロセスおよび吸 着プロセスである。このような核燃料リサイクルプロセスにおける最大のポイントは、 それぞれのプロセスで分離性能を決定づける抽出剤と吸着剤にあると考えられる。本 研究では、高選択的固体吸着剤の開発を目標に、界面分子刷り込み法という新たな手 法を導入した。

具体的には吸着剤の表面に、ランタニドイオンの大きさや形状を精密に記憶させた 超高選択性の吸着樹脂を調製することを試みた。この場合は、油水界面における錯体 の分子設計が、高選択性の発現に極めて重要となる。ここでは、第一部で計算化学の 手法を駆使して設計した新しい抽出剤を組み込んで、ランタニドイオンに対する高選 択的な樹脂の調製を行った。

1.1 分子刷り込み (molecular Imprinting) 法とは

ランタニド元素を個別に識別・分離可能な吸着剤が開発されれば、溶離には単純に 鉱酸を用いるだけで、高純度のランタニド元素を得ることが可能となる。さらに、錯 化剤や有機溶媒を使用しなくて済むので、分離プロセスの簡略化、環境への負荷の軽 減が見込まれる。分子刷り込み法(molecular imprinting、以下 MI 法)は、分子認識 能力をもつ高分子ホストの合成手法として知られている¹⁻³⁾。本法の最大のメリットは、 緻密な分子設計と多段階の合成を必要とせず、極めて簡便にターゲット分子に対する 認識サイトを高分子マトリックス中に構築できる点にある。

MI 法は、認識対象分子を混入させて高分子を合成し、高分子鋳型を作るいわゆる鋳 型重合の一種である。まず、認識対象分子(鋳型ゲスト)と鋳型ゲストと相互作用す る官能基をもつモノマー(機能性モノマー)の複合体を形成させた後、そのモノマー 群を架橋剤とともに高分子化する。このようにしてできた高分子から鋳型ゲストを取 り除くと、鋳型分子の化学的・構造的情報を記憶した結合部位が高分子内に構築され る(図 1-1)。ターゲット分子に対して相補的に相互作用した状態の分子をつくりだす という意味では、基本的にクラウンエーテルのような低分子ホストの場合⁴⁾と同じと いえようが、その相補的に相互作用させた分子構造を周りの高分子によって固めてしまうことにより、鋳型ゲストの情報をより安定に保存できる点に大きな違いがある。

図 1-1 分子刷り込み法の概念図 5)

MI 法には、認識部位を可逆的な「共有結合」によって形成させる手法とそれを「非 共有結合」により形成させる手法の 2 つの異なるアプローチがある。Wulff ら³⁾は、機 能性モノマーとして 4-ビニルフェニルホウ酸を用いて光学活性な糖誘導体をターゲッ トとした鋳型樹脂を調製し、光学分割が可能であることを示した。ここで彼らは、糖 のもつ cis-ジオールとホウ酸が可逆的なエステル結合を形成することを利用した「共 有結合型 MI 法」を展開した。この方法は、重合時に鋳型ゲストと機能性モノマーが共 有結合しているので複合体が安定であることから形成される結合部位の均一性が高い 反面、用いることのできる共有結合の種類と化合物に制限があることや、合成の煩雑 さ、鋳型ゲストの除去の困難さなどが問題となっている。

一方、Mosbach ら¹⁾は、メタクリル酸を機能性モノマーとしたモレキュラーインプリ ントによるアミノ酸誘導体の光学分割を報告した。これは、アミノ酸誘導体とメタク リル酸との間の水素結合や静電相互作用を利用して複合体を形成させ重合を行う「非 共有結合型 MI 法」の最初の例である。このような非共有結合的アプローチは、用いる ことのできる鋳型ゲストが共有結合型と比較して飛躍的に増えるのだが、重合時の複 合体が不安定であることに派生して結合部位が不均一になるという欠点をもつ。最近 の傾向としては、この鋳型ゲストと機能性モノマーの自己集合を利用した非共有結合型 MI 法を中心に研究が進められており、超分子的概念と融合し新しい機能性高分子合成法として発展している⁶⁾。

認識対象としては銅、コバルトなどの「金属イオン」、糖、アミノ酸、核酸塩基な どの「生体関連物質」、ステロイド、テオフィリンなどの「医薬品」、そして稀な例 としてタンパク質⁷⁻⁹⁾、細胞¹⁰⁾などが研究されている。

1.2 界面鋳型重合法とは

W/0型エマルションを利用する界面鋳型重合法は、エマルションの油水界面におけ る分子の自己集合を利用して、認識ターゲットに対する高い認識能の発現に最適な配 位構造を高分子表面に記憶させる手法であり、従来の鋳型重合法(MI法)と一線を画 する独創的な認識材料の調製法である。本手法の主な利点としては、①水溶性ゲスト の適用が容易、②高分子表面に機能性モノマーを集約して配置できることに起因する 吸着速度の大幅な向上、が考えられる。ここで、0/W型とそれぞれの特徴を比較して みると、前述のとおり粉砕や分球が必要という欠点があるが、①樹脂の大量合成、粉 砕によるサイズ制御が可能、②形状の適用範囲が広いという優位点を有している。

これまでに分離材料の調製法として本手法を応用した例としては、前述の金属イオン¹¹⁻¹⁸⁾に加えてアミノ酸誘導体をターゲットとした研究が行われており、エナンチオ 選択性を備えた界面鋳型樹脂の調製に成功している¹⁹⁻²¹⁾。W/O型エマルションを用い た界面鋳型重合法の概要を図 1-2 に示す。

1. 油水界面で錯体形成

2. 重合(ゲスト分子の情報を刷り込む)

3. 認識サイト形成(脱鋳型ゲスト)

図 1-2 W/0型エマルションを用いた界面鋳型重合法の概要

2. ホスホン酸型機能性分子の合成

2.1 緒言

界面鋳型重合法で最も重要なことは、「いかに多くの機能性分子を最適な配置で樹 脂表面に固定化するか」という点である。したがって、認識対象となる鋳型ゲストと 相互作用する官能基をもつ機能性分子は界面活性物質として振る舞い、重合後は樹脂 表面上に固定化されなければならない。つまり、界面鋳型重合法において、機能性分 子には以下の性質が要求される。

- (1) 鋳型ゲストとの相互作用が強い
- (2) 油水界面に配向しやすい
- (3) 樹脂形成モノマー及び希釈剤に溶解する

Yoshida ら¹⁵は、上述の条件を満足するような機能性分子の具体的な設計指針を提案 している。そこでは、高い鋳型効果(鋳型樹脂における認識対象に対する高い吸着能 力と選択性)の発現のために機能性分子に必要とされる素子(原子団)として以下の 3点が挙げられている。

- (1) 認識ターゲットに対して高いアフィニティを示す官能基
- (2) 高度な界面配向性を分子に付与する最適なアルキル基

(3) 高分子マトリックスの剛直さ(rigidity)を生み出す芳香環

本研究の目的は、ランタニド金属間を高選択的に分離する界面鋳型樹脂の調製であ る。したがって、機能性分子の分子設計に際して、ランタニド金属イオンに対するア フィニティをもつ官能基を機能性分子の構造中に組み込む必要がある。ランタニド金 属イオンと相互作用する化合物は無数に存在するが、産業レベルにおいて現在最も使 用されている抽出剤(配位子)は有機リン化合物である。中でも、ジ(2-エチルヘキシ ル)リン酸(D2EHPA)、2-エチルヘキシルホスホン酸 2-エチルヘキシルエステル (PC-88A)などの酸性リン酸エステルは、ランタニド金属イオンに対する高い分離選択性を 有した抽出剤として広く汎用されている²²⁾。それ故に、ランタニド金属イオンに対す るアフィニティやその錯体構造についても多くの知見が明らかにされており、ランタ ニド金属を認識対象とする界面鋳型重合法の基礎研究を検討する上で有利である。 一方、認識サイトを樹脂表面に配置するためには、W/O型エマルションの油水界面 に効率よく配向する、すなわち、高い界面活性を有する機能性分子の使用が不可欠と なる。ここで、疎水部としてドデシル基(C₁₂)及びフェニル基を有するリン酸エステ ルは、高い界面配向能力を示すことが知られている。また、フェニル基の存在は、機 能性分子の挿入による高分子マトリックス構造の歪みを軽減し、機能性分子の固定を より強固にするものと考えられている¹⁵⁾。

