JNC TY9400 2003-010

BRI B & ORI O BR B R A

(231 % BUERERE D3

QLR REE)

200343H

RAH LERYP L%%XFI?‘—’

L=

(N

BIREHE A4 7 VR KELF Yy 4 -




AEROEMERE—HE2ES - HH - BT 555, TalcBRWEbHE
{FEZ N,

T319—1184 FIREIFEREENFR 4 EIH4 9
B D1 &7 ) B SRE
Hfrmpass B R
&EaE ¢ 029-282-1122 (£3F)
Zw w72 - 029-282-7980
BF A —)V : jserv@inc.go.jp

Inquiries about copyright and reproduction should be addressed to :
Technical Cooperation Section,
Technology Management Division ,
Japan Nuclear Cycle Development Institute
4:49 Muramatsu , Tokai-mura , Naka-gun , Ibaraki 319-1184,
Japan :

© HREY A 7 IVBAIRERE
(Japan Nuclear Cycle Development Institute)
2003




JNC TY9400 2003-010
2 0 0 3 #% 3 H

BB EE R BB & OV AR D BASR BN R F R R AT
(ZBT D BB EBRIE DB 3

GRRIERT « BB 7 VHARKE XRAMERES)

ZJF F. =R L&, Emilio Baglietto', HA Bz,

A.P. SOI'Okin“‘\ ﬁﬁ}” %ntt\ ﬂ(% ?-Ezn-n\ LLID %nna-

C |

B, BRZHEE L-BREEREFF GRS RBRFIREHE T L, frx 2R
SRETICBI SRR REES AWSACHBERESM. HHMEB I UBEOEE S E8
HMTFEAMD L TREL OB ERITRIC T 2B IERBE 2R T 5 & & HIZ, Design by Analysis @
W=k LT OBBEARBEIES S 21— a VERZRET S, ERAGHEICERAXS S
Ry bPARy b 77 7 F—RERCESBERROLT Iu—FL by, Hfv I
L—raviik-T, BREE, BFEa, SEHEE, Tt B - RTOESME, HEEE
VIR O b7 E ORERSGG 2 ol T msiFE LOBFEREHORELERS £ T 5,

BAEER iR EROBOEEERAFAIFA LT, BREEAED L 5> R EHBREE TS
TR OB R R % I AT AL RESE Y S 2 L—a v a— FEH%E L. EBE
ERAIFEOFEORZLUEC SN TERBESHREBNERAGEEZHEA L CRIET S L b
2, UEESACHAMEER I SOWTERER LEBR UBEORERETo, £/, &
BPEEILR Y I 2 v— a VEZAEFIERAAZ Y VESEKIGERA LI-ERORYES,
AFESTHRIZ & D EBEE R LA CFD = — F STARCD T X B L1 2 W RXIEHI N-S F
FOHERRLEBELUTRTL LI, EBR - = 3N F—0HE T o R 25X HEBO
FEEFHEIL L 3 RN O EOEERPEFEAIN, S5z, AFERIZRLRWVERED
FREIEREEBERREERICAN T, BMBI0BE AN CEEOTINE LUEFAI 2 RN L,

YRR I ERER TR LM
" ERTERZEREERE 7 —
Institute of Physics and Power Engineering
ONMETE ) -7 P EER
T KT Y v ¥ — EREWRRARE RSHETRE -
TV KBELBEE ¥ — ERBIFRRS RkHETRES L~



JNC TY9400 2003-010
March,2 0 0 3

Development of a Numerical Experimentation Method for Thermal Hydraulics Design
and Evaluation of High Burn-Up and Innovative Fuel Pins

Hisashi Ninokata', Takeharu Misawa’, Emilio Baglietto’, Takayuki Aoki**, A.P. Sorokin™*
Isamu Maekawa™™, Hiroyuki Ohshima™"* and Akira Yamguchi ™"

Abstract

A method of large scale direct numerical simulation of turbulent flows in a high burn-up fuel pin
bundle is proposed to evaluate wall shear stress and temperature distributions on the pin surfaces
as well as detailed coolant velocity and temperature distributions inside subchannels under
various thermal hydraulic conditions. This simulation is aimed at providing a tool to confirm
margins to thermal hydraulics design limits of the nuclear fuels and at the same time to be used in
design-by-analysis approaches. The method will facilitate thermal hydraulic design of high
performance LMFR core fuels characterized by high burn-up, ultra long life, high reliable and
safe performances, easiness of operation and maintenance, minimization of radio active wastes,
without much relying on such empirical approach as hot spot factor and sub-factors, and above all
the high cost mock up experiments.

A pseudo direct numerical simulation of turbulence (DNS) code is developed, first on the
Cartesian coordinates and then on the curvilinear boundary fit coordinates that enables us to
reproduce thermal hydraulics phenomena in such a complicated flow channel as subchannels in a
nuclear fuel pin assembly. The coordinate transformation is evaluated and demonstrated to yield
correct physical quantities by carrying out computations and comparisons with experimental data
with respect to the distributions of various physical quantities and turbulence statistics for fluid
flow and heat transfers in various kinds of simple flow channel geometry. Then the boundary
fitted pseudo DNS for flows inside an infinite pin array configuration is carried out and compared
with available detailed experimental data, In parallel similar calculations are carried out using a
commercial code STAR-CD to cross-check the DNS performances. As a result, the pseudo DNS
showed reasonable comparisons with experiments as well as the STAR-CD results. Importance of
the secondary flow influences is emphasized on the momentum and heat transfers mechanisms in
a tight pitch lattice bundle. Also an attempt is made of optimizing heat and momentum transfers
inside fuel pin bundles a possibility of adopting non-circular shape of fuel pins for better nuclear
and thermal hydraulics performances,
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FRERZERETILICHAPR DY, FENEZERTI LIIEBOTEETH D, £, B
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THARFREFRET I LTk 3,



JNC TY9400 2003-010

3. KL Iab—a UifTa— FORE
3. 1 H7Fx URARTBRIA TS 2 KThORE

BEE S ARRERF TEERE T ML, MBI 2 BER LURRERREE TV
FUBMRERE T, ThH0TFNENITH VRS RE L TOBEAMNIGCAE IR
ESROERERT—F BLETH D, TOLDHIE, BLR0oFEFECERT2E 22K
N OEEHENRER IS (Appendix A}, LR THEHEAK Iz —YaritksfF2
RENOTFRUPEEE 25,

bbb, BEESEFTF ¥ RARE_EZRRNOFE TR, ERA S —AdhEl,
EleEWRIMEERE THONERORERCHEETDLEENSHRINEREL 20, BIEARF
20 DIERVPFENEZITO ECOMOETERS,

=RAEFIO y N30 RAPIZET R TEDO SR 2, BIEMITIC X - TEYHCFHE
THDHITE, EMOEEFHICERT S 2 RENOEBRZZE L-ET AV EHVILES
HBH, ZITHE, 2 RENEZZBELHELZEL2WHESZ, EBERII KBTS L
T 2RIENPSY RARNOFESHICE X HEBERIET 3,

31T, FHEERE 225 2 REEBR=AEFIOa v Ny FAOERMHEALETRT,
F R L AT BAEC <& 2T VA S A XFBRETFOBY Ths,

dy _1dp . 9 (V du; _<u:’u'.)

ou; Ju;
ATy 1 | turb -
Uj ox; pox axjt ax; V| (u,u ) vf =Y - (3-1

J X

TRV EEADORSRE L S EETE L TR 5 MSV (Multi-Scale-Viscosity) £ /L
RUCL T, VA 7 AREAEHE Lz, BEBILFEICIE. BFD 2% —4 212 AV,

—#iL LT, Reynolds $=24000, P/D (P:#AFHEORIEERE,. DARHEER) =120t ED
B STAL SN F MFER R OHEREREZE 3-2 (2),(b). KBSHR LT ERBERE(OICT
T WEFLARICR S TFERMIZOVTIE, 2 WEhEBE T LIk, ERER
IRENDERETFRL TR Y, v FARNOBHREESH, & IZETEoRESI %
LT, 2 RIENDEENRKRENZ LBHERTES,
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FhiZ TR & LT, Re=8, 170, Re=160, 100 MFE. THENEMMEDHK 1 %, 0.2%% TH]
ERTW3, ERNICIIEREOESLALALOIRBANBELD O L FRENS,

7B, INLOHEERHSCREZELLEMEBEL. ERNICIIBIEEETAICESNT
BY. BREEAENTTF v RO 3 RTEAMRES ERDICESEHR, =¥
WA D= X LEHATERN, £, 2REARSEER EHm RoomeE%T,
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PUTIE_aNEZ, ChETRESRR I a2 v— s VFEPRNESGERICER
TRHBANL bIC R -T 2 LIZEBL, H2 RRAITERO T RTBWCHIBA L-¥E
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o, AEMREEACHEEAHBICRERTOARNESNE L, > TARE TR,
ERXEERICBIT AEEEARY S 2L — s VEFAOBRICOWT L INRT 3 = L ILEE
BTHDHEEZD, ok, BEFHOBEABESBBREERICBIT ZEEANS I 2 L—
g AIFRERRITH S,

3. 2. 1 BROFH

BEFEETOR Yy P ARy FFEMEIT 5 2D, ZRBIC BT 3MMRo4 TR <,
BESTSHEZEICHR FEE RTTEAATERIC BT 3 XRFRA P LR LE
. BEU, BEFYIal—ar~0BREEBRL, B OREREOTNL, EHE
RIFNT OXFH, ERIRIIN., HEB IR —ROXFE 2 RRAICHVE 22T
DREAZEAFBRICEN L CRRICEEEICEBEEBETS L L bic, YE, S
OWTHR-RRIC L 5 KK AF— L& FEMBA v & 2 (CHREA L EEESs 25—
LT 2IROEEE L DT HF LA « Ny a 73—, 7 F v RABROEERICS LTI,
—REREERZEAT b0 L L, T u— MR 5% 7 IS Ay AL,
BRHET —F OBM, TR MBEES o — FERRIH HtE ED,

2— FEARHFEICESE, TFIRITT AN MEERICBIT A HEEEERND 3 /1
X TROLHER, EHE, XX —REREESMTS L LT, ICCG EIC L 75
BEMEAZAD, EARa— FORBEITo/, SRBICHIT REITR X USRS E &t
MAHTTOFRY U7 4 e Y02 REERICBITHEE L Fv— 7 HEMEICHEA L.
I— FOEAMELHERLE 331 2+ 54 7n—Bas~rFv—rBHsm),

By Ros BVERIZE T 2 PURBHAIT ORIBRPE & LT, AEAs— FORKERE, RO
GRONY FAER~OERICH T2 RELERALNICT S & 2 BRI L 5, Gabrilakis [3]
WL BHAE L ARRERBIIBITDERSY 7 FRORKEE a2 L—va v Radlk, *
DFER. +2FE LR (Re=4,400) T3 L, K-K A% — A TIIMEEHOBER K E L,
7 =7 N1, ¥ MFEIZH L 80x80 £7213 100x100 BBED A v I = HEITIE. BIE
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SX-5 T DT MALZETLTCEBT DL & L,
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X0, FFT#8=— FEEALT, H¥kRep,k,). Imp,k,)¥kd5, Kic, 5 ERFT

7
Reg,,,;(k,)-2Reg, (k) +Regd_,(k,) Re¢u+1(k) 2Reg, (k) +Reg, (k,)
Ax Ay? (3-4)
: Red., (k. — ‘
—4sin(”£“‘)- C‘Z"Z"f 2o Rep, k)
Biw
Img,, (k,)-2Img,(k, )+Im¢_u(k) Re gy, (k,)-2Img; (k,)+Img,  (k,)
Ax* ay* (3-5)
—4sin (’;’Z)% Im g (k,)

B, N7 PABEIGELTWS Ry — U & /i & S AERIESCG B X BARETHE L.
Reg;(k,). Im@,(k,) ks, BB, ¢, 07— U il
N N
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Z Z

vy  (3-6)

£Y, FTRBa—FEHERLT, ¢, BREB, RFREOMAL LT, NxXNy BED

SRIERT v 2 o FERIE Nz BE Z L1255, NxXNyXNz BEO 3 KRERT v Vo
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—FrOEFIbL, LVBEBITXAAERET NS,

ANT7—FHEE TH D VI-Alpha6 833 SW (VisualTechnolocy) F Iz 351 T ik,
NoxN,xN,=64x64x64 DFFEITHIT A RT v Y HRAOFHEIZBVT, BED ICC6 EIZ L
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I EBMRETI, W1BEL, W ERESHKSRE,
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CBIDRT v Y HEAOHE T, 7 M HEOREESN - BEEEZ®EA LE
ICCCIRIZ L RFREZ AVEE T HA 12 BE LTV 3HEBERIA, Z dF A1 FFT 2 fuv
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¥ Re=100 36 X TF 400 DIRENZIZ OWTHEZIT o7, HIREEDAF — LD EIT I 1280
2. FHEID Reynolds iz S\ T, I IREBEENH « 2RAXT—LFHAWEHE L, BB
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R REREFFTDHONDZLOO, W « FRERAX—LEBVWCHEFERT, XF
v—/ DFEREBER —~ELTW3,
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3. 3. 2 EES7 MEHEEIIzL—ar (D
(1) AvirapdliE

X 3-6 (= BHEEIR L R AEEFHEERT, 1 XI X2 DFEFEERE A v 2845 100 X100
X64 A v aDEZT, HEEIES —F 8% 01 (UEIMRE : A~10Y) & LTHEZRT-
7

HEEBOE X y 1, BEREw,, Bistsy L3538, UTOREELT,

yt=2 M <5 3-7)
v

Bt w, ORI, RN . A p . EHHATIOHE w, £ b
w, = 5. and T, =&£=ipwﬂ2 DOBEFEN B w,=\/~§w3 (3-8

THEZbND, 2B, BEEEL. 759 R0ARMNE, LA/ ARE Re OEEE LT
BERELFG A 2RO E H e,

03164
A= (3-9)
Avatd RAzid, BFAEERTGEW, . BtRy L Lisk &, UTORX
Azt =BT W (3-10)
14

X > TERFTIE LIZfEAZ 25 9.4 LA B L ICRE L. FEICERTLLE X, y FA®
Ay oA Xhx, Ay bRIERICAS, Ay K056 ~ 5. L7gd K OIERE L. ¥ 7 FOWiE
FE$ebb, x, yBHFOEERBRA v =it UTOXTRDT,

1 a1
yj=5(b‘—]) W R J=0,1,2, ..... ’N,v (3'11)