以上の観点から、本研究では疎水部にドデシル鎖とフェニル基を有するホスホン酸 エステルとして、1,12-ドデカンジオール-0,0'-ジフェニルホスホン酸(DDDPA)及 びフェニルホスホン酸モノドデシルエステル(n-DDP)を合成した。DDDPAは二官能性 のホスホン酸型分子であり、溶媒抽出における抽出剤としてランタニド金属イオンに 対し高い抽出能力を示すことが知られている²³⁻²⁴⁾。さらに、Yoshidaら¹²⁾¹⁴⁻¹⁵⁾は、Zn(II)-鋳型樹脂において DDDPAを機能性分子として用いて、高い鋳型効果を発現させること に成功している。一方、単官能性のホスホン酸誘導体である n-DDP は、Trp-OMe-鋳型 樹脂に適用され、その機能性分子としての有用性が既に実証されている¹⁹⁻²¹⁾。これら 2 種類のホスホン酸型分子は、上述の必要条件を良く満たす分子であるので、これら を機能性分子として用いた界面鋳型樹脂は高いランタニド認識能を発現することが期 待できる。

本章では、ホスホン酸型機能性分子 DDDPA 及び n-DDP の合成法について述べる。本 研究で合成した機能性分子の分子構造を図 2-1 に示す。

図 2-1 本研究で合成したホスホン酸型機能性分子の分子構造

- 2.2 機能性分子の合成
- 2.2.1 1, 12-ドデカンジオール-0, 0'-ジフェニルホスホン酸 (DDDPA) の合成
- 2.2.1.1 実験操作

図 2-2 に DDDPA の合成スキームをを示す。

図 2-2 DDDPA の合成スキーム

水浴中、窒素気流下で、乾燥ピリジン 80 ml、二塩化フェニルホスホン酸 56.2g (0.288 mol) と脱水 THF 60 ml の混合溶液を攪拌しながら、滴下ロートを用いて 1, 12-ドデカンジオール 24.3 g (0.120 mol) と脱水 THF 100 ml の混合溶液を約 2 時間かけ て滴下し、2 晩攪拌した。その後、系内を低温に保ちながら氷水約 350 ml を加え 5 時 間撹拌した後、pH が 1~2 になるまでゆっくりと 12N 塩酸を加え約1時間撹拌し、ク ロロホルム 300 ml を加え、さらに 2 時間撹拌した。分液ロートを用いて二相を分離し た後、水相をクロロホルムで数回洗浄し、有機相を採取して 1N 塩酸約 500 ml で洗浄 した。得られた有機相を無水硫酸マグネシウムにより乾燥した後、エバポレーターに て溶媒及び未反応物を減圧留去し、透明黄色の粘性液体を得た。

最終生成物は、カラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール =9/1, v/v)により精製した。 2.2.1.2 実験結果

DDDPA の性状は黄色粘性液体であり、収量は 26 g (収率 45 %) であった。生成物の ¹H-NMR スペクトル、IR スペクトル、元素分析による分析結果をそれぞれ表 2-1~表 2-3 に示す。

	表2-1	¹ H-NMR (250 MHz, CDCl ₃ , TMS, 303 K)			
_{{∂} [ppm]]	分裂	プロトン比(理論比)	帰属	
8.28		S	3.4 (2H)	а	
7.80		m	3.9 (4H)	b	
7.47		m	5.9 (6H)	c	
3.96		m	3.7 (4H)	d	
1.63		m	4.6 (4H)	e	
1.23		m	16.4 (16H)	f	

表2-2 IR (ne	at) スペクトル	表2-3	元素分析約	吉果
波数[cm⁻¹]	帰属		C %	Η%
2650	$\downarrow_{ m OH}$	実測値	59.79	7.61
2270	$\downarrow_{ m P=O}$ & $\mathcal{B}_{ m H}$	計算値	59.75	7.52
1684	$\downarrow_{\text{P-OR}}$	誤差	+0.04	+0.09
				$(C_{24}H_{36}O_6P_2)$

以上の分析結果より、DDDPA の生成を確認した。

2.2.2 フェニルホスホン酸モノドデシルエステル (n-DDP) の合成

2.2.2.1 実験操作

水浴中、窒素気流下で、乾燥ピリジン 40 ml、二塩化フェニルホスホン酸 28.0g (0.144 mol) と脱水 THF 60 ml の混合溶液を攪拌しながら、滴下ロートを用いてラウリ ルアルコール 22.4g (0.120 mol) と脱水 THF 100 ml の混合溶液を約 2 時間かけて滴下 し、2 晩攪拌した。その後、系内を低温に保ちながら氷水約 350 ml を加え 5 時間撹拌 した後、pH が 1~2 になるまでゆっくりと 12N 塩酸を加え約1時間撹拌し、クロロホ ルム 300 ml を加え、さらに 2 時間撹拌した。分液ロートを用いて二相を分離した後、 水相をクロロホルムで数回洗浄し、有機相を採取して 1N 塩酸約 500 ml で洗浄した。 得られた有機相を無水硫酸マグネシウムにより乾燥した後、エバポレーターにて溶媒 及び未反応物を減圧留去し、透明黄色の粘性液体を得た。

最終生成物は、カラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール =9/1, v/v)により精製した。

図 2-3 に n-DDP の合成スキームを示す。

図 2-3 n-DDP の合成スキーム

2.2.2.2 実験結果

n-DDP の性状は黄色粘性液体であり、収量は 31g(収率 80%) であった。生成物の ¹H-NMR スペクトル、IR スペクトル、元素分析による分析結果をそれぞれ表 2-4~表 2-6 に示す。

表2	-4 ¹ H-NMR	(250 MHz, CDCl ₃ , TMS, 303 K)	
<i>{</i> ?[ppm]	分裂	プロトン比(理論比)	帰属
11.00	S	1.0 (1H)	а
7.79	m	2.5 (2H)	b
7.49	m	3.7 (3H)	с
3.98	m	1.9 (2H)	d
1.63	m	3.2 (2H)	e
1.25	m	24 (18H)	f
0.88	t	3.5 (3H)	g

表2-5 IR (ne	at) スペクトル		表2-	6 元素分析結果	果
波数[cm⁻¹]	帰属			С%	Η%
2623	$\downarrow_{ m OH}$	実	測値	66.47	9.55
2320	$\downarrow_{ m P=O}$ & $_{ m SOH}$	計	算値	66.23	9.57
1682	$\downarrow_{\text{P-OR}}$		呉差	+0.24	-0.02

 $(C_{18}H_{31}O_{3}P)$

以上の分析結果より、n-DDPの生成を確認した。

2.3 結言

ランタニド金属イオンとの相互作用を可能とするホスホン酸基、分子に高い界面活 性を付与する C₁₂ 鎖、そして高分子マトリックスへの固定化に寄与するフェニル基をす べて有する分子として DDDPA と n-DDP を合成した。本研究では、両機能性分子とも高 収率・高純度で得ることができた。本合成法のポイントとして「エステル化段階にお ける非水系の徹底」が挙げられる。反応溶媒である THF、ピリジンの脱水操作は特に 慎重に行うべきであり、反応系は十分に N₂置換しておく必要がある。

DDDPA と n-DDP は、界面鋳型重合において最も一般的な機能性分子である。鋳型ゲ ストを Zn(II)イオンとした場合、1,4-ブタンジオール-0,0'-ジフェニルホスホン酸、 1,8-オクタンジオール-0,0'-ジフェニルホスホン酸、フェニルホスホン酸モノヘキ シルエステルが機能性分子として検討されたが、いずれの場合にも DDDPA、n-DDP を機 能性分子として用いたほうが高い鋳型効果を発現することが報告されている¹⁴⁻¹⁵⁾。し たがって、極めて厳密に機能性分子を配置・固定化する必要のあるランタニド鋳型樹 脂においても、これらの機能性分子を用いることにより、鋳型ゲストに相補的な認識 部位を高効率で構築できることが大いに期待される。 3. 界面鋳型重合法を利用したランタニド認識材料の調製

3.1 緒言

本研究室におけるこれまでの研究において、ジオレイルリン酸(DOLPA)を機能性分 子として用いたランタニド鋳型樹脂が調製されている¹⁸⁾。そこでは、Dy(III)-鋳型樹 脂において中ランタニド(Dy)/軽ランタニド(La, Ce)間の分離が達成された。しか し、DOLPAを機能性分子として用いた場合、高分子マトリックスの剛直さ(rigidity)は 比較的に低くなることが知られている^{11,13)}。したがって、より剛直な高分子マトリッ クスを得ることができるような機能性分子を使用することにより、ランタニド鋳型樹 脂の性能が大幅に向上することが期待できる。

本研究では、新たな機能性分子として DDDPA、n-DDP、PC-88A を使用した。PC-88A (図 3-1) は一般的なホスホン酸型抽出剤であり、優れたランタニド金属間相互分離能力を もつことが知られている²⁵⁾。第3章では、各機能性分子を用いた Nd(III)-鋳型樹脂・ 非鋳型樹脂の調製法及びそれらの構造特性について述べる。

PC-88A

図 3-1 PC-88A の分子構造

3.2 界面鋳型樹脂の調製

3.2.1 試薬

界面鋳型樹脂を調製するに際して、架橋モノマーは、その分子構造中のオルト位と パラ位にビニル基を有する市販のジビニルベンゼン(純度: 55%, m, p-混合体)を用 いた。重合開始剤としては、市販のアゾ系の油溶性低温重合開始剤である 2, 2'-アゾ ビス(2, 4-ジメチルバレロニトリル)(商品名: V-65, 純度: 95%)を使用した。また、 エマルション安定剤としては、非イオン性界面活性剤である L-グルタミン酸ジオレイ ルリビトール(2C₁₈O⁶GE)を合成して用いた²⁶⁾。本研究で使用した架橋モノマー、重合開始剤、エマルション安定剤の分子構造及びその略号を図 3-2 に示す。その他の試薬 については市販の特級試薬を用いた。

図 3-2 架橋モノマー、重合開始剤、エマルション安定剤の分子構造と略号

3.2.2 重合操作

シリカゲル処理し、重合禁止剤を除去したジビニルベンゼン 40 cm³にトルエン 20 cm³ を加え、これに種々の機能性分子 (DDDPA、n-DDP、PC-88A) 3.6 mmol、 $2C_{18}$ O⁹GE 0.3 mmol を溶解させた。これを HCl または 100 mM CH₃COOH-CH₃COONa で所定 pH に調整した 10 mM NdCl₃·6H₂O 水溶液と大型試験管中で混合した後、超音波発生装置 (SONIFIER 250, Branson)を用いて4分間超音波を照射し W/O 型エマルションを形成させた。

得られた W/O 型エマルションを 300 ml セパラブルビーカーに移し、303 K に設定し た水浴に浸した。徐々に水浴の温度を上げ、エマルション温度が 318 K に達したとき、 重合開始剤 V-65 を 1.4 mmol 添加した。この後、窒素雰囲気下で 2 時間加熱攪拌(55 ~60 ℃, 300 rpm) することで白色ブロック状樹脂を得た。生成した樹脂は、真空乾燥 によりトルエンと水を除去した後、乳鉢・乳棒を用いて粉砕した。この粉末樹脂を 1 N 塩酸に加え 24 時間攪拌し、鋳型ゲストの除去を行った。この操作は、洗浄液中で鋳型 ゲストが ICP 発光光度計(OPTIMA 3100RL, Perkin-Elmer) により検出されなくなるま で繰り返し行った。その後、数日間真空乾燥することにより乾燥粉末樹脂を得た。コ ントロール樹脂である非鋳型樹脂は、鋳型ゲストを加えず同様の操作により調製した。

W/0型エマルションを用いた界面鋳型樹脂の調製概要を図 3-3 に示す。また、W/0型 エマルションの調製条件及び重合条件の詳細をそれぞれ表 3-1、表 3-2 に示す。

図3-3 W/O型エマルションを用いた界面鋳型重合法の概要

表3-1 W/O型エマルションの調製条件	
----------------------	--

	内水相 pH	1.3 (DDDPA), 2.0 (n-DDP)
		4.0 (PC-88A)
	鋳型ゲスト	Nd ³⁺ 10 mol/m ³
小竹	pH 調整	HCl (DDDPA, n-DDP)
		0.1 M CH ₃ COOH-CH ₃ COONa (PC-88A)
	体積	30 ml
	機能性分子	DDDPA, n-DDP or PC-88A 60 mol/m ³
	エマルション安定剤	$2C_{18}\Delta^9GE$ 5 mol/m ³
有機相	樹脂形成モノマー	ジビニルベンゼン 40 ml
	希釈剤	トルエン 20 ml
	体積	60 ml

重合条件	窒素雰囲気、水浴加熱
重合温度	55 °C~60 °C
重合開始剤	V-65
重合時間	約2時間

表3-2 重合実験条件

3.2.3 実験結果

DDDPA、n-DDP、PC-88A を用いた界面鋳型樹脂及び非鋳型樹脂の性状を表 3-3~3-5 に示す。

	,	
	Nd(III)-鋳型樹脂	非鋳型樹脂
樹脂収量 [g]	28	29
収率 [%]	77	80
樹脂の形状	粉末固体	粉末固体
樹脂の色	白	白
鋳型脱着率 [%] ^{a)}	15	-
樹脂の形状 樹脂の色 鋳型脱着率 [%] ^{a)}	粉末固体 白 15	粉末固体 白 -

表3-3 樹脂の性状 (DDDPA)

a) 鋳型脱着率=(Nd³⁺の脱着量[mol]/Nd³⁺の仕込量[mol])×100

表3-4 樹脂の性状 (n-DDP)

	Nd(III)-鋳型樹脂	非鋳型樹脂
樹脂収量 [g]	28	31
収率 [%]	78	87
樹脂の形状	粉末固体	粉末固体
樹脂の色	白	白
鋳型脱着率 [%] ^{a)}	37	-

a) 鋳型脱着率=(Nd³⁺の脱着量[mol]/Nd³⁺の仕込量[mol])×100

14	5 5 倒油*7 王八 (I C-88A)	
	Nd(III)-鋳型樹脂	非鋳型樹脂
樹脂収量 [g]	26	30
収率 [%]	73	84
樹脂の形状	粉末固体	粉末固体
樹脂の色	白	白
鋳型脱着率 [%] a)	9.6	-

表3-5 樹脂の性状 (PC-88A)

a) 鋳型脱着率=(Nd³⁺の脱着量[mol]/Nd³⁺の仕込量[mol])×100

いずれの鋳型樹脂、非鋳型樹脂とも 70 %以上の高収率で得ることができた。しかし ながら、効率的な鋳型ゲストの除去はできなかった。溶媒抽出の分野で、DDDPA など 一部のリン酸型抽出剤はランタニド金属イオンとの相互作用が極めて強力であるため、 その逆抽出(錯体の解離)が困難となることが知られている²⁷⁾。ここで、PC-88A を用 いた Nd(III)-鋳型樹脂では、鋳型脱着率が 10%以下と特に脱着効率が悪かった。PC-88A のように界面配向能力が比較的に低い機能性分子を用いた場合、そのランタニド錯体 はバルク有機相中に存在する傾向が大きいと考えられる。したがって、鋳型ゲストは 高分子マトリックス内部に埋もれ、洗浄液とのアクセスが制限されてしまったために、 十分に鋳型ゲストが脱着しなかったと推察できる。