EXT. NFA v aBTHY, FKHETE x yEHFEE LIZ, N=100L LTH3, ali,
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TERZELERICH L, 7 FRERTEDFIZ, ERTEEShiAmiE vk
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BT _REEARMESMIUTOXTELLNS,
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(2) BHEFRLEE
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. TOE#RE (Re=4,400) O—HlERT,
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3. 3. 3 E®E& FEBEE Iz V-3 (D)

X, v, z FENIIXIX6 4DERY 7 FHABRERT, 3. 3. 2 EES 7 MFKEE
ByIizlb—val (DTEALEHEERBA v a2 0B8k2BAL., B X —F 0%
0.1 (MENRME : At™10%) L LT, LUTORUCH D 47— RO CERART 2 EB L
Too BERGMIT, EHFMICFEATRBERICIITEIZ 2V Tidnon-slipffk, EAIZZ/ A <
EEEZBEAL, ERFRAORHEADICILIE. EA& bRANERASMGXERT S, ¥
7 PEHHEIT, MEBEO LV EREkINE L0, TTREANIZIZS. 3. 2 TCEELE
HELAL, HIBIVIVIZL VE#MRA v 2 2AVEHETHS, |

#3-1 FHEEE

HAmES K

HEEEE s |
_ SREEREZES
HHratHE1[300) 1.0x10%6.4 | 80x80%100 |0.714~7.34 | 0.714~7.34 | 19.3 {6AEE M ES
2HRBEPRDES
SAOMErEN|300] 1.0%1.0x6.4 | 80x80%100 |0.714~7.34 | 0.714~7.34 | 103 | 2 pEchiia 224}

Rez| &StE&ER Ao ¥ et P =+

SRFAERLES
HORETEM| 300 | 1.0x1.0X6.4 | 100%x100% 210 | 0.567~5.87 | 0.567~5.87 | 9.18 | 6R¥ERE chin 3243 |
2RBERLES
SSHEHEIVI 300 | 1.0x1.0X6.4 | 100100210 | 0.567~5.87 | 0567~5.87 | 0,18 | 22w chiy &4}

2RBEPLESR
Gavrilakis | 300 [ 1.0X1.0%64.0|127X127%1000| 045~46 | 045~4.6 | 0.42 | 2Xrigifrchi, 24} |

HHEEFORES y i3, BREEw, . BitERy L3358, UTOX (BB 2RiT,

y+=MSS (3-7
14
FEERDIE w, OERSL, BEEEA. RESEp, ERIFAESHEEwW, LT3 &
w, = %" and %, =%%=§pw; DEFEP G wfz\j%w“ (3-8
THEZ NG, P, BEREIL, 75U ROARNE, LA /AR Re OBIKE LT
HEMNALTEIC T 2 kO E AV,

0.3164
A:R.e—_oﬁ (3"9)
Ay add XAk, BFmEREEw, . BgSErv L L&, BToR:
Az* _Aw, (3-10)
v

I K> TERTE L {BAz #5RE Lic, FEICERTIE Lz x.y FRD A v ¥ 294 XAx,
Ay LREEEIZAXY, Ay 056 ~ 7.L B K5 ICBELE,
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HE#RZE 3-12~8 3-19 17T, =L, SiFREES Tt w, 2 ERTICER L
7o MMOREPIZAVENARER EOBBELTIZRT A,
'

W+ _-— (3' 17)
W,

w, 4 BEEEETER LI BEEEE
RMS 731, VA / ANRIEHAGA T, WeEERTICER L,
w* =Ei_ (3-18)
w

w' 4 BEE AR CERIL Sl R

B MBGEST. RMS M. LA J VXIEASTHRICHOWTIE, ERwEIcsWT, BEREicE
B2 B EOMEEESE L, 2 RELEESTHICOWTY, ERFEE 4 ~ORBIz
Ri-fz b &z, EBRETO 2RMNBEELESHE L,

THREELLEAMIIR L, 77 FNERFGES L, SR S hi- 8 m i w* b Bk
AL SNT-BEN D OFERE y* O BIfR (BEERAI) CTHEBENh D, TRDLEKERITERE TR
NREEAMICESMIIUTOXTEZL LR S,

y+=y-w, , W+=i (3-12)
v w,

TEHIND y* & w ERAWT BRI S s OTT ., BEEEEOREIERE TIRma :

wh=y* (3-13)
WREVS, BEME A & BN T EL IR Claoat B Al -
W =3.2In(y*)+3.9 (3-14)

1295,

AEERIE. H3-1205M3- 19 2B LTRENTHWIERY  BA vy vadnbflAvia
272512 2N T2 R EIC & BEHE S Gavlirakis DRER L& 9, & < ITEEE AW ([ 3-15)
EELTIE A Y 2 TROESERAVWEERMSE S Gavlirakis[3]ic & 2 Fw—J gL
—ELTW5, SEOHETIE. 5 KEERIZHER, Ay ia281< LTHEERN
HEBERENEONARY, SUHEEDAF— AR LEESHRTHAZ LNZORRATHS -
LbEILLNB,
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3. 3. 4 HTEERAFEERBIATTH

AEIZROTE, FHTERNOREZE LCALRBIC R 5 8nEOME R X . By
Lalb—¥arill>sTHLNIARER L ERERN L OB E1T 5,
FEREMBITHIT 5 = AINX—RERNZUTOXTEIBNS :

3T oTf A 3T
+

— U, ——= (3-19)
J ox . 2
ot F pCp axj

ZOEmE. AHERARMERL CEHERFEREZFENTHEONIERB 2RO, =3 AF—
FEXOHFEOTEIIF AN D b DL T2, ERREFOEMEREE L BEELRD
e, WOXNTEXOGNOIEEERELANS :

T(x,y,2)= d(T”') -2 =-8(x,¥,2) (3-20)
dz
wld
(T,)= vt (3-21)
| I wdy

2945, B NETRAF—RERI.
6. 36 _ A 2% d(T,)
+ = +w-

%0, 86 _ 3-22
o i PC_ 552 YTk o2
J P
wd;
d(TM>=Tf W 1 gL (w)='{ > (8-23)
dz o (W) Idy
&0
2
9., 90 _ A 3% T-w w (3-24)
d Jox, pC 7.2 o (W)
J p
Ligd, 72720
W= | (3-25)
o
’l:.= d, (3'26)
PC,w,
00
g, =A< (3-27)
ay wall
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MELDERFOEZ HFERO LB L, Thbb,

BEBERRYE  0(xy=0,2)=0(x,y=L,,2)=0 (3-28)
AR S 8(x+L,,y,z)=8(x,y,z) (3-29)
8(x,y,z+L.)=0(x,y,2) (3-30)

BERFERERK 3-20 12, HEHROPZN 3-21~F 323 TFRT. HEBEOEBIC, @S
PToRRILFRERIEBITIEEEES I 2L —Y a v B OBRbEE . T, B
B2V —vayTRONEBESFED LICFHEE N Nuf X, DitusBocler DR[9)
B LT Sebban DR[10)IZ L 2 EL OHEIZK 324 ITR T CHODED S, EFEKY I 2
V= a il KAAGEEREDO FRADOEBEMEDIENE N B,

28 NugtEgizld, PR & 85 A OWE T HFEECEBINS Rey, © 5500 2{FEH L

324 IZHBE N3 ZBEERNEU T O LB Y TH 5,

Dittus-Boelter O, :
Nu =0.025 Re2® pr (3-3D)

Seban D, :
Nu = (5.8+0.01 Re2®Pr%) /¢ (8-32)

ZlL. R (3-32) EBWC, ¢ IHERETH S,
321 THBEN S Kader DR[11)Z U TFICFR T,

+ + + 252-y/é -
6" = Pry* exp(-T)+ {2.121n[(1+ y )§4((1_+f7/a_))2] +f3(Pr)} exp-1r) (3-33)
=7 L. :
B(Pr)=(3.85Pr*~13)*+ 2.12In Pr (3-34)
-2 R 1Y
= 10_(Pr3)_rl (3-35)
1+45Pr°-y*
Uniform heat flux

X 320  ETEHRER
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60 5
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3. 4 HBREEZRCOEEARVYI=L—Var
3. 4. 1 ﬁﬁﬁ%ﬁ%&%mwtﬁﬁﬁﬁﬁkﬁm
R ATEOIHIERREZHET D20, UTOERX (FHAN MNEER 1y 5 2) b

MFET D, TITuid £ HAOHE. o ZBE, PIZEA, «Z8tERE, TH0BE, G
EEHS, 13EMRERERT,

HERTER
o (3-36)
ox,
BT
ou du, OP o
i, i Sy O Y -37
Pt e Ty e (87
=R R
oT oT ,oT
Loy L4291 3-3
P Pt (358

PAFiC, LREEMAD, TON MNEER x,(x, 5, 2) DPOERBEREIER £,(£, 7, &) ~DE
BIZOWTRT, FHV MEERIZBWT, AV T—F£ Y b FAF, F, ) BEabhi-
L&, AL, BE. STIIT . UTOL3ERINS,

o

g_i::%f_:;_g (3-39)
B
FFIFLT
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Ff_1.9[,95(0& of Y|_1 3 [ .u0f _
T {J A, (ax, &, J]‘ J 3¢ (G aka (&40

1

::u@ J‘i"?:‘ I:‘“T :/\ @J{i%%é%’-‘?‘:/yﬂ/%/:]-‘ l./\ JJ\_FUDJ: .5 {C’é‘z-_ Bnéo

o

of on of
dy oy dy

J= — = 3-42

of dn d¢f (42

0z dz oz

9t on oL

. 3L ¥,
G'=J=2—=L 3-43
ox, ax, (849

FROBEREZERA LT, ThHL MNEERICBIT3EEEREOEXRA L. LTOXSICE

Wt BT LTES,
RIEHGERRSY
Uiy g_f;uj (3-44)
BHEREFR
%_lg=o (3-45)
EEh BRI
VIR e ) o
TRV F—RIFR
Rt e 1 @47

MRS, ZRFTERO L EOFHA MNEER & BREEEERER 3-26 Io7T, U’
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BERERETHD. e epid, BEx. x, OHEAIRY b, g gtd, BEE,, £,0RE~
7 FARRT, IR EH P RE T REOAN S —RERTFHLICEEL, <7 b
BTHBIEICOVTIE, —REFACERSWAREREV 2R TERCREL, A1
ERER CERSNAME ¢ FRTRLOCEBLE, ans— MEFIC LS EAREBAL
2o

BFRE LTI, BEICOWT, —RERERCERSNEU/ OB TEBE LR S H—
FEFRLEXONEH, REFESRZERT 3 ONER, HESEE. AU —HxR
EOWERH B, auy— MEFERAOCNE, 854 LRF vy PHRIC. BEOF AN FEE
RS b —REERAA ~OLHE 72 Y | FRESRTH, BEXZEBCERT BT
. ARITH B,

AEFRELLTICFRT,

FIEL. BFRMIBNT, HIE, BEEL Y, ZOFHES o] 2K 3,

. 1, . 9u, u 3 ( uou)l
Pyt Ar| ——pF iy 9 i T -
wl=u'+ t[ JU a§’+ Ja.ff(G af")jl (8.48)

FiE 2. BFEFCBOT, ROREWE(U') %, ROFES U L 0 HHELTRD B,

(U‘)P=JgTéuf (3-49)

7

FE3. DUTOEART v Y rREMHL,

K3

At d G oP
p 95 d¢;

J o 'Y (3-50)

FU4. RET P LY, FLVEBICIT sRERE(U')" &, iy SEESR
TRES,
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n+l

vy 2 0¢7 OP 3-51
i ] p axi af‘, ( )
A op "
iy iy AL .
)" =(v’) -;Gfa—g_ (3-52)

H—FUF iR

Joat

¥

B 3-25 =usr— hERF

3. 4. 2 BEESHNIEREEICET AR

BHF T — R HER 2 o B 4y 365 L - BLiIC oW CEEE RN 4 IS B BT,
+RRELEAMERASKEICER T2 LE 6, BHFMICEASERZEHE L, LiL,
FERAFGHEICBVTIL, BEICARRSS 2 bh e GE, irmicEticohT, |
ERERTZ, 0D, BREFCLEMFACEANMERFELERT 29I, 3. 3. 4
TR LT ERAICB I 5+ RE USRS E I, BE TS

_4(T,)
dz

(3-53)

T(xayaZ) z_a(xsy’Z)

LT BEBEIT, HOEE 2z ICBITSEEPLDBREE 2 FHICERTH LT, BE
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BTV T AR A EAT 52 LR TE R, 22T, (T,) ik AA2 BETHS,

N7 BEOBMFEORAEL, TR EIC—HABRARPEL LN THD LEETHZ TR
BB ERTED,

LEOEBRMBREY 0BT, TR 3-26 DEITTRTLEY ., HEH S ORBHEMNICE,
T, BEREISEMCLOT—ETHY ., M oilificERT 3 RERECR S FIox LT
FETHD, LORERLETHoT,

LU, BREMES BB SV Tk, [ 3-26 OEISRTETERNELKE L 128720 |
TR DS IR VOMEFR & B SR TIPS — B TR <, BRI L 0 BREEIC LB N4 T,
EEmBESEAFMIC A2 D, Lich-> CTEMBERH T TLHENBIIED A ET
HY, BREML LTRHIb-2TEX B EITTERN,

X 3-26 RERFEIZRT HER &M

TORDIT, FEOTF ¥ —FRREHET B T2, BREARGEEI VTS
AHRETS Z & T, BRERRELIET S L 2T HRICT 5, [©3-27 12,50 AR
HEOHEGROBKEETT, BP0 & (2 =AFR. £2=BHFH, &= ITER
AR &Y,

£7(EHED
SN

EERD
_.()

- Fluid-

®3-27 REHEEZ
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B 3-27 OEREERICET 2RAE. B LCEEORGRE OB E L TIORT,

Fifher R —FERX

of 1 _,0T 1 0 oT

— ——Uf _ - i G* 3-54

ot g’ +Pﬂ.,,-deﬂu,-dJ af’{ i 85"} 59
B #EREFEN

oT 1 d ( " BT] S

- -t A1aG e (3-55)

at p sa!r‘dcpmﬁd"r ag; . agk p solid psohd

Sheat IXEERIZ BT B B/ (EfH7- 0 OREBETH B,

ZIT, AHMEREGTRAVWCERERERNEZMEVTHEOLNSEMBREL ORA LD L
LT, 8 TiZonT, ROXTEX ONDIEEERETT I,

_3(T) :
8 - (3-56)

L2 BE(T, ) ik, UTORTEX LIS,

> (s-U°7)
(T,)=f—— (3-57)

2(J0%)