ランタニド鋳型樹脂において、鋳型除去の効率化を図るために錯化剤(EDTA、DTPA) の添加、酸濃度の変更、洗浄法の再検討などが試みられているが、いずれの場合も除 去効率の大幅な向上はみられていない。本研究では、他の洗浄液(0.1, 1, 3 N 硝酸、 0.1, 3 N 塩酸)を用いて鋳型除去を行ったが、大きな鋳型脱着率の変化はみられなか った。そこで、1 N 塩酸で洗浄した Nd(III)-鋳型樹脂を利用して以後の諸実験を行う こととした。

3.3 界面鋳型樹脂の特性評価

3.3.1 構造特性

W/0 型エマルションを利用した界面鋳型重合法を適用して調製された樹脂は、重合後、粉砕工程を経る。本研究では、乳鉢・乳棒を用い樹脂の粉砕を行った。そこで、マイクロトラック粒度分析計(Model 7995-10 SRA, 日機装株式会社)によって、得ら

れた粉末樹脂の粒径分布を測定した。DDDPA を用いた Nd(III)-鋳型樹脂及び非鋳型樹脂の粒径分布を図 3-4 に示す。

図 3-4 DDDPA を用いた Nd(III)-鋳型樹脂及び非鋳型樹脂の粒径分布

粒径分布には多少のばらつきがみられたが、平均粒径は Nd(III)-鋳型樹脂で 24 µm、 非鋳型樹脂で 26 µm とほぼ一致した。以後の実験では、すべて同様の粒径分布を有す る樹脂を使用した。

図 3-5 DDDPA を使用した Nd (III)-鋳型樹脂の SEM 写真 (×5000)

DDDPA を使用した Nd(III)-鋳型樹脂の粒子表面の SEM 写真を図 3-5 に示す(明石電 子株式会社, Model ABT-32 にて撮影)。ここで、界面鋳型樹脂表面にエマルション内 水相滴に相応するマクロポアを多々確認できた。さらに、界面鋳型重合法によって調 製された鋳型樹脂の比表面積が約 15 m²/g である¹⁴⁾ことからも、界面鋳型樹脂が多孔 質であることが支持されている。機能性分子は、理論上このマクロポアの表面上に固 定化されているものと推察される。

3.3.2 膨潤率の評価

3.3.2.1 実験操作

テフロンチューブに各 Nd(III)-鋳型樹脂を適当量入れ、遠心分離(5000 rpm, 20分) により最密充填し、充填樹脂の高さ(h₁)を測定した。その後、膨潤溶媒としてトル エンを用いて樹脂を膨潤させ、遠心分離(5000 rpm, 20分)により最密充填した。精 置後、充填樹脂の高さ(h₂)を測定した。ここで、膨潤率は以下の式から算出した。

膨潤率 [%] =
$$\frac{h_2 - h_1}{h_1} \times 100$$

3.3.2.2 結果及び考察

各 Nd(III)-鋳型樹脂の高分子マトリックスの剛直さを評価するために、膨潤率を測 定した。表 3-6 にその結果を示す。ここで、膨潤率がより小さい程、機能性分子がよ り強固に高分子マトリックスに固定化されていることになる。

	王阿加马阿门
機能性分子	膨潤率 [%]
DDDPA	25.2
n-DDP	32.2
PC-88A	45.8

表3-6 各 Nd(III)-鋳型樹脂の膨潤率^{a)}

a) 膨潤溶媒:トルエン

分子構造中に 2 つのフェニル基を有するジホスホン酸型機能性分子 DDDPA において最 も低い膨潤率が得られた。また、全体的な傾向として、分子中に存在するフェニル基 数が多い機能性分子を使用した樹脂ほど低い膨潤率を示した。これは、Zn(II)-鋳型樹 脂でみられた傾向^{14,15)}に一致する結果であった。つまり、フェニル基が分子構造中に 存在することにより、機能性分子が高分子マトリックス(ジビニルベンゼンポリマー) 中に秩序良く配向し、その結果、より剛直なマトリックスが形成されたものと推察で きる。

3.4 結言

種々のホスホン酸エステル型機能性分子を使用して、Nd(III)-鋳型樹脂及び非鋳型 樹脂の調製を行った。その結果得られた樹脂は、いずれも粒径がマイクロメーターオ ーダーの多孔質粒子であり、過去に報告されている界面鋳型樹脂の性状に類似するも のであった。さらに、本研究で使用した機能性分子は高い界面配向能力をもつことか ら、マクロポア表面に機能性分子が組織的に配列していると考えられる。以上から、 これらの樹脂は極めて優れた吸着速度とターゲット選択性を示すことが期待できる。

ターゲットイオンに対する認識部位を多く構築するには、鋳型ゲストの除去を効率 的に行わねばならない。ホスホン酸誘導体とランタニド金属イオンとの間の錯形成は プロトン交換機構(Ln³⁺+xHR→LnR₃(HR)_{x-3}+3H⁺)により進行する²³⁻²⁵⁾ので、本研究では 鋳型ゲスト(Nd³⁺)の除去に種々の鉱酸を使用した。その結果、1N塩酸が最も除去効 率のよい洗浄液であることが明らかとなった。しかし、すべてのNd(III)-鋳型樹脂に おいて鋳型脱着率は非常に低く、最高で40%程度であった。洗浄条件の設定について は、洗浄液への親水性有機溶媒の添加や洗浄温度の変更などさらなる検討が必要であ ろう。

界面鋳型重合法において、樹脂調製段階における機能性分子の固定化のためには、 剛直な高分子マトリックスを得ることが重要となる。各 Nd(III)-鋳型樹脂の膨潤率を 測定した結果、機能性分子の構造中のフェニル基の存在が高分子マトリックスの剛直 さに関与することが示唆された。この結果は Zn(II)-鋳型樹脂においてみられた傾向 に一致した。ここで、DDDPA を機能性分子とした鋳型樹脂で最も低い膨潤率が得られ たことから、この鋳型樹脂が高いターゲット選択性を示すであろうことが示唆された。

-49-

4. 界面鋳型樹脂のランタニド吸着分離特性

4.1 緒言

界面鋳型樹脂の吸着分離性能は、用いる機能性分子によって大きく左右されること が知られている。Yoshida ら^{14,15)}は、鋳型ゲストをZn(II)イオンとした場合における、 機能性分子の特性と鋳型効果との相関を系統的に調査した。そこでは、界面吸着定数 に関して 40 m³/mol 以上、高分子マトリックスの膨潤度(膨潤溶媒:トルエン)を 30% 以下にする機能性分子を使用した鋳型樹脂は、認識ターゲットである Zn イオンに対し て効果的な鋳型効果を発現するという知見が得られている。本研究では、機能性分子 として 3 種類のホスホン酸誘導体 (DDDPA、n-DDP、PC-88A)を用いて Nd(III)-鋳型樹 脂の調製を行った。これらの機能性分子は異なる界面配向性を示すため、各鋳型樹脂 の性能もまた大きく異なってくるものと考えられる。

第4章では、Nd(III)-鋳型樹脂に関するNd(III)、La(III)イオンの吸着分離挙動を 検討し、用いる機能性分子の特性と鋳型効果との相関性を調査した。具体的には、(1)液 -液抽出における抽出挙動と鋳型樹脂における吸着挙動の比較、(2) Langmuir 解析を 行うことで各Nd(III)-鋳型樹脂の吸着分離特性を特徴づけ、最後に、高い吸着性能を もつ鋳型樹脂を調製するために要求される機能性分子の特性を考察した。