[fluid

TOER. S REFENL, UToREREN S,

i Sty ) U W -2

96 1. .06 1 d 20 U*a(T,)
—_ -—U’ - -l A, G — [+—2L 3-58
at af" +pjlur‘dcpﬂuidJ afj [ A afk :|+ aga ( )
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B IMriEH RN
a0 1 d x 06 S
v | A G" J— heat (3-59)
at p.m!id Cp.wﬁd J a§J ( " afk psoh‘a‘ Cp.m!r'd
B TR Th DIREHEO R LICB W T, RN
6(&* = center of rod )=0 (3-60)

EREL., P ORBHERLICBIT ARFADBEESRIEZWEEETS - LT, MiFmoA
NI BERRE, KORTEZBZ LW TES,

- J .S eai
oL & o) : (3-61)
o pﬂuidcpﬂuidzU

Sluid

3. 4. 3 HERESEERIZESENHFXOBEIM

(1) HERHED Fik

AETH, 3. 4. 2HCRENEERABABERCHBRSNEERESED, BELlERE
Bt R~ OBISEEBRFET B 10, FERRTERZ VT ERNELEE . A%N
LI DWW T, EUESEREHRE 2 ER L. +ORETE LT o7,

AT FRABLIRFEIC OV TIE, FROESFIEZRVEREBER ¥ v H— FEFRIC
ESHUESREARIC L AERBLERTI itk ), ERECEERICHESH
EFELOHEBEORIE. BLUTRTFER LTS APEHERRICESZ ZBBICONT
DBREZ 1T 2 7=,

FHEF#1T Fractional Step IEICE- 72, ZERIESY L LTIE. 2 IFSEE Consistent A %—
A [7] 2 XTI, MLDTUIL 2 REEE LY R — A %58 Ui, 727 L B ICB VT,
RHEEIZAM 3 SR E AV, BEETIC ST, HHEE BRI 2 REE
Adamus-Bashforth #5 %/ L 7=, JEJ] Poisson ﬁgitfi\ AHERSE OEME T D iz, 3.
2. 2TH~IBEEUC FFT 2EHATBERA =Y 7 6 BIC ko Tihiui, 7=,
Cartesian Jiih b RERE~DERTIL, 4 RBERESER SR,



JNC TY9400 2003-010
(2) HATERANELIEHE : BrRESMH - 5k

3-28 1, BHEER LD FITERETYT, SREEFAOHEFROKE X3, BHE
BEAHm (v FH) ORESE 25L Linb &, ARVERE 824, @HM%E 645 1TREL
7o

FHETRE, BFELAORBLRET 57-DI0, H 3-29 IORTEREERTER (Casel)

&L ANVERICHFEEE - HFEREER TR (Case2) @ 2BV DR FHERTHEL
1Tot,
FEle, BFIA ABRHEFBRICE X AHBERITT 57201, Casel, Czse2 THEFHLOKF
BRIIHLT, 2BYCETT A AeBXHELETLE, 3218 BT X—E%
e RELAME, Ay =Ay w: v CERSNBEEETSH D, xFAB L 2 FhITE
FlegF2ERLTVS, y FRICOR, EEICETFRETIEILEND, FERIBET
EERLTWD, RHETIE. Ay a0l —XT, 1 vz BHEND, 128x64x128 7
—REAy YaDr—RA TR xaHRmE 25ROV T BT A RE 258 < Ui, 64x64x64
JFOHBEFET L, o, HBOBIE, A via, BLUHA v aDFr—RIZ2
WT, AEHE LR CEMESE, FEETEZAVEEREERZ v ¥— FEFICESUE
BB SRR B % E il L, BEAZEIE, £TO—2 & b, Ar-w:/8=0.0005 & L7z,

LY. | 3268 | ¥

[X3-28 2HEER
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3-29 TR

#3-2 BHEIF—R: EALHt

y —
Avi a¥y Avirats X
Ny i
Casel (FZZMEAZFHEE) 64 1.1~I110
Case2 (BMARMEEEREIE) 64 1.I~11.8
EREEA Y v — FEF3E 64 1. 1~11.0
#32 MEI—X Ay =23E (FHE)
WA EE
x S z W
Avialf |AvvadpAX | Avvaf| Aviatrs R
Ny k Nz Az
Casel (EZRJEIERFE)
Case2 (BhARIEIEREHE)
B 128 4 5 128 8¢
AH I — FigF
R332 HEF—X  BAyV23HE )
BAviaita
x M z M
Fuoiall |Avvabs X | Avialk]| Aviapas X
Ny e Nz k=
Casel (BEAZEIERFE)
Case2 (HhEREEAZEREH)
HR = 64 990 64 180
AE v H— F&F
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(3) FATERAELIFE : BHEER

UFICHERZRRENOBONEHEER, BLUKREOBIT, EXEERS v — FEETIC
ESEUEEEEHEORRE. Kin b [6] 8170 L RAR7 PABRESHHEDOERER
T
- 3-30 iz, BEAE CERTLENT VL S ARG ETRT, BREERAY v H—F
BFESHERRE, Ay va, Ay a2 b bilKin BORRY PEIZ L HFR
E—HLTWS, SERESEERICESSHERBWTYH, Casel, Case2 & HiZ, FHHEER
KEVWEARLNT, RFIZ. ZhboBRL—ELTWS,

e
3 o
X?él

£e2 (X =)
T EERIoH- FRTR GEX 150

— K A

5.5 i

e -0.5

0
By

B 3-30 LA J NSNS

X 3-31 icdhFmnd ofhE . [ 3-32~X 3-34 {2, x, y, z & HEICHEELERESR L
FY, HRAZ v H— FRFAICESSHERRIZ. Ay v 20/ —A X Kin b X7 b
MEILDRREBFI—BHLTVAN, BA v vaDr—AlE, A7 MEILEHHER
EHABDFELTWD, BiA Y adr— ATk, iHRTGERTET I3 +52EF
FA ATERNI ERDDRD, —F., ERESEERICEICHETIR, BAya, #A
v ¥ aDENEFNOTr—R TR T, Casel, Case2 & HiZ, HARAY v — FIEFIzE-SL
HEFRL-BL T,



JNC TY9400 2003-010

20

o Cata) Ap
Cage? E,

2_Ea0- reTa gi-ﬁﬁi
o Casel Amira,
& Case? . Awy
- —ESERE??J— FaFR Awda)

EX0

1 1 L T
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B ¥
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[ 3-35 {2, FIREEFAREDELERMETT, BEREERY v H— FEFICEIEH
BTE, Ay aDs—AThH, Kin BOFERLIET—BELTHWRWI LA, SEREL
FEENTIE, ELEZHEERTMETA IS, BFHA X, EEESEERFTRLTY
SENRDLND, BERECEERIZE S HE TR, #hmitE, ILHME L BRI, BFE -
HPHERRIZEZAHBEIROAT. BAvia, Ay vaDr—REHIT, BEREE
A v H— FBEFICEISCFHELRFII—HK LTS,

1.5

a  Casel (X2 a)

a Case? [CCERTRAES
——ARAFZvH-FRT+E (BEAvPa)

G Eagel (R W a)

& Gase2 (BEAvL )

& —e= BRI vH-FEFH (Hxvda)

] Kim et al -

X 3-35 yHRFEHBARES

BEDZ Lhb, ARERCESEHER, SERE LB TEANIBWTR, BTEA



JNC TY9400 2003-010
DERBERICEXDHBIRLER bR b o, £, RUEN T, BREETECLZE

REREARE v U — FBRFICESCHEORE L, BERBEORTF VA JEEEE Lo L
%ﬁ%ﬁ L/T:o



JNC TY9400 2003-010

4. BREEEERRIE X U EREI B R~ OISR
4. 1 ZAESIFREREHETHELE

PRBME B EINFENIC & 3B AWISASAILTY 7 F ¥ RO RN, TRbbERKD
FEHFHEITKET B, WEST, o THESORENH LRKT, EEfrIa1—
3 VOEENFEFHEND, PD R 1.2 XV /ASVFEREHE IRV TIEE o kS ik
BV, BT LUDBEANS SN, BREATRERRERA OB L, FTRECH
~NB LS IHRLEBHETRT, £E Re BEMITICIHBREICHIT 3 AL BEF~
DB LRETSTEELSH Y, BED RANS BRICHO THEE R TES NSV ELT
B,

FIZE, R4 — 119 U ESEFLEV# 18, BREAZAEE LY V] 7IOGREL
PR R L b D Th D, ARRDIE, SO S ICE— PRI L OB TSR
BN AHE. 19K EABLHEFEEIRY L2 Lb—Va itk THET Z0ORBET
BB, 4.2 KT, FEREROHC LY, B CIISRICHT DRMEER SR 35
T HDITEBREDOF v v TR TR SN BRAFEOC LV REFEE L THENEITI, =
ZTiX COOLFD iz &£ 3 19 R ESERED IRTMBIT O RIZE-INT, —FRDO 3
Bl LA O AEFIREHE TRELROF-Ic SV Tk 3,

0
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@,
DO
@,
QO

4 — 1 EBRER
B4 — 22, F =3/ THMAELRIE LB % R (Heina, et al[12]), BERRIC
LB E, RIS, PUERERBC—EUVBOXr v (0°) BolEh, vTFv X
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v # 6 ORBOBEEABISHSRITERLEERETT, ZOZ L, PDs127T, &</
TTVGROGFETETIED, TOMEMIL, HEFESL LTEFD 23—, T4 L
LT MSV (Appendix B 2H) % v iz COOLFD I & 3 2 IRt Cig bz FRIFEETH 5
TLEBRTENTNEG,

LNLRBEL, PDHR 105 UTOHBE (M4-1TEUH1EEUVETXy o 750, i
[RERDE THABEAN—EHEML, ¥y vy 7THTHEUOEI T L WS W BERT -
B, ERAIZBELNTVWS (K4-—-428H), COOLFD 0TIz L3 &, HEXy v THIc
BT, eLAW FHOBREABIEABELNTEY., AMETFTVICER TS Z LI3TH
NTH, ZhETOEZAZOREIIBFESL TV,

F = 2R CEM L MRR N EER L AHUNEZEE L Ty T v P LAERHE
ERTOF ) U LERD 7T IPPE TERS TV 3(Ushakov, et al [13]),

FEBRICLDE, Er# 1 ERICUH# 7 ORBERIBICIT 3 HETRESHIT. B
OEBGEERIZE Y KB A A—X T, E7F > MEREOEN-BGEEEN D BITK
¥ bARy FOBREEFHHEHEALIONTHRONRERATWS, UEDX 5 hER
RRBEERE ST T 5 COOLFD T & 3 19 R BRSO “RTMIC L 3 =AEFIR
BHREENELER R, — X/ X —RIZET 5 M E0EMIL Appendix B 1279,
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B4—2 BEREA (Heina, et al [12])
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4. 2 MBREEREEIAR I 2Vv— 3 rOiER

FETI., ERAAEBREESENICRY 3 HHRELEERICSWT, BERESEER
IR SN B REN B ESCELEEEHM Y I 2 v— 3 (DNS) BESELERL.,
ERLEOEBEITS,

4. 2. 1 ERKRECVHEEROS IV Toy 7HE

FRARORIESHEECEBILR 2L~ a b 2ERATAICIT. BEATELS
PERELREBW S+ L E o T LT HEBEEROENARE B SR U B RS EmER 2095
ZEBRTFREND, LR oT, 22 TCRBROMFM L BAIRMERH T& 2 BRAAKOR
BHE 226 72 BRI e BB ABHEA RIC D VW TEBEEEY I 2 L—a VEERT2 b
DETDH, FFRZEBNTIE, BUTFO (1) ZhRB3TLL, 4 >D5/NEEL 2 ERE
PEIETREE (Fr v ) RU2SOF/NEAEL 20 DE=HEERIC VT, B
— CPU TEHEEM S S 2 b— 3 U&7, 19k, EBROEIRASIREES EICH L OB
THHER, ZhboD7ay s 2 RERFETHS LEDREREEY 52, SEEEF2 5
BOFRICE 3= F7 oy 73R EETS,

128, ZHELFI DRBHES ENFEMIER MO M EFITBEICN S S RE SR TVWEA,
WERLE LA SV REEHAO b OTHY . BREBEEI S L2 L— 2 L TERTE B
BOVA S NVZEHRHL0, O00BRETHIZLAWRTHE, MEARTHRTSTLLE
FEERT—F LOWBRIT LI BRIF &L TN 2200, HELERICE 25 — 7 DR OB
£V EHRRTHEA TR TH S, MELERCORIEERIT IR, L0 BNLA 2 AREIC
B SFEMLERT — ¥ OmBHRESEOBREL LTisHah 3,

(1) FHEAFR

B] 4-5 OFREIT, FEMERELRIMEESKERT, ZARSIO, MFRc—#ER, B
RECFID B LRy FARRELTWD, AHETIL, REHEEZY O SR OREESE P
ELIeE &I, PO = L 2086053 EMRE L,

Sy FARELEEMER BERT 01213, BAYA X0BERETI o encE s+
ARHABEERE TS ZENEENDZN, TOEHITE, HEo— FOWIHLE b=,
LDV o 5 ORERECHELDILETH D, AHETIE, TORMBRLLT, AL
RDOXFEEZEZ T, MFPOBR/NEMEA ZRAE DRIV T, B
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FETLE,

M 4-5 OERRUERIC, RHETHENT OB/ ETEVE 4 AL SR EICD
WCORE (LT, 4 EAEE), RU2 BAERAESDEERBICOVWTOHE (BT, 2¢
JVEED) OFEERERT, #FME 2 B, BEEPLERSEHE vy, 2 @RIy X
bICEEEE x5, RN KRR LEAREEEL TV 5,

HEGROEFMES L, (X 42AEE, 2 BAHEEE, 320, £13. L9DE Lis,
720, B = 45/1,. SHgHEE,. LFENSEDBRI)E. LTOXTERINS, ERED

FIEGHROEMERTHD,
D, 243 2
—=——(P/D)" -1 4-1
D ( ) (4-1)
= =
v o
> s/NEAr )L h S
N 1
PR 9 a O
R - I =
Iy - -,
g b}
:
X o 3
§ : 5
@ \T§
L 4 l;J o
8
zZ, W Pitch P = 1.2D Z W y
& =T
XU X u
obr JLEHE A4 LEE