4.2 実験操作

4.2.1 ホスホン酸型機能性分子を利用した液-液抽出実験

所定濃度に調製した水相及び有機相を 5 ml ずつ 20 ml サンプル管にとり、恒温槽中 (303 K) で 24 時間振盪し平衡に達せしめた。両相を分離した後、水相をサンプリング し、残留金属濃度を ICP 発光光度計 (OPTIMA 3100RL, Perkin-Elmer) で測定した。詳 細な実験条件を表 4-1 に示す。

	衣4 I	伯妹JIIIII 天歌木 IT
右 機坦	溶媒	トルエン
1月1成1日	抽出剤	DDDPA, n-DDP or PC-88A 10 mol/m ³
水相	金属イオン	La ³⁺ , Nd ³⁺ 共存各 0.1 mol/m ³
	pH 調整	0.1 M CH ₃ COOH-CH ₃ COONa, HCl
	温度 303 k	太 振盪時間 24 時間

表4-1 溶媒抽出実験条件

4.2.2 各鋳型樹脂及び非鋳型樹脂を用いたランタニド金属イオンの吸着分離 実験

吸着実験はバッチ法により行った。各 Nd(III)-鋳型樹脂 0.1 g を 10 ml 共栓付き試 験管に精秤し、所定 pH に設定した各 0.1 mol/m³ の Nd(III)、La(III)混合水溶液 5 ml を加えて、メカニカルシェーカーにより 200 spm の速度で振盪し平衡に達せしめた。 その後、ディスポーザブルフィルター (孔径 0.2 μm, Sumplep LCR25-LG, Millipore)を 用いて樹脂を濾過した後、濾液中の残留金属濃度を ICP 発光光度計で測定した。

4.2.3 ランタニド鋳型樹脂における有効イオン交換容量と吸着平衡定数の評価

各 Nd(III)-鋳型樹脂を 0.5g 精秤し、これを Nd イオン濃度 0.3~20 mM の pH5 に調整した酢酸緩衝液 5 ml に加えた。これらをメカニカルシェーカーを用いて、200 spm の速度で振盪し平衡に達せしめた。その後、ディスポーザブルフィルター(孔径 0.2 µm)を用いて樹脂を濾過して、濾液中の残留 Nd イオン濃度を ICP 発光光度計で測定した。結果より、平衡 Nd イオン濃度(mo1/m³)と Nd(III)-鋳型樹脂単位重量当たりに吸着した Nd イオンの物質量(mmo1/g)の関係を求めた。各 Nd(III)-鋳型樹脂が液相-固相において Langmuir 型の吸着に従うものとして、これらの関係から吸着定数(有効イオン 交換容量・吸着平衡定数)を算出した。液相-固相の Langmuir 吸着等温式は以下のように導出される。

鋳型ゲストを A、吸着サイ丨	、を↑として次式のような	平衡状態を考える。
	$\mathbf{A} + \mathbf{\widehat{l}} \rightleftharpoons \mathbf{\lambda} \cdot \mathbf{\widehat{l}}$	(1)
吸着速度 V _{ad} は、A の濃度 C と空吸着サイトの割合(1- N)に比例するので、		
	$\mathbf{V}_{\mathrm{ad}} = \mathbf{K}_{\mathrm{ad}} C (1 - \mathbf{X})$	(2)

K_{ad}は吸着速度定数である。一方、脱離速度 V_{de}は、A が吸着している吸 着サイトの割合₩に比例するので(3)式のように表すことができる。 $V_{de} = K_{de} \aleph$ (3)ここで、K_{de}は脱離速度定数である。平衡状態では、吸着速度 V_{ad}と脱離 速度 V_{de}は等しいので、(2)、(3)式から(4)式が得られる。 $\mathbf{K}_{\mathrm{ad}}C(1-\aleph) = \mathbf{K}_{\mathrm{de}}\,\aleph$ (4) (4)式から、 $\mathbf{K} = \mathbf{K}_{ad}C / (\mathbf{K}_{de} + \mathbf{K}_{ad}C)$ (5) ここで、吸着平衡定数 *a* = K_{ad} / K_{de}、 **X** = q / q_s (q: 樹脂単位重量当たり に吸着した鋳型ゲストの物質量[mol/g], q.: 樹脂単位重量当たりの有効イ オン交換容量[mol/g]) とすると、(5)式から(6)式が導出される。 $q / q_s = aC / (1 + aC)$ (6) (6)式から、液相-固相における Langmuir 吸着等温式 [(7)式] が得られる。 $q = aq_sC/(1 + aC)$ (7)測定データが Langmuir 吸着等温式に当てはまっているかどうかの判定 は、測定値を直線式 [(8)式] に当てはめ、直線関係が成り立つことを確 かめればよい。 $1 / q = 1 / q_s + (1 / aq_s) (1 / C)$ (8) (8)式より、1/C と 1/q の関係をプロットすれば、直線関係が成立する場 合には、直線の傾きと切片から a、q。がそれぞれ求まる。

4.3 結果及び考察

4.3.1 機能性分子を用いた液-液抽出における Nd(III)、La(III)抽出挙動

機能性分子とターゲットイオンとの間のアフィニティは、界面鋳型樹脂調製の際に 重視すべき点の一つである。そこで、認識対象となる Nd イオンと機能性分子との結合 能力を溶媒抽出法を利用して評価した。DDDPA、n-DDP、PC-88A を抽出剤として用いた Nd、La イオンの液-液抽出挙動をそれぞれ図 4-1~4-3 に示す。ここで、DDDPA(図 4-1)、 n-DDP(図 4-2)は Nd、La イオンに対して高い結合能力を示したが、これら二金属を 効果的に分離することはできなかった。一方、PC-88A は Nd イオンに対して比較的に 高い選択性を示した(図 4-3)。

以上の結果から、本研究で使用した 3 種類のホスホン酸型機能性分子は、認識ター

ゲットとなる Nd イオンに対して十分なアフィニティをもつことが明らかとなった。また、各配位子(機能性分子)において Nd(III)、La(III)錯体の組成は同じである²³⁻²⁵⁾ ことから、ここで得られた金属選択性は、[機能性分子-ランタニド金属イオン] 錯体 の安定度を反映するものと考えることができる。

図 4-1 DDDPA を用いた Nd、La 抽出における抽出率の pH 依存性 有機相:トルエン, [DDDPA]=10 mM. 水相: [Nd³⁺]=[La³⁺]=0.1 mM, HCl.

図 4-2 n-DDP を用いた Nd、La 抽出における抽出率の pH 依存性 有機相:トルエン, [n-DDP]=10 mM. 水相: [Nd³⁺]=[La³⁺]=0.1 mM, HCl.

図 4-3 PC-88A を用いた Nd、La 抽出における抽出率の pH 依存性 有機相:トルエン, [PC-88A]=10 mM. 水相: [Nd³⁺]=[La³⁺]=0.1 mM, 酢酸緩衝液.