K4-5 FHEHR
(2) BREMHIZONT

[ 4-6 (=, HhFRICEEREEICOWTOEREM 2R, 4 CAHE TR, BRHEER
IRV LEREGER L, hHA (z #hFm) OBEREICIE, o ELEMELK
HBHROBEREGE LTEZ A2, BERESE2ER L, BArFm x @hm) OBERE
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oW Th, FROBEHNG, BHREASMEZEALE, 2L, BREOH X RUER
—HLTWWed, MhROER L FRORMEREGHZERTI D ERTERN, £0
#, B 4-6 OERICTRTE 50 x i BB 2 FE £, AAMOSERES 2 FERics
. TAENDOERARIZSOWT, AEFEICEASEE M- TERREE2RE L, T, y
<0, x>0 BRI DEAEEER L THE LRKET, Foi#E~<s Ao x FRESEDRy
HmRsr %, REFEHEID i 60 EEEER LI, y<0. x< 0BT 3EREHHEE LTH
ATD, T y>0, x>0 BT AERATLEA L THE L-RET., EiSicis<s by
Dffp&E %, WFEHEIDIC 60 FEEEEER L%, v> 0, x< 0 KB T2 AES EB L THEAT
Do

2 BARE T, SREHEEEIIC IR D 2 LERAE 2. x S0 L TV A RFREIC, SEAE
HERENZER Uk, B7RoRERECIRAMERSEZER L, AFMoEREIZIT, 4
EAEE L RBROTE~7 M OEBERE S EREGEER L,

4 EABROER TR, x BB T 3B EICRELZ BV ASRERZVE, BFROERE
2. x WER 2 SIRICHT T, FAFRE SO CHEORMIBER EMEEA L2 Tk
DRy —F 2 BAREOHER T, MFFEICSERERSEEZ AR TR BV, 4
EAREO X ST, AFMOBERELR HIT B HET2,

BT BE AR
A sEm
TN S e AR
4 )LEHE 2+ )LEHE
M6 R
(3) FERME

AHETIE, THERIDE w L SHER D, TE% SN BER Reynolds 5 Re, =600 DEL
FICOWT, ERHEEET LR, =70, TR w 3UTOXCERESI S,

- Twall
Wy =
p

(4-2)
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DI, plAEE. Tew . HESURICE LTV ABEREESEIC SV CESHE SR g
(A HiEE DREmE AMTIG I TH B,

AEE TR BFRSL 2 T o & SHEEE ), TEESN DL Reynolds 5 Reyyy
DT 10000 DEFRIZ DWW TESEEEHEZET TR LERAT, Rey,=10000L Li- & &,

T O ERNELTEICBIT D, Tea PEHT IR

- —2

Twalt =§ P Waulk (4-3)
B
A=03164-Re; (4-9)

LORDONEBR LA /) VR Re 13, #) 600RBEITHST 5,
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4. 2. 2 HEF®E

(1) ZEFEXLRE

AEETIE, A» FPARERIET 5 FEEREREL, SFMEREARE dP/dZiTi>T

BEVAND, 12751, dP/dZ b. EYSREEH AMTIE S Twa £ 7213 T ESEFOE w, D BRI,
UTO@Y Ths,

- —2 D, dP
Twalt = r=—— (4'5)
NEPWeE T

AEDOXEFRATH 2 EHREFNLEREEERNT. ERAESEERIIBWT, UTO
L IR EN S (Zang et alll4d]),

u, 1, . 0u 138 3p dP. v 3 (.,
9 _ Ly _ _dP s V.9 [GrIh :
3t T 9F pomof &7 ae:f( ag*} @9

oU’
55 =0 )

A ot x'_(xl =X’x2 =Y,x3 :Z) % Cartesian FEE, fi (51 =§’§2 =n’§3 =é‘ ) (XS

BEETHD, XHETIK. BFR%Z 2H5R. BFA% 7 7M., @FA%E CFRE L, v
WIENEEER, p 3BT EEREHRE dPAZ Db DTS TH B,
HEBFIIae r — MEFERVWE, Z 0BT ETiE. Cartesian HiiE:

u, (w, =u,u, =v,u; =w)

E EH pERFFLTERS N, RESHE
v (U =U,U*=V,U* =W )
I FELCERSND, REREL. UTORTERSN D,

Ui=Ja—é:i-u. (4-8)
ox; !

T JiErav T Th B,
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Ox Jox dx]
of dn d¢
=l % 9

3¢ an o
9% 0z 9z
3¢ an oL

Fle Vi3, UTORTERSNIBTFELT I NATHB,

(4-9)

,_ OE g
Gi=s22 2 410
dx, ox, @10

f#IEIE Fractionalstep HEIZfE-T-, ZMIZESE LTI, 2 KRIEEE Consistent AF—LA
(Kawamura et al[7]) Z %3, fMOBEICH: 2 TKEEBLESAF—LEERA L, RKET
IZDWTIE, RHTE & EETRI 2 YRS Adamus—Bashforth 3% L7, £ Poisson Hi&
Rit. HEREOEREIT ) DI, BHAICFFT #EALERAFr— ) 7/ GIEICE o T
Rk,

BRERA Y v H— FEFERICES < TERPAEKICOWT, LROERZES. Bl
ETEEZER L BELUESEREHEEEIT L, A7 MHECESSHELRFIC-ET S
HEMTAD L%, BECHGREL T3,

Cartesian fiiEH O XEFE~OER T, 4 RBEMMSERASh,

(2) HEHBTFHERIZONT

BJ4-7 iz, 4 BARE, RO 2 EAHERBTIREHEOHERTFETT, Z0KTFE
FTIX, BEHEBEMRRT A0, BEEEHCETEEP ST, BEERCET BT
i, K-, @-8) DEEHERICBIT 2RO EEBICT I ools, HRmS L TERERE
FERERALE, AFMSERICETBHBRFICOVT L, FHEICEREICEBEREF28A L,

£/ L7t Bug 7 a8, B m, @50, BEmoIEic. 4 B AR T, 642642128
J—F (520,000 /— F), 2 EAFEICBOTIL, 64x32x128 / — F (260,000 / — F) O
FEERA LI, fHEBTFHA RO TE, 4 BARE, 2EAEL I, RBEOBRTFSH
@A L, BEICELTOARTIE. BAAmIC—RkRIC, BFMET91 X4y=10. BK5

FHETF A X Ax'=8.4& Uiz, LAY, Ay =Ay-w. /v CERSNAEEETH S,
X BACBEL TV ATk, Ay=9. 4~21. 2. BFEMBTFVA X Ax=10.8~11.2 L BHE LT,
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BAFRETY A ik, —BRICAz=15.0 L BHE LT-, FRBAIAE d¢izonTit, 4 BAE

B, 2RAREL bIT, Ar-wi/D, =0 00030, EIitAt-wify =018 L EHE LI,

4 ILEE  2hLEE
M47 WENEEET

(3) BHEFIHE

v FVAOEREEREE RT3, FTEHENETIC VT, AURFE+EEA
LICEREFERA Y v i — FIEFIC RS SO EBE S 2 BT L, TIRNELER. &8
Rt RE LTI B LI, FHEERSIC R A B OIEN B 2 IR L LT
i,

4 EVBEIC OV T, Ar-we/D, =30, LI TRHERTRBIN RN 4500, BB+ 5 Fich

Pal

TBEM., 2 EAREICSWTIE, At-we/D, =27, 7 I2RARRBNAY 2000,885 5
FICMY T L8RS HE 2 ZT L, AHESEROEET R A ¥ -0 IR R Y |
TR ES T RE LB ERE L L 2B L, ‘
ZO%, 4 EAREITOVTIZAL - we/D, =430, EIITHENERNE 65000, 78855 =
LITHS T DR, 2 HAREIZOWTIE AL wo /D, =160, ¥ 1 iEREN I % 24000,38

WD Z LIS T RIS ORBIES, RUEHFEICZERTES T, FEEERED
iz, AHETHHAE L L LT, N7 M~ ThHD SI-5MNEC) LR LY, 3h8
HRBEOIDE TIC, 4 EAFETIIH 520 B, 2 B HE i 140 B3, o3bEinsm
2ELE,
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4. 2. 3 EIHEBRLEM

BONI-FHERRIT, HEFERO x B X0y ST a3 8MER B 2, BBz vIC
IEHEhi,

HERRE L VGO T-EEEE Reynolds HiX, 4 BAETIE Re, =604 7. 2 EAHETII Re
=604 8THY MEHE & LIZERE LT Re =600 L 1%LIRT—E LTV 3,307 Reynolds
i, 4 BAHE TR Rewy=9090, 2 ENAFE T Royyy=9000 T -1,

B 4-8 10, HERRESLBLNE, /UL i CERK L SN PR SE RO
HEBREERT,

2 ENEEORBESMIL, 4 EAHAOTESMERZRY, x ScET 2 RHE & ESE
MOZXADBEE TR, Zhit, 2 EARICBNT, dHFEESEEEREZER L
HLEZBND,

—5T, 2 EAHEORESRRIT, 4 EAREOQMEHE LT, B2 —HEETHOL
MZR>TEY., Fr v 7EBICBOTRFCERSRHIZR->TWD, ZOZ EiX, HNE
LA A2 RIFFHE D ICRET 5B B _RENIC L 2BWHEIE, 2 BAEOFME,
BERZHB - LERLTNS,

Wy Lis L0 6 1w 1 ::;u' Lu tHh L L
- . . y * ' . T . -q""‘-.___ .
el e e ' e e T “:“\\.:\\‘\
1 T e T ~ ! "'"'---.._""-"s:“\_ H‘T‘_\
1w T BT ST Las e T e
W T T e o~ ~z N
R R T e e i —, T —_ \\ :
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e e Bt R S ) '“s-_“——--—‘:;h T
— o T el ™ — Toe |
BN ; T TR TS
TN : \\\K\
- :
e h s e r—— o —— \‘..' . -~
E =
HILETE 2t )LEHE

4-8  EHATEERRIH

B 4-9iz, y@E (0=0° ), ROBEFHAYERE (0=30° ) icBI} 5. FHERE
LB R CTERTE S NS MRS OHEER L Trupp B, Rey,,,=1168017 517
DEBHR L VG ONTMESM % I/ 2 FIEIZ X 0 EH S -8
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w/we=1.95-In(y, w:/v)+7.01 (4-11)

CEISESMERT,

20 . : . 20

-

(4]

—
»
-
(2]

10|

Axial velocity W

Axial velocity
o

L5 ]
T
[+,]
T

] 10 100 0
Distance from the wall yr‘ Bistance from the wall y”
44 JLE+E 2IETE

K49  @hFApnESTh

Trupp & DER T, (4~11) OXHKEZ BT 5887, FHBEEREw, 2. ST oM

L ORDHTNB,
—_ — 172
We = ( f- Wouk / 8) (4-12)
f=CRe,;, (4-13)
REL
D -112
C=0.287 (3*—0.30) (4-14)
n=0.368(p/D)""" (4-15)

A HRERP OB O NITREDT b, (4-11) DA HE S FES & B§ 5 72 di, (4-12)



JNC TY9400 2003010

~ (4-15) DHER L VKD O BEERETERIN, 4 BARE, 2 BAHEE LI,
SRR S FREDARICRFIC—BLTWD, £, Fr o 7B\ (0=0° ) Lt ¥—H
% (6=30° ) BT 3 2 ENHEOTESHIL, BEVIESWTEY, #hFmSERsfh
L FROBRmMMBR LR B,

B 4-10 iz, BEmEABEASMOHERER. RO Trupp b D Ray,=23760 1233\ 5 R
RETT, 2EAREOSMIT, ERER L RFIT—RLTWS, LiL., 4 EAREOSA
i, ERER LS, ¥y vy VYHEBTIIBAFEL TRBY |, i —FHlCIRRKME L T
W5, BEEKRENT, B R TIIEEAREER ST, ¥y v TEE TR
5, 4 EAHEOERIL, 2 eAHBORRELEA EH _RENIC L DBHSHENT N
=iz, ERFERL—BLEh-TmLEBLIDRS,

1.2 : : : i _
= S AT N EtE
p 1.15 D zeili 1& )
s 1. - X Trupe and Azad [Re, | =2376D) 7
\ D00
o "
N . Oc o -
] o ”
§ 1.05 | ﬁosmﬂmmaq
+ D= X X x|
O X
N LS v o DQ\EOEX 8 g
S « ooEO0Ga0a"  of™ o
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4-10  EEERAWIS S0
B 4-1112, ZREILITEDH 27T, 2 BAMBEOSHIL, BBt ANEBRTSE

“EROKENERFICBRTETNS, 4 EAREOSTOS L. ROSmHR LN
B, ' —BEOEmEF /NS RRBRELTVWD, ZOHE2MIL. HEFEROE 2
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DORBIZRBNTH, FEEOEFTICRE LT,
EBIRENOVYEL SATFEE O Ve W TEBSND ZIRFTUIREE.
4ENHET 0148, 2 EARET 0 385CThote, 2 BAREDO - RENBEIL, 4 A

HOZRINGEEL D b 2.7 HEERE L, ZOBRIT, SFAEST. EEEANIS
NaHmoEm & —ET 3,

LI T R T B R I . - B T R

e e b o T T T M e e b k. L T N e
IR P tbeiededl i Lttty lrsrasceaadlllIn:

TEIIIIIIIINNATa~Ae-

TrEaae "
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......
TITrrrAaS )

- A

I I R BN N N N N -

4t IL5tE 2tILETE
4-11 BIE_RIThibES T

K 4-12 12, HEHEEHLELRE, UToX

Q=—— (4-16)

TERSNDRESMETRT, BEXTOAVESIZEDRE, REDTHTADBELT
T BEERBROHMSIL 0.5 ThHB, 2 EAHEOERIT, BEFEERVT, B—2E
DIMER, TNENOBNEMELE D TNIERDbMNS, BEEHEC TR2IFEDH
EXRLNZDE, B LERAREOHEBTHE EBEX LD, —F, 4 BAREORR
iZ, 2 EARMBEORESRERRY . BEMEHMAC, AFAERAELECRONTY, B2
BHEORENROND, ZOREL LT, AHACEREY. x#icHT 5 05HE 2SI
LTy 2 BARARESER LTV A iR E X bhd, AXmRHERASESER
LC, BAMERELFCREIFSOMENMVEEL, TOER, TRENBENIF
sl Bbhb,
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4-I2Jl»§'l_‘ﬁ 2P ILEE
4~12  BEESTE

IO ZRE—3A » FERASDZ DI, UTEFRTRESFBRAORFEEIT 1.

_ua_Q—va_Q+v[ Ch + o J i (_2 _2)+(§2 aaz Ju_v- 0 (417
x?  dy
BEFEAOF - HEUE _HL, ERUEE TH 5, HZEETHEMEBIL, Reynolds
normal stress, & (fReynolds shear stress DHE TH D, FKiCEHKOFEEFHIEETS
RTHY ., MEFEROEREOERFZE- TS,
IR HOERENE 4-12 OREFHRICGFRHEBERD Z L 2RL, ARRLIT, A&
LEDTRIETREELN, BERAEAEER L CAREZEDTEREZ RO OIIEREDOH,

AFE Tk, Reynolds shear stress E\ B (F Reynolds normal stress ;.2-—-14_2 DT ZH
g o
B 4-13 1z, HEZRNOHFELNE Reynblds shear stress wv T, 4 BARERD2

EAREEZRBLT, L —ERONFEEE TETORVARLAS LD, ThEst
THAEREVRRLLED 2,

025 - L~ 028
F o ¥ SN 1
-o.10 - - B L LI
-0.03 e k T e —— e LS
0.0~ = 00 o5 . _ 0.0 . -0m5
om-- - . ) - - oo e |
e — T 0.10. -~ - -0.10
o. - 0.257, gy 025
4 )LEtE 2-12)!»51'%1

[ 4-13  Reynolds shear stress 9% (uv)
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B 4-14 iz, HERHREHN HH 517 Reynolds normal stress Vi-u? Y, EEmITHIC
DWTiL, 2 EAREE 4 EAREOSHICKERBVIIR LR, UL, x#i biciEd
ARFEEE T, 2 EVHEOSHIL, 4 EAHBEOXHLIIRRY ., BFACH Ao TH
ERAREESZ ERAND, THIL. 2 BARETIL, EEERFEALEATHS,
AU HEDLT, 2 EAHBEOFRRBFRZRENBERTE, Z0ORE. EEEAKSESH
BHREHREBFIC—HELEL W) Z L1k, AFREEMED Reynolds normal stress 43405
THEIRRNICE XA BIIRE S RVWATEERE X bR B,

03

4EILETE 2EILETE

] 4-14 Reynolds normal stress ofi  (vi—u?)

BLEX Y| 4 EFETE, x BicET 20RO LB mENER e EA LR
FHERLGF Z0Z L AEE LCUAERRE bR ME & ILRAE 3 RN HRE L.,
e TRIRNBERPE L LELIOND, 2EARE T, x ST 2 o E I SEEE
REEALZCHBELLE, BREEANISHSM. 2 KELAFICBNT, PR<tb 4
NVEREID bRESEREBDI LN TEE, L L, SEEREGTECIT 25 HiE
53 B U} Reynolds normal stress 4yfitt. AN LIS 17\,

5%, ZARSIBBHESERNY 7F v VRT3 ELRBICR LTV BEDORWE
CEEEEH AL ERET 2512, SEEELEFEOHRL Y BEICEL OR/NEAIEL
THRSNIHERRERR TS LICL Y, AHEREEEZAVTAS 4 EAMECEE
Lic AFARMSER LAV 2 LEORVHERRELEAT 2 RENDH B, Z0BITE, BF
HREEDIY I - s VRADEEES BB TH B,
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4. 3 RMEFT=— Fiz k2 EL eyt

4. 2HCHRELAEFELEV I av—avickBd ey 7 EY, ILARE
ﬁﬁ=4ksmmcnm;5%§ﬁ%&mﬁbf\ﬁﬁ%ﬁotwwmmucuswmcnm
HBE, @HAEN TV RERET N, BRIEFEOBRRAICOVWTRYT, UTHBOBELR
T,

=ABRCFVERAAEIREE S ENIC BT 2+ FE L EMICK L, B8 ke 7
v, BB X UYESRH ke E5 /0 (Quadratic model & Cubic model) (Z2WT, BEA v =
£ GEREE TV O%E 10,000~160,000) . Re 3, PID /35 A —4&— & LCHERT o7,
BB, FREETALLIE, BALUOTAORICHEREOEFZELZEE L TAROFESE FiEiE
BFab0T, BED ke EFAVTRFHTERW RN EZHET I Z LA TE S, BB,
Appendix D, Appendix E iZ5V VT STAR-CD EL.FEF N OFEM OEM % i~ 5,

4, 3. 1 {oERICEESH

AR TR LN ZAES] (PD=1.17) £&ENTELM % CUBEERE S QBB LT
7oy FUTERREL BT L, BBET NV T 8-9%DiE%E, HMWT TN T 2~3%DRE
THET2 7 7 A VR FRISHTWE Z 23055 (Appendix D : Figs. 11-13 ; Appendix E :
Figs: 12-14), B2 AMWIE 153D HBRIT Appendix E @ Figs. 8-10 {57328, T & DEIZAG
fid. 2. 3DE4—1 3T RTEEER I 21— 3 VORBREBR LEROHTET
LTS, 2L, BEEIHEY I 2 b—a v ilHl4 -1 3IZARLRB X 5i29=3 0° O
FETIEAREL L T2 EREBIE L T A DIZHE~, STAR-CD TitBfAize=30° £7T
BMLTW3S, WTFROHEERRR LV ELWDRENI I Z Tk e 220, |
o, FRT7T—FPFEELRAVWEDEBORBIITERWVS, FEREETTUCLY, o
FEHELE TRENITHIBRERBENFRETH D Z BRI, 28, STARCDIZL 5
INGOBADHEA v & 2 B R BRI BEN S 1 2 & 2B L, |

Appendix F{Z, P/D=1.05, 1.1, 1.15 ® 3RO ERKAEK Z AHEFIETFOB/ N GH2= v F
PIOD Re~40,000 DELIRICH L, HEES B L CESEHAY DBREEN—EIZRD K 52—
BRI E A2 BEOBREN% STARCD =— FTCHELEERERT, EiieF
MTE VA P VX k-0 T AERA L, PD BKREWIE ERET COBEREREATR AR
e TERRNICEWEIRZTRT, PD A 105 128 L CTIEITICE L 4 ) VL REFIICE
RBEMBFEND STz, BESTIZOVTS PD /NS RBEEX v v FHRBECO
BE FABEET, MELXHORENHALNTHD, RFELINSOHERERIIER L K
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Calculation of Detailed Velocity and Temperature Distributions in a Rod
Bundle of Nuclear Reactor

Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(NURETH-9)
San Francisco, California, October 3 - 8, 1999



JNC TY9400 2003-010

CALCULATION OF DETAILED VELOCITY AND TEMPERATURE
DISTRIBUTIONS IN A ROD BUNDLE OF NUCLEAR REACTOR

Vladimir Kriventsev and Hisashi Ninokata
Research Laboratory for Nuclear Reactors
Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, JAPAN
kriventsev @writeme.com hninokat@nr.titech.ac.jp

KEY WORDS
Computational Fluid Dynamics (CFD); Finite-Difference Method (FDM);
Anisotropy of Turbulence; Rod Bundle

ABSTRACT

This paper presents several results of numerical simulation of fluid flow and heat
transfer in hexagonal rod bundles including those with disturbed structure. The
experimental data were available for local velocity and wall shear stress distributions
Jfrom experiments of Heina and Mantlik (1977) at NRI, Czech Republic. Second, we
describe a result for a series of the sodium experiments carried out at the IPPE, Russia
(Ushakov, 1978) that provide detailed data on the wall temperature profiles. Both
experiments provide complete sets of data for comparison with the results of numerical
simulation.

Here the Reynolds and energy conservation equations have been discretized by
the Efficient Finite Difference (EFD) scheme. These equations are solved for
steady-state fully developed turbulent incompressible flow in two-dimensional orthogonal
coordinate system. Regarding the averaged energy conservation equation, the use of
anisotropic turbulent conductivity coefficients based on the axial velocity distribution has
been made.

Comparison of calculated results and experimental data is presented for
distributions of the local shear stress, axial velocity and the wall temperature in the
"geometrically disturbed" region around dislocated rod. Overall, the results of numerical
calculation show satisfactory agreement with experimental data for both flow and
temperature distributions.

1. INTRODUCTION
In rod bundle thermal hydraulics analysis in nuclear fuel rod subassemblies, two
approaches are common:
i} lumped parameter analysis (LPA) approach represented by subchannel
analysis and ‘
if) distributed parameter analysis (DPA) approach.

The subchannel analysis method is well established, and current emphasis is
placed on modeling for the constitutive relationships, which are a result of the integration
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process of a set of local instantaneous flow conservation equations over subchannel
control volumes. In order to support the subchannel model development, it is necessary
to have local information on fluid flow and heat transfer in a rod bundle. In this regard,
a new DPA code development is an on-going effort based on a new Efficient Finite
Difference (EFD) scheme for single-phase convection-diffusion equations in a rod bundle
and on the Object-Oriented Programming (OOP) technique.

The EFD scheme is further development of “locally exact in one-dimension”
analytical methods. It gives much more accurate numerical solution than other popular
methods even using a mesh system with fewer grid points. This fact is important in
view of calculation of three-dimensional velocity and temperature distributions of the
coolant in a rod bundle that requires far more computing power than that most advanced
current super computers available to date can provide.

A rod bundle geometry is modeled using components of the Computational
Object-Oriented Library for Fluid Dynamics (COOLFD) which is a new-generation
programming tool being aimed at improving the development of the CFD application for
complex calculation areas such as a rod bundle of a nuclear reactor.

2. PROBLEM OF METHOD AND ALGORITHM VERIFICATION

It is extremely important in numerical analysis that computational methods and
algorithms, as well as the computer code itself are verified not only on an “abstract”
idealized problems like flows in straight tube, plane and square channels, etc. but on real
problems investigated by accurate and careful experimental measurements. As for
turbulent flow and heat transfer in a rod bundle of a nuclear reactor, such experimental
data were collected in co-operative research of Czech and Soviet institutions sponsored
by the former Council for Mutual Economic Aid (COMECON).

2.1 Experimental Data Available For Comparison

First, a series of velocity and wall shear stresses measurements were performed by
Mantlik, Heina, et al. (1977) at NRI, Czech Republic. Hexagonal rod bundles of fast
reactor were investigated under “nominal” and “deformed” geometry as rod bundles with
geometrical “disturbances” such as single/multiply rods dislocations. These
experiments were performed with air as working fluid.

Follow-up experiments on the heat transfer in the rod bundles with the same type
of geometrical disturbance were performed at IPPE, USSR, by Ushakov, et al. (1978) and
Zhukov, et al. (1985). Electrically heated fuel element imitators were assembled into
the rod bundle fulfilled by sodium coolant. In different sets of experiments, some of
rods were dislocated from the original positions for different distances including the case
of the direct contact. Wall temperature distributions around some “interesting” pins
were measured at the axial locations corresponding to the fully-developed flow and heat
transfer.

The two sets of experiments above provide consistent database on velocity and
temperature distributions to be compared with the data of numerical analysis. The
generalized results of these experimental can be found in the recent IAEA surveying
report (Bogoslovskay, 1999) in English. )
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Moreover, experimental data above on velocity distribution (Heina, 1977) had
been selected for benchmark exercises at 9" IAHR Working Group Meeting on
Advanced Nuclear Reactors Thermal Hydraulics at CEA-Grenoble, April 7-9, 1998.

In this paper, the single type of the rod bundle geometry with only dislocated
central rod has been chosen for numerical analysis, In addition to the axial velocity
calculations as in the benchmark problem above, the temperature distributions have been
calculated as well. Those have been compared with corresponding temperature fields
available from the experiments on heat transfer at IPPE (Ushakov, 1978).

2.2 Experimental Rod Bundle With Geometrical Disturbance

In this section, the geometry of the experimental rod bundle is described. As
was mentioned above, from the variety of hydraulic experiments (Heina, 1977) a rod
bundle with dislocated central pin has been chosen for numerical analysis and
comparison. The cross section of general layout is shown in Fig. 1. The central rod
No 1 is displaced in direction of rod No 7 keeping the gap between them as small as
3.16 mm. It changes the pitch-to-diameter ratio to 1.026 while the average “nominal”
value is 1.17 — which correspond to the regular fuel assembles of the BN-600 reactor.
Pins were not wrapped with wire and no displacers were used in such a rod bundle. The
total number of rods is 19, which makes it possible to neglect the influence of the
peripheral effects. The air physical properties were measured as density
p =131 kg/m’ and kinematic viscosity as v = 1.591E-5 m*/sec. The main series of
the experiments was performed for Reynolds number Re = 151660 (calculated for the
flow subchannel between rods Nos. 1, 6 and 7.

The locations of the measured axial velocities are shown in Fig. 2. In addition,
shear stress distributions along the wetted surfaces were measured for rods Nos. 1, 6 and
7 in the central zone,

Similar geometry was modeled in the heat transfer experiments of IPPE
(Ushakov, 1978) with sodium as a coolant. Those experiments kept the same relative
values of pitch-to-diameter ratio and the corresponding Reynolds number.

In numerical calculations of fluid flow and heat transfer, the rod bundle with the
same geometry is used.
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Fig. 1 Experimental rod bundle with “geometrical disturbance™: the central rod is
dislocated from the original position. Pin diameter D = 720.0 mm; pitch
S = 140.4 mm

Fig. 2 Detailed location of points where axial velocity components were measured
in the experiment (Heina, 1977)
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3. PROBLEM DEFINITION AND NUMERICAL METHOD
3.1 Governing Equations

Reynolds equation for steady-state fully developed turbulent incompressible flow
in two-dimensional orthogonal coordinate system can be written for axial velocity
component as the following: -

9 W P oW 1 P
7, [(V+V1 )c?xlj = [(V+V2)dv2] = —;E (1

where W is the axial velocity component; v is the kinematic viscosity; VIT and Vg are

the components of anisotropic turbulent eddy viscosity used in Boussinesq model; p is
the density; P is the pressure and X; and X, are the dimensions of an orthogonal
coordinate system. Here, W is an unknown dependent variable. There are no other

two (U and V) components of velocity vector in Eq. (1) following the assumption that no
secondary flows exist.

Non-slipping boundary conditions are applied as zero velocities on the walls and
zero shear stresses on the outer symmetry lines. Pressure drop —— in axial direction

{which is supposed to be a constant in case of the fully developed flow) depends on wall
shear stress distribution and, therefore, should satisfy a flow distribution with the mean
velocity measured in the experiment. The latest is defined by the Reynolds number
Re = 185700 (calculated with values, averaged over the whole rod bundle). Thus,
some kind of iterative procedure is required. First, an initial estimation of pressure drop
is given. Then, after calculation of velocity distribution and averaging its value over the
calculation area, a new Reynolds number is calculated. Based on its difference from the
latest value, a new pressure gradient is estimated. These outer iterations are repeated
until the given accuracy is not reached.

After the velocity distribution is found with some accuracy, an equation for
temperature can be solved. The following equation of energy conservation for
steady-state fully developed incompressible flow in two-dimension is used:

oT _ o of \ 9 oT
PCpW(xpxz) % om ((’1'"31 )o-,le*”é‘“z“((’l € )axJ @

where T is the fluid temperature; A is the thermal conductivity; EIT and Sg are the

components of anisotropic turbulent eddy thermal conductivity those are defined using
turbulent Peclet number as

T
V.