4.3.2 ランタニド鋳型樹脂における Nd(III)、La(III)吸着分離挙動

図 4-4~4-6 にそれぞれ DDDPA、n-DDP、PC-88A を機能性分子として用いた Nd(III)-鋳型樹脂における Nd、La イオンの吸着挙動を示す。ここで、すべての鋳型樹脂におけ る Nd、La イオン吸着率は pH の増加とともに上昇した。したがって、鋳型樹脂表面上 のホスホン酸基とランタニド金属イオンとの錯形成は、プロトン交換反応により進行 するものと考えられる。DDDPA (図 4-4)、n-DDP (図 4-5) を用いた Nd(III)-鋳型樹脂 は、幅広い pH 領域においてターゲットである Nd イオンに対して高い選択性を示した。 特に DDDPA を用いた場合、La イオンの吸着が大幅に抑制され、その結果、高度な Nd/La 間分離が達成された。一方、PC-88A を機能性分子とした Nd(III)-鋳型樹脂は、PC-88A が溶媒抽出においてランタニド金属イオンに対してアフィニティを示したにも拘わら ず、Nd、La イオンに対して十分な吸着能力、分離性能を示さなかった(図 4-6)。

DDDPA、n-DDP、PC-88A を機能性分子として用いた非鋳型樹脂において得られた Nd、 La イオン吸着挙動をそれぞれ図 4-7~4-9 に示す。鋳型を付与せずに調製した非鋳型 樹脂における各金属イオンの吸着は、「非特異的吸着」とみなすことができる。ここ で、各非鋳型樹脂において得られた吸着プロファイルは、対応する鋳型樹脂における プロファイルにほぼ一致した。したがって、Nd(III)-鋳型樹脂において観察された金 属選択性は、主としてインプリント処理により構築された認識部位への「特異的吸着」 に由来するものではないと考えるべきである。

このように鋳型、非鋳型樹脂において吸着プロファイルが類似した理由としては、 ①鋳型ゲストの除去が不十分であるため、ターゲット認識部位数が少ない、②鋳型樹 脂に非特異的吸着部位が多く存在する、という 2 点が主に考えられる。例えば、DDDPA はランタニド金属イオンと 4:1 (DDDPA: ランタニド金属イオン) 錯体を形成すること が知られている²³⁾。ここで、エマルション調製時に、加えた Nd イオンのすべてが DDDPA と錯形成したとしても、添加した DDDPA のうち 67 %は Nd イオンとの錯形成に関与せ ずに、ランダムに樹脂中に配向することになる。さらに、鋳型ゲストの脱着率が 15 % であることを考慮すると、樹脂中に存在するフリーな (Nd と錯形成していない) DDDPA のうち、ターゲット認識部位に存在するものは僅か 7 %程度となる。したがって、残 り 93 %のランダムに配向した DDDPA による吸着が優位となり、その結果、鋳型樹脂 と非鋳型樹脂の吸着プロファイルが非常に近似し、金属選択性に大きな違いが生じな かったものと推察できる。

図 4-4 DDDPA を用いた Nd(III)-鋳型樹脂におけるランタニド吸着挙動 樹脂:Nd(III)-鋳型樹脂 0.1 g. 水相: [Nd³⁺]=[La³⁺]=0.1 mM, HCl or 酢酸緩衝液.

図 4-5 n-DDP を用いた Nd(III)-鋳型樹脂におけるランタニド吸着挙動 樹脂:Nd(III)-鋳型樹脂 0.1 g. 水相:[Nd³⁺]=[La³⁺]=0.1 mM, HCl or 酢酸緩衝液.

図 4-6 PC-88A を用いた Nd(III)-鋳型樹脂におけるランタニド吸着挙動 樹脂:Nd(III)-鋳型樹脂 0.1 g. 水相:[Nd³⁺]=[La³⁺]=0.1 mM, 酢酸緩衝液.

図 4-7 DDDPA を用いた非鋳型樹脂におけるランタニド吸着挙動 樹脂:非鋳型樹脂 0.1 g. 水相: [Nd³⁺]=[La³⁺]=0.1 mM, HCl or 酢酸緩衝液.

図 4-8 n-DDP を用いた非鋳型樹脂におけるランタニド吸着挙動 樹脂:非鋳型樹脂 0.1 g. 水相: [Nd³⁺]=[La³⁺]=0.1 mM, HCl or 酢酸緩衝液.

図 4-9 PC-88A を用いた非鋳型樹脂におけるランタニド吸着挙動 樹脂:非鋳型樹脂 0.1 g. 水相: [Nd³⁺]=[La³⁺]=0.1 mM, 酢酸緩衝液.

ここで疑問となるのが、「なぜ"非特異的吸着"であるのに、溶媒抽出で観察され た以上の Nd 選択性が、対応する機能性分子を用いた Nd(III)-鋳型樹脂及び非鋳型樹 脂において得られたのか?」という点である。

図 4-10 に DDDPA、n-DDP を用いた Nd(III)-鋳型樹脂に対する Nd、La イオン吸着に おける分配係数 K_d と吸着後 pH との関係を示す。プロットは、DDDPA において勾配が約 2、n-DDP においては勾配が約 1 の直線にのった。これから、Nd、La イオンが 1 mol 樹 脂に吸着する際に DDDPA-Nd(III)-鋳型樹脂では 2 mol、n-DDP-Nd(III)-鋳型樹脂では 1 mol のプロトンが放出されることがわかった。

以上から、水溶液中においてランタニド金属イオンは主として+3 価であるので、こ れらの鋳型樹脂によるランタニド金属吸着はカウンターアニオン(Cl⁻または CH₃COO⁻) を伴うものと推察された。ランタニドの溶媒抽出において酸性ホスホン酸を抽出剤と した際は、カウンターアニオンは関与せず、錯形成は完全なプロトン交換で行われる ²³⁻²⁵⁾。つまり、均一系における機能性分子とランタニド金属イオンとの錯形成様式と、 それを高分子に固定化した鋳型樹脂における錯形成様式は大きく異なるものと考えら れる。このような錯形成様式の違いが、金属選択性を大きく変化させたと考察できる。 キレート樹脂の分野でも、フリーなキレート分子とそれを基体に固定化した樹脂との 間で金属選択性が大きく異なるという事例がある²⁸⁻²⁹⁾。

図 4-10 DDDPA、n-DDP を用いた各 Nd(III)-鋳型樹脂に対する Nd、La イオン 吸着における分配係数 K_dと吸着後 pH との関係 (分配係数 K_d=[樹脂 1 g 中の金属イオン濃度]/[溶液 1 cm³ 中の金属イオン濃度])

4.3.3 ランタニド鋳型樹脂の吸着定数

図 4-11、4-12 に、それぞれ n-DDP、PC-88A を用いた Nd(III)-鋳型樹脂における Langmuir 型吸着等温線及び Langmuir 吸着式の直線プロットを示す。Langmuir プロッ トから得られる直線の傾きと切片から吸着平衡定数と有効イオン交換容量を求めた。 各 Nd(III)-鋳型樹脂の吸着定数を表 4-2 にまとめた。

機能性分子	有効イオン交換容量	吸着平衡定数
	q _s [mmol/g]	a[m ³ /mol]
n-DDP	1.4×10^{-2}	207
PC-88A	0.36×10^{-2}	1.92
DDDPA	1.1×10^{-2} a)	n.d. ^{b)}

表 4-2 n-DDP、PC-88A、DDDPA を用いた Nd(III)-鋳型樹脂の有効イオ ン交換容量と吸着平衡定数

Nd(III)-鋳型樹脂 0.5 g、水相: [Nd³⁺]=3, 5, 10, 15 mol/m³、pH5 (0.1 M 酢酸緩衝液)。
 各サンプルにおける鋳型樹脂への Nd 吸着量の平均値から算出。

(2) No data.