Per=v'/e" aa €l == (3
PeT
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As it was mentioned, no secondary flows are considered in this analysis. The
reason is not only additional complexity of numerical simulation of full-components
Navier-Stokes equations but also uncertainty of the definition of turbulent shear stresses.
Formulas for the coefficients of turbulent viscosity and conductivity were derived to fit
experimental velocity distributions. However, for the most data available it is not clear,
whether Boussinesq turbulent eddy viscosity includes the effect of secondary flows or not.
It should be noted here, that for those rod bundle flow experiments where the only axial
velocity component is measured it is impossible (in principal) to calculate turbulent eddy
viscosity components correctly.

3.2 Finite-Difference Discretization

A finite-difference method based on the "locally exact" scheme was applied in
this work. Detailed description of the Efficient Finite-Difference (EFD) scheme was
given by Kriventsev and Ninokata (1997). In this section, let us consider an application
of the EFD discretization to the governing equations (1) and (2). The main idea of the
EFD scheme is based on the use of the exact analytical solution of a simplified
one-dimensional convection-diffusion equation for the area limited by two neighboring
&rid points.  This exact solution makes it possible to estimate more accurately (in terms
of finite-difference discretization) fluxes of the transported quantity on the interfaces of
the control volume. Regarding to the problem considered here, these fluxes are shear
stresses in case of the momentum equation (1) and heat fluxes for energy equation (2).

The simplified one-dimensional equation above can be written for every control
volume in each direction. All remaining terms of the original convecton-diffusion
equation including physical volume source terms like pressure gradient, transport terms
from other directions and transient term are collected by an extra-source term. In doing
so, with EFD, it is assumed that both the extra-source term and the diffusion coefficients
(turbulent viscosity and conductivity in Egs. (1) and (2) correspondingly) are distributed
linearly within the neighboring grid points. For example, in x; direction, this simplified
one-dimensional equation can be written as follows:

o A I = C\ow
- Vl(xf",x{)—f- V](xl’x;;')_;'%l =x2)(x _x];-l) 5 - | @
=Sl(x{,xg)—SI(xf l,xi’)
where Vl(xl,x2)=v+vlr(xl,x2),
ow
and Sl(xl,x2)=—%[(v+v{(x,,x2))ax—2] - %%

Giving the values of the transported quantity at { and -1 points as boundary
conditions one can solve Eq.(4) analytically. Then, using this analytical solution,
expressions for the shear stress and heat flux at the interface in between i and i-1 control
volumes can be derived. Those expressions include the values of the transported
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quantity at two neighboring grid points and being applied to the all sides of the control
volume, result in the finite-difference approximation of governing equations in the given
control volume.

For simplicity of presentation, let us consider slightly simplified case where the
extra-source term is assumed to be a constant (instead of linear) in the area in between
two corresponding grid nodes. In this case, implementing the EFD procedure above, the
shear stress can be estimated by the following finite difference:

W .0 1 W _W
T v vV i j—
pr=(v+v1 ) =] - li : ;—11 (5)
& Vi X1 — X
log—
-1
41
1 vf -i'-vf"1 1
i
+(x1 k! )Sl ( i i—1)" i
2 Vi —‘Vl i Vl
085
4!

On the other side, the regular upwind scheme (in fact, the central-difference
scheme in this particular case, because the convection term is zero without secondary
flow) results in the following:

AT W-Wy
- i -1
2 x-x

When expressions for shear stresses above are substituted to the original
governing equation (1) integrated over the corresponding control volume as described,

for example in (Patankar, 1980), the resulting finite-difference discretization can be
written as follows:

(6

pPT

+ - + - _

which results in a system of linear equations with five-diagonal matrix of coefficients.
Such a system can be resolved by a series of iterative matrix solvers available. In this
work, even simple Gauss-Zaidel iterations converged very fast. In addition, line-by-line
sweeping including as an internal part the Three-Diagonal Matrix Algorithm (TDMA)
can be recommended to reduce CPU time,

The finite-difference discretization given by simplified EFD formula (5) differs
from regular central-difference discretization (6) in corrected diffusion coefficient and an
extra source term (the last in the right-hand side of Eq. (5)). The latest includes terms
from other directions and, therefore, depends on the velocity distribution itself. Thereby,
it must be adjusted demanding an additional iteration procedure. Nevertheless, as was
shown in (Kriventsev, 1997) the accuracy of the discretization given by Eq. (5) is much
higher than one of ordinary schemes even using meshing system with fewer grid nodes.
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Thereby, additional computational efforts per node are well compensated by high
accuracy and lower number of grid points to achieve that accuracy.

Expression (5) is used in this work for finite-difference discretization, as well as
for the calculation of the shear stresses at the rod walls.

Discretization formula, similar to Eq. (5) can been easily derived for the energy
conservation equation (2), as well as for calculations of heat fluxes on the pin wall.

The finite-difference method, briefly described here, can be applied to the
governing equations written for any orthogonal coordinate system. The construction of
such a system faces certain difficulties and has specific features to be discussed in the
following section.

3.3Meshing System

In a construction of the mesh system for rod bundle geometry with dislocated rods,
an orthogonal coordinate transformation is used. This transformation is performed
using the grid generation components of the Computational Object-Oriented Library
(COOLFD) that was described in (Kriventsev, 1998). First, separate meshing systems
are generated for every “typical” elementary rod including surroundings as shown in
Fig. 3.

All these “elementary” mesh components are assembled together to fit the whole

rod bundle area to be calculated. In doing so, other visual components of the COOLFD
library are used. The sample is shown in Fig. 4.
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fii.coov: Fuid Dynamics:

File
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Left Dislocated Center Dislocated -

M| v 4
Fig. 3 Elementary grid components calculated for corner, peripheral, and central

rods: regular, left-side neighbor of dislocated rod and central dislocated rod
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Fig. 4 Elementary grid components assembled in the rod bundle

The orthogonal meshing system has great benefits as follows:

- Avoiding mixing derivatives in the governing equations those result in specific
difficulties in the finite-difference discretization and reduce the numerical accuracy;

- The possibility to fit grid lines as close to the walls as necessary to describe this most
important region with higher accuracy

However, orthogonal systems bring some disadvantages in computational aspects.

First, it takes additional computational efforts to construct such complicated
systems. Laplace-type equations should be solved to calculate orthogonal grid lines.
Nevertheless, the numerical solution is much simple in this case then solution of the main
system of Navies-Stocks and energy equations. It is simple because of both the natural
simplicity (relatively) of Laplace equation and the possibility to solve these equations for
the elementary subdomains only but not for the whole calculation area. Then, these
elementary subdomains can be assembled to fit the calculation region as shown in Fig. 3
and Fig. 4.

Second problem, as one can see in Fig.4, some “hole” control volumes of
hexagonal shape appear at the centers of subchannel. These control volumes seam to be
too “big” relatively to the others. However, the fine resolution of mesh is not so
necessary at subchannel centers close to the symmetry lines where derivatives are usually
negligibly small. Furthermore, some evident improvements can be proposed to refine
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these hexagonal control volumes. One of them is to consider these control volumes as
additional elementary subdomains where its own internal mesh system can be generated.
However, the application of this idea has not been implemented yet.

Despite the difficulties above, authors believe the benefits of the orthogonal
meshing system outweigh these disadvantages significantly (in terms of CPU time and
overall computational resources). The latest will be discussed in the following sections.

3.4 Eddy Diffusivity Coefficients

The coefficient of turbulent viscosity in radial direction is used from the data of
Nijsing and Eifler (1971) as follows:

Ve y y
——=|1-exp| -0.407 -——H exp[— eu——J .
Wyt { [ vt y* (8)

where ¥ is the distance to the wall,

%
e log[l —exp(— 0.407)} =2

0.07 Ty

and the friction velocity u* =.\z,/p

The expression of Neelen (1986) is used for eddy diffusivity in azimuthal

direction;

1% y*

*‘+ =eXp| 4, exp uz-E-!-u:; +uy ©)
uy

2 »
X 1+A,,(BE—B,+%J—A,(B,—1+J
y

where R is the distance from the wall to the maximum velocity line, and

u =0.118; u, =—13.8;

0.238
Uy = ['—Zﬂ) + 3.52;
d

) 0.149
U, = 0.215(%} + 5.1[%) —6.94;

A =30, B,=06
It should be noted, the relations above were obtained for radial and azimuthal
directions in polar system that center coincides with one of the rod. Despite that, they are
used here directly even in the case of the orthogonal system as v; and v, correspondingly.
As one can see in Fig. 4, the grid lines of the orthogonal meshing system are practically
coincide with polar coordinate system near the wall. However, for the region in the center
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of subchannel, correct radial and azimuthal directions cannot be defined clear for any
coordinate system. Again, it should be noted that areas around subchannel centers are
not so important because of the symmetry (derivatives are negligibly small).

3.5Numerical Procedure

‘The computational part of the COOLFD library is used to calculate numerical
solution. At this stage, the simple Gauss-Zaidel method is used to predict the solution
on each inner iteration loop. Dynamic velocities U’ were recalculated for all local wall
points and then, all the values of turbulent eddy viscosity and thermal conductivity are
recalculated for the entire region. An outer iteration loop was used to adjust the
pressure gradient which should generate the flow distribution with mean velocity as given
by experimental conditions in (Heina, 1977) (<W> = 48.34m/s).

The calculation of the flow distribution in the 19-pin rod bundle divided into the
8808 control volumes takes about three minutes of CPU time on personal computer with
Intel Pentium-II 400Mhz processor. In addition, the calculation of temperature
distribution with energy conservation equation demands about one minute of CPU time
more. Two samples of the COOLFD visual components that serve to control the
calculation process and represent the numerical solution graphically are shown in Fig. 5
and Fig. 6. The first sample screen was captured during flow calculation while the latest
demonstrates a temperature map calculated by energy equation iterations.

4. RESULTS OF CALCULATION

The results of numerical simulation of fluid flow were compared with
experimental data (Heina, 1977). The local shear stress distributions calculated on the
wall of rods No 6, 1, and 7 are shown in Fig. 7, Fig. 8 and Fig. 9 correspondingly.

Here, one can see that traditional upwind scheme underestimates the wall shear
stresses significantly (in times!) while EFD scheme generate quite satisfactory results.

The samples of the axial velocities profiles around rods No 6 and 7 are shown in
Fig. 10 and Fig. 11 correspondingly. These results are shown for EFD only.

Again, agreement with experimental values of axial velocity is not perfect but
satisfactory.

The main source of the numerical error is possibly related to the implementation
of the experimental relations of turbulent eddy viscosity, While both formula (8) of
Nijsing and Eifler (1971) and Eq. (9) of Neelen (1986) were derived for regular rod
bundle geometry, they are directly used for geometrically “disturbed” subchannel in this
work because of lack of detailed experimental data. In addition, it is believed that
secondary flows contribute an important part in the velocity distribution developing. Still,
even using significant simplification above, the model presented in this work can predict
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velocity and wall shear stress distributions in satisfactory agreement with the
experimental data available for such sophisticated geometry.

On the next stage of calculations, velocity field is used for finite-difference
representation of the energy equation (2) that is discretizated with the EFD scheme again
on the same mesh system. Then, the resulting system of linear equations is calculated.
Numerically predicted temperature distribution was compared with the liquid metal
experiments performed in IPPE (Ushakov, 1978). In these experiments, the wall
temperatures were measured by single thermocouple located on the wall of the central rod
that was turned around. Thus, the single thermocouple could measure the temperature
distributions around the wall and those resulits are available for comparison with
calculated ones.

Two samples of comparison of calculated temperature distributions around central
dislocated rod No 1 with those from experimental data are shown in Fig. 12 and Fig. 13
for Peclet numbers 218 and 58 correspondingly.
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Fig. § Sample of flow distribution at the experimental 19-pin rod bundle with

disclocated central rod
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Fig. 6 Sample of temperature distribution at the 19-pin rod bundle with dislocated
central rod
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5. CONCLUSIONS

In this work, detailed velocity and temperature distributions in a “geometrically
disturbed” rod bundle of a nuclear reactor have been calculated numerically using the
Efficient Finite Difference (EFD) scheme and Computational Object-Oriented Library for
Fluid Dynamics (COOLFD). The data for comparison were available for local velocity
and shear stress distributions from experiments of Heina and Mantlik (1977) and for wall
temperature distributions from follow-up experiments of (Ushakov, 1978) and (Zhukov,
1985).

The system of momentum, continuity and energy equations has been solved
numerically for fully developed incompressible flow in two dimensions. A calculation
area has included the whole internal region of a 19-pin rod bundle. Secondary flows
have been assumed negligibly small and only axial velocity component has been
calculated,

An orthogonal mesh system has been generated. The calculation area has been
assembled by elementary mesh components calculated for every typical subdomain.

The results of numerical simulation show satisfactory agreement with
experimental data both for flow and temperature distribution. Thereby, we consider that
the applicability of the COOLFD library and the EFD scheme for simulation of fluid flow
and heat transfer in complex regions has been demonstrated.

To improve the accuracy, the simulation of secondary flows is necessary.
Whereas the simple Boussinesq hypothesis cannot predict the secondary flows, an
accurate model of turbulence should be developed.
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STARCD

Introduction
The STAR-CD system is produced by Computational Dynamics Limited. The system
comprises the main analysis code, STAR (the name STAR stands for Simulation of Turbulent
flow in Arbitrary egions), and the pre-processor and post-processor code, PROSTAR. A
parallel-runnmg version of the system, called STAR-HPC (for High Performance Computing)
is available as a separate product (not purchased by our Iaboratory)

Capabilities of Star-CD

STAR operates by solving the governing differential equations of the flow physics
by numerical means on a computational mesh, for quite general circumstances, as
described below and illustrated by examples included at the end of this section.
For very large problems, the code (in its STAR-HPC form) is also capable of
running in parallel computing mode, thus greatly extending the size of models
that can be handled and enormously reducing the time needed to obtain a solution.
The types of flow phenomena currently represented include:

* Steady and Transient — efficient, optmsed finite-volume solution algorithms
are used for each class.

* Laminar and Turbulent — in the turbulent case, a number of turbulence models
are available, including low-Reynolds-number, two-layer, non-linear, RNG and
LES-based models.

* Newtonian and Non-Newtonian — laminar non-Newtonian flows are catered for,
through built-in constitutive relations and facilities for user coding of alternative
functions.

* Incompressible and Compressible — within the compressible regime, the
solution algorithms allow all flow speeds to be handled, including transonic and
supersonic.

* Heat Transfer (Convection, Conduction and Radiation) — these mechanisms
can exist individually or collectively. For example, conjugate heat transfer
problems, involving simultaneous fluid convection and solid conduction, can be
addressed. Radiation modelling simulates the effect of any transparent solid
regions within the model as well as taking into account the radiative properties of
the intervening fluid medium and any selid particles present in it.

* Mass Transfer —the code caters for mixtures of gases or liquids containing up
to 50 chemical species.

*+ Chemical Reaction (including combustion) — several! built-in options are
available for calculating chemically-reacting flows, including those controlled by
chemical kinetics and/or turbulent mixing. In the latter case, the emphasis is on
turbulent combustion and contemporary models thereof A number of
special-purpose models for simulating coal combustion processes are also
available.

* Distributed Resistances (porous media) — volume and planar resistance
modelling is provided to enable representation of flows in porous media, heat
exchangers, chemical reactors, etc. The resistance may be non-isotropic.

* Buoyancy and Rotation - the code has built-in provision for calculating flows
subject to such body forces, as well as user-coding facilities to enable addition of
other forces. The rotation option is one of several features that make the code
particularly suitable for rotating machinery applications.

* Free Surface Flows and Cavitation — STAR may be used for problems requiring
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the simultaneous CFD analysis of a heavy and a light fluid domain in contact with
each other. The simulation accounts for surface tension forces and employs a
special discretisation scheme that preserves sharp interfaces. Cavitation
problems are modelled using an extension of the free-surface algorithms.
* Multiple Streams — STAR has the ability to simultaneously calculate multiple
independent streams, each of which may be a different fluid, and all of which may
communicate thermally through dividing walls. Typical applications would be
heat exchangers,
* Dispersed Multi-Phase Flows — multi-phase systems comprising particles,
bubbles or droplets in a continuous fluid phase may be calculated, with full
account of interphase heat, mass and momentum transfer. The mesh-related
features include:
* Unstructured Meshes — these are body-fitted, non-orthogonal and may be
composed of a mixture of hexahedra, tetrahedra and triangular prisms, all
connected in an arbitrary pattern, in the finite-element fashion.
* All-tetrahedral Meshes —allows flow calculations to be made on arbitrarily
complex tetrahedral grids imported from mesh generators such as ICEM CFD
Tetra. :
* Arbitrary polyhedral cell shapes — generated by the Pro*am package through
automatic cell trimming. This also produces regular surface-layer meshes linked
to an efficient structured grid in the main flow region.
* Mesh Movement — here the entire mesh or portions thereof can be dynamically
distorted in a user-prescribed fashion, so as to accommodate moving boundaries or
some other requirement.
* Arbitrary Interfaces — enables different parts of a model to be meshed
independently in the most convenient way and then joined together in an
arbitrary manner along a special interface, with no requirement for mesh
continuity.
* Embedded Refinement —allows mesh cells to be subdivided in an arbitrary
fashion, to achieve local or global refinement with relative ease. Various
numerical accuracy criteria, including a built-in error estimation algorithm, may
be used to guide the user towards those parts of the mesh that are most in need of
refinement.
* Sliding Interface — the treatment enables two or more adjacent mesh zones to
slide relative to each other, while retaining full implicit coupling between the
zones. This feature, when employed in conjunction with rotating meshes, opens
the door to a wide range of applications, such as stirred mixing vessels, pumps
and turbomachinery.
¢ Multiple Rotation Zones — simulates relative rotational motion between two or
more adjacent mesh zones in an approximate fashion (exact undersome
circumstances). This enables steady-state simulations of large, complex rotating
machines to be performed, such as multi-stage gas turbines or multi-impeller
stirred mixers,
* Dynamic Cell Addition/Deletion —this facility enables cells to be added or
deleted during the course of a transient calculation as in, for example, the
combustion chamber of a reciprocating engine.
Additional flexibility is offered through user programming facilities: STAR’s
capabilities can be further extended through user programmability. This feature
allows special body force terms, boundary conditions, thermofluid properties, etc.
to be inserted using FORTRAN coding.

Code Description
Flow Field

+C—2 (90}



JNC TY9400 2003010

The mass and momentum conservation equations solved by STAR-CD for general
incompressible and compressible fluid flows and a moving coordinate frame (the
‘Navier Stokes’ equations) are, in Cartesian tensor notation’

,/‘a:( 2ot ( Js W
,/‘a:(‘[_p”') [ - z',j)=—§£+s,. @

xr'
where
t  —time
X;  — Cartesian coordinate (i = 1, 2, 3)
1; —absolute fluid velocity component in direction
4 —— uug relative velocity between fluid and local (moving) coordinate frame that

moves with velocity u

P — piezometric pressure

p  —density

%; ~ — siress tensor components

Sm - ITass source

§  — momentum source components

Jg — determinant of metric tensor

and repeated subscripts denote summation.
This specialisation of the above equations to a particular class of flow involves:
* Application of ensemble or time averaging if the flow is turbulent,
* Specification of a constitutive relation connecting the components of the stress tensor 7;
to the velocity gradients.
* Specification of the ‘source’, s,, which represents the sum of the body and other external
forces, if present.

We will not present all code options, but only discuss those of our interest. In particular, since

our attention is concentrated on the turbulence modeling, we next present the closure
formulations.
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Turbulence Models

Infroduction
It is well known that among the various turbulence models, the k-& is currently the most
popular and applicable to a large variety of flow cases with reasonable prediction accuracy.
However, there still are fundamentals problems that need to be resolved. In particular, it is
well known that the usual formulations of the model assume an isotropic eddy diffusivity in
modeling the Reynolds stress tensor. One important deficiency of such a model is the fact
that anisotropic effects are not accounted for. In simple terms, since the viscosity is a scalar,
each component of the stress affects its strain to the same extent. For this reason, flows where
turbulent intensity gradients, and hence the augmentation effects of secondary strain rates, are
important cannot be accurately predicted. The most quoted example is the secondary flow that
originates in a square duct due to the gradients of the turbulent shear stresses.
Due to this important limitation, Reynolds Stress Models (RSM) are often used instead,
because they offer a greater potential for predicting the anisotropic phenomena correctly.
Anyhow, although the second moment transport equations can be derived in exact forms, the
higher order correlations need to be modeled with some drastic assumption of unknown
validity; even the principles and basic techniques for their modeling have not been established
yet, at least, in the near wall region, as stated by Myong and Kasagi. The simultaneous
solution of a set of highly non-linear coupled differential equations for each individual
component of the Reynolds stress tensor has also a very high computational cost and often
leads to unstable computations. In this respect the use of algebraic rather then differential
equations for the Reynolds stresses, which leads to the Algebraic Reynolds Stress Model
(ARSM), offers a more solid solution scheme. These models are anyhow up to date far from
being assessed and the solutions often rely heavily on the user assumptions, making them not
appealing for our research.
Qur attention in this work is therefore directed towards a different approach to realistically
simulate the effects of anisotropy in the flow, which consists of a non-linear extension of the
stress-strain relation. This approach forms a Non-Linear Eddy Viscosity Model (NLEVM)
sometimes also refereed to as an explicit ARSM. Although the idea of a NLEVM emerged in
the 70°s) only recently they have seen practical applications. These models have shown
promising capabilities in successfully reproducing turbulence driven secondary flows,
The capabilities of these models to correctly predict shear stress and velocity distributions in a
tight lattice fuel bundle are evaluated in comparison with the classic EVM.

Further in our fuel design we will also have to challenge the thermal analysis of the fuel
bundle. For this reason we also analyzed the model performances on a benchmark dealing
with a heated rod bundle. In this case it is fundamental not only to study the prediction
capabilities of the various models, but also to consider which offer a good balance between
accuracy, robustness and calculation cost requirement. We therefore considered two alternative
approaches, the k- and the Shear Stress Transport (SST) model. The k- model, in place of
the dissipation rate, €, adopts an equation for the turbulent frequency, w, of the large scales.
The w-equation is claimed to have significant advantages near the surface and to accurately
predict the turbulent Iength scale which should improve wall shear stress and heat transfer
predictions. Moreover, the model has a very simple Low-Reynolds formulation, which does
not require additional non-linear wall damping terms. The main advantage of the model has
therefore shown to be its robustness, and the reduced resolution demands for integration to the
wall. The SST model instead combines the use of the k-@ model near the wall with the k-g
model away from the wall where the k-m has shown some weakness.
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Near Wall Treatment
The commonly used high Reynolds number versions of the k-g model, as well known, cannot
be applied near the vicinity of the wall since the model neglects the effects of viscosity. The
typical approach to avoid modeling these effects is through the use of empirical wall functions,
to bridge the gap between the solid boundary and the turbulent core. However, the universality
of such functions breaks down for complex flows. Another common approach is the use of a
two-layer formulation, where the e-equation is only solved in the outer part of the boundary
layer, whereas the inner portion of the logarithmic layer, and the viscous sub-layer, are treated
by a mixing length formulation. Again, for complex flows, the coupling between the mixing
length and the e-equation becomes problematic, and the solution depends strongly on the
specification of the matching location; the uniqueness of the sclution can therefore not be
guaranteed.
Since our study deals with analyzing novel fuel geometries, both these approaches cannot be
considered acceptable for our intent. Hence, near wall k-¢ models or low Reynolds number
models, which attempt to model the direct influence of viscosity, are the only suitable
approach.
This formulation uses the standard transport equation for k, but augments the equatlon fore
with an extra term, which depends on the distance to the wall, to render the model valid up to
solid wall. It is anyhow computationally more intensive and in particular requires the values of
the y+ in the near wall cell to be of the order of 1. This condition produces extremely high
meshing requirements making the simulation of large geometries problematic. For this reason,
in the work, particular attention is posed on the balance between accuracy and mesh
requirements of the different low Reynolds approaches, as compared to the high Reynolds
form.
A particularly attracting wall treatment is represented by the V2F model developed by Durbin.
The V2F model avoids explicit low-Re terms in the e equation by using an elliptic relaxation
equation near the wall. In addition, an equation for the fluctuating v, is introduced. This
model does not require the calculation of wall distance, and does not require the use of
dumping functions or wall functions to adjust the behavior of turbulence quantities. It is
claimed to have reduced computational overhead and to produce better friction and heat
transfer predictions through the correct modeling of the viscous sub-layer. This model is not
evaluated in this work but will be tested in the near future.

Low Reynolds k-
We do not illustrate the standard k- model, we present only the closure equations for the low
Reynolds number formulation especially pointing out the difference between the linear and
non-linear models,

Turbulence energy

J_ ” (J_pk) (p ke~ %’f—%}m(ﬂ Pﬁ—ps—%[#.%:—+pk}%§—:-+ﬂ,i°
(3)
where
Hog = p+ U, @
and the turbulent viscosity g, islinked 1o kand € via:
=fa "pkz (5)
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du,
P=2s — 6
% ax; ®)
p=-b8 10 ()
e P OX; .

P24  pu)ou @®)
3oy, )ax

Pyr= 0 for linear models and . ; is an empirical coefficient. The first term on the righthand

side of equation (3) represents turbulent generation by shear and normal stresses and buoyancy

forces, the second viscous dissipation, and the third amplification or attemuation due to
compressibility effects. The last term accounts for the norrlinear contributions.

Turbulence dissipation rate

i 4 d( . By dc £ A 2{ oy du, F3
. — +— E=———|=C, < |y \P+P)-=|p, L+ pk|—-|+C.,— P
‘/E at( gpe) axJ (pujg az axj] £] k [iut( + ) 3 [luz axj p )ax'] &3 k!"’{ B8
) E’ du, £ ®
~Cafl-03e o rc e P, S um,

I

where .., C. 1, C.2, C.3 and C.4 are empirical coefficients whose values are given in Table 1.
The right-hand side terms represent analogous effects to those described above for the k

equation.
Table 1. Values Assigned to Model Coefficients
C k|, “h | -m Ci C.2 Cas Cq k
009 { 10 ] 1.22 | 09 | 09 144 1.92 1.44 -033 | 042 | 9.0

The term P'is given by:

P'=1.33 [1 -0.3e™™ ] P2l ki omsn (10)
Hey
#, is defined in equation (5) with f, given by
5.29
=1 — o0, 4 11
fosboemm ] 2E (1)
in which
Re, _ (12)
v
R, is the turbulent Reynolds number given by
2
-
ve

(13)
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The equation for dissipation is not solved at the near-wall cell. Rather, the dissipation,
&p, at the near-wall cell is fixed as follows:

vk
Ep —?

(14)

where y+ for the near-wall cell is of the order of 1.0.

Linear and Non-linear Constitutive Relations

Linear Model
The turbulent Reynolds stresses and scalar fluxes are linked to the ensemble averaged flow

properties as follows

—pu, =24, —%[g, gz: +ka5,,. | (15)
ﬁu;h'z—-fh‘—'% (16)
pm, =—:—":ngi: an
where

k= ""’2”; (18)

is the turbulent kinetic energy, . is the turbulent viscosity, and o,, o, are the turbulent
Prandt] and Schmidt numbers, respectively. The turbulent viscosity g, is, as said, linked to k
and & via the equation (5) while fi is given by equation (11).

We can notice in the above relationships that each component of the shear stress influences
only one component of the velocity gradient, and therefore anisotropy cannot be accounted for.
Non linear models try to cater for this defect by adopting non-linear relationships between
Reynolds stresses and the rate of strain.

Quadratic model!

For the quadratic model, the constitutive relations for the Reynolds stresses are as follows:

-—-u:u" 2 t au i ] 1 1
-p P 2 =§(ﬂ7?+ﬂ ]5,,- "”TS“ +C, #?[Sustj “gfsususujl"'cz -!:‘—[Q&S,U. +QJ.,‘S,“.]+
£
7 1 (19)
Cs ';‘[Qikg,‘k —55,39,‘,9.“]
where
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C = Cry ,C, = Cogz ,C, = Crra
(cm.s +Cppy § 3) C, (CNLG +Cupy Ss)c,u (cm.ﬁ +Cpyp §° )C,u
(20)
and
A
= d @1)
A+A,S+AQ

where Ay, A\, Ay, A;, Coppy Crpas Cuiys Cupes Carn 216 empirical coefficients whose values

are shown in table 2. Once again the turbulent viscosity  is defined in equation (5).
Sij and €ij are elements of the mean strain and vorticity tensors, respectively, and are given by

N 22
" ox,  ox @3

_ au,. auj 23)
i ox, dx, (

The other two terms required to complete the definition of C,, are as follows:

k |1

(24)
Q =£—1’%QUQ,}
(25)
Cubic model

The constitutive equation for the cubic model is obtained by adding a high order term to the
equation (19). The final expression is

_wu; 2y ou i 4, 1 K,
_ T_§[7§f+pJ§” ~Sr8, +G, ?[s,,‘sk, —géﬁsus,‘,]ﬂuc, ?[Q‘.,‘Sq +0Q,8,]+

26

CJ%‘[Qmﬂz “édyﬂﬂﬂu} C‘,ﬂ,;kz-(sﬁnff +5,0,)5, + C,,u,ﬁ(sﬂ Sy 0 Qu)S, 0
where

C, =cyC; on

Cs =y, Co %)

the turbulent viscosity x, is defined in equation (5), c,,,, ¢y are empirical
coefficients given in table 2.