有効イオン交換容量は、高分子マトリックス表面上における鋳型サイト及び内部に

形成される非鋳型サイトの両吸着サイトの吸着能力の指標である。一方、吸着平衡定数は認識サイトの Nd イオンに対するアフィニティの指標となる。ここで、n-DDP を用いた Nd(III)-鋳型樹脂では、PC-88A の場合と比較して約 4 倍の有効イオン交換容量、 そして約 100 倍の吸着平衡定数が得られた。この結果から、n-DDP のような機能性分子を利用することによって、より効果的に Nd イオンに対する結合部位を樹脂表面に構築できることが示唆された。

図 4-11 n-DDP を用いた Nd(III)-鋳型樹脂における(a)Langmuir 型吸着 等温線及び(b)Langmuir 吸着式の直線プロット

図 4-12 PC-88A を用いた Nd(III)-鋳型樹脂における(a)Langmuir 型吸 着等温線及び(b)Langmuir 吸着式の直線プロット

4.3.4 Imprint 効果を得るための機能性分子における必要条件

これまでの検討より、いずれの機能性分子を用いた Nd(III)-鋳型樹脂においても、 効果的な鋳型効果を得ることはできないことが明らかとなった。しかしながら、 Langmuir 解析の結果、使用する機能性分子によって鋳型樹脂の性能が大きく異なると いう傾向はみられた。そこで、各 Nd(III)-鋳型樹脂の剛直さ及び機能性分子の界面配 向能力という2つのパラメーターと鋳型樹脂の吸着性能との相関を調査した。

図 4-13 に、各 Nd(III)-鋳型樹脂の膨潤度と用いた機能性分子の界面吸着定数 K_{surf} との関係を示す。ここで、「膨潤度」は高分子マトリックスの剛直性、「界面吸着定 数」は機能性分子の界面配向能力の指標となる。図中の破線で囲まれた部分にプロッ トが存在する機能性分子において高い鋳型効果が得られることが Zn(II)-鋳型樹脂に ついて知られている¹⁵⁾。

図 4-13 優れた鋳型効果を得るための、機能性分子の界面吸着定数と各 Nd(III)-鋳型 樹脂の膨潤率^{a)}との相関 [Zn(II)-鋳型樹脂に関して、破線内 (界面吸着定数 40 m³/mol 以上、膨潤率 30%以下) において鋳型効果が発現¹⁵] a) 膨潤溶媒:トルエン (3.3.2 項参照).

まず、機能性分子の界面配向能力と鋳型樹脂の性能との相関に注目すると、高い界面 吸着定数を示す機能性分子(DDDPA、n-DDP)において高性能な鋳型樹脂が得られたこ とがわかる。2.1 項で述べたように、界面鋳型樹脂における機能性分子には「油水界 面に配向しやすい」という性質が必須とされている。ランタニド鋳型樹脂も例に漏れ ず、機能性分子に高い界面配向能力が要求されることが今回の結果から明らかとなっ た。特に DDDPA は、洗浄などに一般的に用いられる界面活性剤と同等の界面配向能力 (K_{surf} =310 m³/mol¹⁵) をもつため、より効果的に結合サイトを樹脂表面に集約できたも のと推察される。一方、PC-88A を用いた Nd(III)-鋳型樹脂においては、鋳型脱着率が 低い (3.2.3 項)、有効イオン交換容量が小さい (4.3.3 項) といった傾向が見られた が、これらはすべて PC-88A の界面配向能力 (K_{surf} =3.3 m³/mol³⁰)の低さに起因する結 果であると考えられる。

次に、鋳型樹脂の高分子マトリックスの剛直さと樹脂性能との相関に目を向けてみ ると、高分子マトリックスが剛直な鋳型樹脂ほど高いターゲット選択性を示すという 関係がみられた。これは、マトリックスが剛直であると機能性分子が強固に固定化さ れ、その結果、結合サイトがより安定に保持されるということを示唆する結果である。 ここで、機能性分子の分子構造中のフェニル基の存在が、剛直な高分子マトリックス を得るためのポイントであることは、既に 3.3.2 項で述べたとおりである。マトリッ クスの剛直さの重要性については、種々の樹脂形成モノマーを検討した結果からも支 持されている。吉田は、樹脂形成モノマーとしてスチレン、ジビニルベンゼン、トリ メチロールプロパントリメタクリレート (TRIM) を、機能性分子として DDDPA を用い て Zn(II)-鋳型樹脂を調製した¹⁷⁾。そこでは、3 つの架橋点 (ビニル基)を有する TRIM を用いた場合に最も剛直な高分子マトリックスが形成され、最大の鋳型効果が得られ ることが報告されている。

以上の結果から、機能性分子の界面配向能力、高分子マトリックスの剛直さの 2 点 は、鋳型樹脂の性能に大きな影響を及ぼすファクターであることが明らかとなった。 この傾向は、過去に Zn(II)-鋳型樹脂で得られた結果¹⁵⁾に一致するものであった。さ らに、最適化された設計方針に従い合成した機能性分子(DDDPA、n-DDP)を用いた鋳 型樹脂が高いパフォーマンスを発揮したことから、機能性分子の分子構造中の適当な アルキル鎖及びフェニル基の存在の重要性が支持された。 4.4 結言

3 種類の機能性分子を各々用いて調製した Nd(III)-鋳型樹脂に関する Nd(III)、 La(III)イオンの吸着分離特性を検討したところ、用いる機能性分子によって鋳型樹脂 の性能が大きく変化することがわかった。界面吸着定数の大きな機能性分子を用いた 鋳型樹脂において高い有効イオン交換容量が得られたことから、機能性分子の界面配 向能力は機能性分子を樹脂表面に配置するために重要であることが示唆された。また、 分子構造中にフェニル基を有する機能性分子を使用して調製した鋳型樹脂は、より剛 直な高分子マトリックスが形成されており、その結果高いターゲット選択性を示すこ とが明らかとなった。以上の結果は、Zn(II)-鋳型樹脂において得られた結果に一致す るものであった。

インプリント処理無しで調製した非鋳型樹脂と Nd(III)-鋳型樹脂のランタニド吸着 性能を比較・評価した結果、本研究で調製した Nd(III)-鋳型樹脂は効果的な鋳型効果 を示していないことが明らかになった。その主な理由としては、鋳型ゲストの脱着が 不十分であることが挙げられる。DDDPA や n-DDP といったフェニルホスホン酸エステ ルは、ランタニド金属イオンと非常に強い静電相互作用を形成するため、一度形成し た錯体を解離させることは非常に困難であるものと予想される。したがって、より効 率的に特異的認識サイトを構築するには、比較的にランタニド金属イオンとの相互作 用が弱く、鋳型ゲストの可逆的な除去が可能であるような界面活性物質を機能性分子 として使用するのが良いと考える。
5. おわりに

現在、物質分離の関わる多くの分野で、様々なイオン交換樹脂が利用されている。 しかし、一般に使用されている通常のイオン交換樹脂は、確かに分離材料として多く の利点をもつが、ランタニド金属元素のような価数やサイズが似通ったイオン同士を 分離するのは本質的に困難である。これは、イオン交換樹脂が主として単純な静電相 互作用に基づきイオンを取り込むことに起因している。したがって、従来のイオン交 換樹脂を利用する分離システムで選択性を引き出すためには、溶離液にキレート試薬 溶液や有機溶媒を使用するなどの工夫を必要としてきた。これに対して、共存する他 種類のイオン種の中からある特定の金属イオンを選択的に認識・補足可能なイオン交 換体が開発されれば、分離プロセスの簡略化、低環境負荷化が見込まれる。そこで、 この要求を満たすような吸着分離材料の調製法として期待される「W/0 型エマルショ ンを用いる界面鋳型重合法」を利用した高性能ランタニド認識材料の開発を目的とし て諸実験を行った。本研究で得られた知見は以下のとおりである。

- 1- 機能性分子として3種類のホスホン酸エステルを用いることで、Nd(III)イオンを 鋳型ゲストとした鋳型樹脂の高収率合成に成功した。得られた樹脂はすべて、マ イクロメーターオーダーの粒径をした多孔質粒子であった(第3章)。
- 2- 各 Nd(III)-鋳型樹脂において、洗浄液の組成に焦点を当て鋳型ゲストの除去条件の最適化を行った結果、1 N 塩酸が最良の洗浄液であることが明らかとなった。しかし、鋳型ゲスト脱着率は最高で37 %(機能性分子: n-DDP、洗浄液:1 N 塩酸の場合)と非常に低く、洗浄条件の設定については今後のさらなる検討の必要性が感じられた(第3章)。
- 3- 各 Nd(III)-鋳型樹脂の剛直性を評価した結果、フェニル基を構造中に有する機能 性分子を用いた鋳型樹脂において、より剛直な高分子マトリックスが形成されて いることがわかった(第3章)。

- 4- 本研究で合成した機能性分子 DDDPA 及び n-DDP、そして市販の酸性ホスホン酸型抽 出剤 PC-88A は認識対象である Nd(III)イオンに対して十分なアフィニティをもつ ことが液-液抽出実験結果から示された(第4章)。
- 5- 各 Nd(III)-鋳型樹脂における Nd(III)、La(III)イオンの吸着分離挙動を調査した 結果、用いる機能性分子によって鋳型樹脂のランタニド吸着性能が大きく変化す ることが明らかとなった。具体的には、高い界面吸着定数を示し、分子構造中に フェニル基をもつ機能性分子を使用した Nd(III)-鋳型樹脂において高度なランタ ニド吸着能力がみられた。この結果は、Zn(II)-鋳型樹脂において得られた傾向に 一致するものであった(第4章)。
- 6- インプリント処理無しで調製した非鋳型樹脂に対する Nd(III)、La(III)イオンの 吸着挙動を検討したところ、Nd(III)-鋳型樹脂における吸着プロファイルに近似 した結果が得られた。これより、本研究で調製した Nd(III)-鋳型樹脂は効果的な 鋳型効果を発現していないことが明らかとなった(第4章)。
- 7- Nd(III)-鋳型樹脂へのランタニド吸着機構を考察した結果、均一系における錯形 成機構とは明らかに異なる機構であることが示された。この錯形成様式の違いが、 液相吸着系と溶媒抽出系における大きな金属選択性の違いを引き起こしたものと 考えられる(第4章)。

本研究は、ランタニド鋳型樹脂の開発研究のほんの一部にすぎない。したがって、 ①機能性分子、架橋モノマーなど樹脂調製レシピの最適化、②エマルション調製条件 及び重合条件の系統的な検討、③鋳型ゲスト脱着の高効率化、などの基礎研究を積む ことで、さらなる樹脂性能の向上が期待できると考えている。

このような高選択性の分離材料が、核燃料廃棄物からのランタニド・アクチニド分離ならびに核燃料サイクル技術の発展に、今後大きく寄与することを願ってやまない。

参考文献

- (1) K. Mosbach : "Molecular Imprinting", Trends Biochem. Sci., 19, 9 (1994)
- (2) K. J. Shea: "Molecular Imprinting of Synthetic Network Polymers", Trends Polym. Sci., 2, 166 (1994)
- (3) G. Wulff: "Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates-away Towards Artificial Antibodies", Angew. Chem. Int. Ed. Engl., 34, 1812 (1995)
- (4) R. Hoss, F. Vögtle : "Template Syntheses", Angew. Chem. Int. Ed. Engl., 33, 375 (1994)
- (5) G. Wulff: "Fitting Molecules into Polymeric Receptors", Chemtech, 28(11), 19 (1998)
- (6) J. Matsui et al. : "Design and Preparation of Molecularly Imprinted Atrazine-receptor Polymers: Investigation of functional Monomers and solvents", Anal. Sci. 14(4) 699 (1998)
- M. Kempe, K. Mosbach : "Molecular Imprinting Used for Chiral Separations", J. Chromato. A, 691, 317 (1995)
- (8) D. L. Venton, E. Gudipati : "Entrapment of Enzymes Using Organo-Functionalized Polysiloxane Copolymers", Biochim. Biophys. Acta, 1250, 117 (1995)
- (9) H. Shi et al. : "Template-Imprinted Nanostructured Surfaces for Protein Recognition", Nature, 398, 593 (1999)
- (10) A. Aherne et al. : "Bacteria-mediated Lithography of Polymer Surfaces", J. Am. Chem. Soc., 118, 8771 (1996)
- (11) K. Uezu et al. : "Novel Metal Ion-Imprinting Resines Prepared by Surface Template Polymerization with W/O Emulsion", J. Chem. Eng. Jpn., 27, 436 (1994)
- (12) M. Yoshida et al. : "Metal Ion-Imprinted Resins with Novel Bifunctional Monomer by Surface Template Polymerization", J. Chem. Eng. Jpn. : 29, 173 (1996)
- (13) K. Uezu et al. : "Metal Ion-Imprinted Polymer Prepared by the Combination of Surface Template Polymerization with Postirradiation by Gamma-rays", Macromolecules, 30, 3888 (1997)
- M. Yoshida et al. : "Spacer Effect of Novel Bifunctional Organophosphorus Monomers in Metal-Imprinted Polymers Prepared by Surface Template Polymerization", J. Polym. Sci. Part A: Polym. Chem., 36, 2727 (1998)
- (15) M. Yoshida et al. : "Required Properties for Functional Monomers to Produce a Metal Template Effect by a Surface Molecular Imprinting Technique", Macromolecules, 32, 1237 (1999)
- (16) K. Uezu et al. : "Metal-Imprinted Microsphere Prepared by Surface Template Polymerization with W/O/W Emulsions", J. Chem. Eng. Jpn., 32, 262 (1999)
- (17) M. Yoshida et al. : "Metal Ion-Imprinted Microsphere Prepared by Surface molecular Imprinting Technique Using Water-in-Oil-in-Water Emulsion", J. Appl. Polym. Sci., 73, 1223 (1999)
- (18) K. Uezu et al. : "Molecular Recognition Using Surface Template Polymerization", Chemtech, 29(4), 12 (1999)
- (19) M. Yoshida et al. : "An Enantioselective Polymer by the surface Molecular-Imprinting Technique", Chem. Lett., 1998, 925 (1998)
- (20) M. Yoshida et al. : "Surface Imprinted Polymers Recognizable Amino Acid Chirality", J. Appl. Polym. Sci., 78, 695 (2000)

- (21) M. Yoshida et al. : "Chiral-Recognition Polymer Prepared by Surface Molecular Imprinting Technique", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169, 259 (2000)
- (22) 足立吟也 編著:希土類の科学, 化学同人 (1999)
- (23) J. Yamagawa et al. : "Novel Organophosphorus Extractants for the Recycle of Transuranium Elements", Solvent Extraction Reserch and Development, Japan, 4, 12 (1997)
- (24) M. Goto et al. : "Development and Computational Modelling of Novel Bifunctional Organophosphorus Extractants for Lanthanoid Separation", Sep. Sci. Technol., 34, 2125 (1999)
- (25) F. Kubota et al. : "Extraction of Rare Metals with 2-Ethylhexyl Phosphonic Acid Mono-2-Ethylhexyl Ester in the Presence of Diethylenetriaminepentaacetic Acid in Aqueous Phase", Solv. Extr. Ion Exch., 11, 437 (1993)
- (26) M. Goto et al. : "Development of New Surfactant for Liquid Surfactant Membrane Process", J. Chem. Eng. Jpn., 20, 157 (1987)
- (27)前田達宏:新規抽出剤の設計と希土類金属抽出への利用,九州大学大学院工学研 究科合成化学専攻修士論文(1995)
- (28) 吉田烈,他: "The Adsorption Behavior of Some Chelating Resins for Rare-Earth Ions and an Application to Their mutual Separation",日本化学会誌,1993,549 (1993)
- (29) H. Kumagai et al. : "Cromatographic Selectivity of Rare Earth Elements on Iminodiacetate-type Chelating Resins Having Spacer Arms of Different Lengths: Importance of Steric Flexibility of Functional Group in a Polymer Chelation Resin", Anal. Chem., 70, 4070 (1998)
- (30) T. Miyata et al. : "Novel Synergistic Agent for Selective Separation of Yttrium from Other Rare Earth Metals", Sep. Sci. Technol., 30, 2349 (1995)