Table 2: Values Assigned to Coefficients

Ag A; Az Az cnur | Cwez | Cwis CNE4 cns | cws | ey

0667 | 125 10 09 075 | 375 | 475 -100 20 | 1000 10

f+C—8 (96)



JNC TY9400 2003-010

Low Reynolds k-o
For the k- model, the general forms of the k and ® equations are as follows:
Turbulence Energy
( ) ok
N8 pk)+——| piik ~| p+2L 1= |= pP, — pf'ke (29)
J_ ot O'k ax, 5
Speczﬁc dissipatian rate
( £ pw ) pil ;- Ju+i ow pa—P -pfo’ +pS, 30
J_ ot o? Jax, ;
Standard

For the standard model the closure coefficients and auxiliary relations are:

13 . . e o @
=_5 , ﬂzﬁofﬁ ’ 18 =ﬂufﬁ » Oy "—_O'm=2 »

PRI UL A . A
125 7 180y, T | (Be) |
1 , XS0 3By
_ . . _ 2
ﬂ0—0.09 ] fp_ 1+6801k2 , zk>0 )
1+400%,
1 ok ow
m——— 8, =0
<z @’ ox; ox,

where s,.’j -—-%SU and the eddy viscosity is given by

pepk
' Pw

(32)
SST model

The SST model implemented is that proposed by Menter (1993), the coefficients in this case
are expressed in the following general form:

c,=FcC,+(1-F)C,, (33)
where

F = tanh(arg;1 ) (34)
arg, = minl:rnax[ 0'(;/92)’ ; 5;)20; J; 0';’22; I;y; } (35)
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CD,, =max| 229 99 4 (36)
@0, 0x; ox;

The coefficient set 1 is
on=1176 , 62 =2 , f,=0075 , B =009 ,

2 (37
b1 & , k=041

1 * a .
B o B
and the coefficient set 2 is

o =1, 65 =1176 , §,=00828 , B =009 ,

- 9
B ol
5, =2(1-F)—L 192 % 39)

Og @0x; Ox;

The eddy viscosity for this model is

ak

= 40
Hy pmaxialar,Q’sz (40)
where
a =031, F, =tanh(arg§) ,arg, =max 2 "/E ,igg

) 0.0%y y'@
. 1 41}
Q =]-Q.Q.

2 4y
k-o Walt Treatment

Both k-o models are adopted in the low Reynolds number form, for which @ at the near-wall
cell is fixed algebraically according to:

o = 60v
"By

(42)
where vis the kinetic viscosity, y the normal distance from the wall and B=0.075.
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Discretization Pract
Introduction
The differential equations governing the conservation of mass, momentum, energy, etc. within the fluid, are
discretised by the finite volume (FV) method. Thus, they are first integrated over the individual computational
cells (and over a finite time increment, in the case of transient problems) and then approximated in terms of the
cell-centred nodal values of the dependent variables. This approach has the merit, amongst others, of ensuring
that the discretised forms preserve the conservation properties of the parent differential equations.

Spatial Flux Discretisation

The manner in which the convective and diffusive fluxes are expressed in terms of nodal ¢ values is one of the

key factors determining accuracy and stability, for both steady-state and transient calculations. At the high

Reynolds numbers often encountered in practice, the choice of convective flux approximation is particutarly

important, '

There are essentially two main classes of convective flux approximation in widespread use, namely:
1. “Low-order’ schemes, which characteristically generate discretised equation forms that are easy to solve,
produce solutions which obey the expected physical bounds, but sometimes give rise to smearing of
gradients. The latter effect has come to be known as ‘numerical diffusion’. This is a form of truncation error
that diminishes as the grid is refined, but at an increased cost of calculation.
2. *Higher-order’ schemes, which better preserve steep gradients, but may result in equations that are more
difficult to solve (and, in extreme cases, may provoke numerical instabilities) and/or have solutions
exhibiting non-physical spatial oscillations (‘wiggles’). These oscillations may, in some cases, lead to
spurious values, e.g. negative species concentration or turbulent Kinetic energy. This phenomenon is often
termed *numerical dispersion’ . It too can be diminished by grid refinement or by using monotone schemes
(e.g. a blending methodology).

The present practice in STAR-CD is to offer alternative user-selected schemes from

each of the above categories.

Spatial Flux Discretisation
The manner in which the convective and diffusive fluxes are expressed in terms of nodal @ values is one of the
key factors determining accuracy and stability, for both steady-state and transient calculations.

Upwind differencing (UD)
This form of interpolation preserves the correct physical bounds on ¢ under all conditions, but can lead
to numerical diffusion.
Linear upwind differencing (L.UD)
This is a specially adapted, second-order accurate scheme formulated for non-structured meshes and
derived from a scheme originally proposed for structured meshes. It results in less numerical smearing
than the UD scheme, but can produce solutions that are outside the physical bounds on ¢ (i.e. numerical
dispersion).
Central differencing (CD)
The CD scheme, which is also second-order, simply interpolates linearly on nearest neighbour values,
irrespective of flow direction. This scheme also produces less numerical diffusion, but can be dispersive
Quadratic upstream interpolation of convective kinematics (QUICK)
This is a third order scheme which fits a parabola through two points upstream and one point downstream
to get an interpolated value. Note that this scheme should not be used for all-tetrahedral meshes and that it
can be dispersive. MARS is a multidimensional second-order accurate differencing scheme that operates
in two separate steps:
1. Reconstruction
A set of monotone gradients are computed using a multidimensional Total Variation Diminishing
(TVD) scheme. The cell flow properties and the gradients completely define a second-order accurate
spatial discretisation.
2. Advection
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The reconstructed cell-face flow properties are used to compute the face fluxes for all advected
properties using a monotone and bounded advection scheme. This incorporates a variable compression
level which controls the amount of second-order upwinding of the scheme without affecting the order
of accuracy of the spatial discretisation.
MARS does not rely on any problem dependent parameters to work properly and it can automatically
handle all flow problems and mesh types supported by STAR-CD. However, the user can control the
ability of the advection scheme to accurately capture sharp discontinuities in the flow by setting the
scheme’s compression level to a value between O and 1. Low values for this parameter result in a
computationally efficient scheme at the expense of sharpness of resolution. High values improve the
resolution but result in an increased number of iterations when steady flows are computed. The default
value for this parameter is 0.5 which is a compromise between accuracy and convergence rate. MARS
may also be used for the calculation of density. In this case, the implementation includes only the
reconstruction step. This procedure can improve the solution accuracy for compressible flows.
Of all schemes available, MARS possesses the least sensitivity of solution accuracy to the mesh structure
and skewness.
Self-filtered central differencing (SFCD)
This scheme, as the name implies, is effectively central differencing with a built-in adaptive filter to
remove non-physical extrema whenever they would arise. This is achieved by locally blending the CD and
UD schemes.
Gamma differencing scheme
This scheme, like SCFD, is effectively central differencing with a built-in adaptivefilter to remove
non-physical extrema whenever they arise. This is achieved by locally blending CD and UD schemes.
Blended differencing
The method here is similar to that of the SFCD scheme, in that a higher-order, non-monotone scheme like
CD (or LUD or QUICK) is blended with the lower-order UD scheme to suppress dispersion. However, the
blending factor v is now user-specified and, for this to be practicable, is taken to be uniform over the
field.
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Selection of an Appropriate Turbulence Modeling in a CFD code for an Ultra-long
Life Core for the “IRIS” Reactor

Emilio Baglietto'’, Hisashi Ninokata’
!Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, 152-8550, Japan

A comparative study of different turbulence models is presented, to select which could be adopted for the
evaluation of thermo-hydraulic performances of innovative ultra-long life core designs. Various models are
briefly outlined and discussed. Linear and non-linear low Reynolds k-e turbulence closures are applied on an
isothermal benchmark to evaluate the capabilities to correctly predict wall shear stresses and velocity
distribution in the channel. Capabilities to analyze problems involving heat transfer is also estimated, on a
benchmark in a heated channel involving liquid sodium coolant. Two alternative approaches are considered
for this case, the k-o and the Shear Stress Transport model. The relative performances of the different models
is assessed. The results show in both cases that the capability to account for anisotropic effects is the key
requirement for a correct modeling in a rod bundle. In this respect non-linear models present promising
capabilities but require further improvement for an aceurate prediction.

KEYWORDS: Turbulence, anisotropic k-¢ secondary flow

L. Introduction

The International Reactor Innovative and Secure (IRIS) is
an advanced, Generation IV ", light water reactor being
developed by an international comsortium of industry,
laboratory, university and utility establishments, led by
Westinghouse. Its design is based on proven LWR
technology, so that no new technology development is
needed and near term deployment is possible 2. At the same
time evolutionary core solutions are being developed for
future reloads .

The first IRIS core will employ standard <5% UO2 fuel
and a standard PWR fuel assembly design, therefore not
foreseeing licensing issues. At the same time work is
ongoing to address the desirable target of a high
conversion-ratio ultra-long life core.

Such a core will be characterized by a very tight lattice,
with relatively small water volume fraction. In order to
successfully tackle this challenge we must introduce
innovative fuel configurations, to obtain a more uniform
utilization of the coolant. A main undesirable aspect of
classic triangular lattice is in fact the non-homogeneous
distribution of water around fuel pins, which results in a
non-uniform circumferential clad temperature and wall shear
stress distribution *. The target is therefore to minimize the
maximum clad and fuel centerline temperatures, keeping at
the same time the pressure drops through the core as low as
possible.

A first comparison between various fuel geometries have
been performed by Romano and Todreas *, who introduced
a  performance index methodology to  assess
thermo-hydraulic parameters such as core pressure drop, fuel
centerline temperature and clad surface temperature
distribution, This preliminary work shows the possibility of
highly increasing fuel performances through the introduction

* Corresponding author, Phone/Fax +81-3-5734-3056, E-mail:
01d51276 @nr.titech.ac.jp

of novel designs.

A large range of arrangements are taken into
considerations for the future core, and need to be assessed
with a detailed analysis capable of correctly modeling three
dimensional phenomena. Classical lumped parameters codes
adopted in nuclear industries, such as sub-channel analysis
codes are not appropriate for our purpose, being calibrated
on specific geometries and operational conditions. As it is
well known, the finest instruments for modeling turbulence
are DNS and LES. The computing requirements however
are extremely high; in the DNS case for example they scale
as Re®™ making them, at the moment, unsuitable for our
analysis ®. Modern CFD codes of practical use are based on
the so-called Reynolds Averaged Navier Stokes equations
{(RANS) models, where the terms representing turbulence
interactions are modeled in terms of the mean flow variables,
as for example in the widely used k-e approach. However,
the reliability and accuracy of the results cannot essily be
assured ", Turbulence modeling is usually considered the
weakest point in CFD analysis.

For this reason a profound analysis of available models
has been carried out and the models which showed
promising characteristics have been tested and evaluated
against isothermal and heated channel benchmarks for tight
lattice geometries.

IL. Turbulence models

It is well known that among the various turbulence
models, the k- is currently the most popular and applicable
to a large variety of flow cases with reasonable prediction
accuracy. However, there still are fundamentals problems
that need to be resolved. In particular, it is well known that
the usual formulations of the model assume an isotropic
eddy diffusivity in modeling the Reynolds stress tensor
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(EVM). One important deficiency of such a model is the
fact that anisotropic effects are not accounted for. In simple
terms, since the viscosity is a scalar, each component of the
stress affects its strain to the same extent. For this reason,
flows where turbulent intensity gradients, and hence the
augmentation effects of secondary strain rates, are important
cannot be accurately predicted. The most quoted example is
the secondary flow that originates in a square duct due to the
gradients of the turbulent shear stresses 2.

Due to this important limitation, Reynolds Stress Models
(RSM) are often used instead, because they offer a greater
potential for predicting the anisotropic phenomena correctly.
Anyhow, although the second moment transport equations
can be derived in exact forms, the higher order correlations
need to be modeled with some drastic assumption of
unknown validity; even the principles and basic techniques
for their modeling have not been established yet, at least, in
the near wall region, as stated by Myong and Kasagi *. The
simultaneous solution of a set of highly non-linear coupled
differential equations for each individual component of the
Reynolds stress tensor has also a very high computational
cost and often leads to unstable computations. In this respect
the use of algebraic rather then differential equations for the
Reynolds stresses, which leads to the Algebraic Reynolds
Stress Model (ARSM), offers a more solid solution scheme.
These models are anyhow up to date far from being assessed
and the solutions often rely heavily on the user assumptions,
making them not appealing for our research.

Our attention in this work is therefore directed towards a
different approach to realistically simulate the effects of
anisotropy in the flow, which consists of a non-linear
extension of the stress-strain relation. This approach forms a
Non-Linear Eddy Viscosity Model (NLEVM) sometimes
also refereed to as an explicit ARSM. Although the idea of a
NLEVM emerged in the 70’s ‘> only recently they have
seen practical applications '*'®, These models have shown
promising capabilities in successfully reproducing
turbulence driven secondary flows.

The capabilities of these models to correctly predict shear
stress and velocity distributions in a tight lattice fuel bundle
are evaluated in comparison with the classic EVM.

Further in our fuel design we will also have to challenge
the thermal analysis of the fuel bundle. For this reason we
also analyzed the model performances on a benchmark
dealing with a heated rod bundle. In this case it is
fundamental not only to study the prediction capabilities of
the various models, but also to consider which offer a good
balance between accuracy, robustness and calculation cost
requirement. We therefore considered two alternative
approaches, the k-w ' and the Shear Stress Transport (SST)
model ', The k-0 model, in place of the dissipation rate, €,
adopts an equation for the turbulent frequency, ®, of the
large scales. The w-equation is claimed to have significant
advantages near the surface and to accurately predict the
turbulent length scale which should improve wall shear
stress and heat transfer predictions. Moreover, the model has
a very simple Low-Reynolds formulation, which does not

require additional non-linear wall damping terms. The main
advantage of the model has therefore shown to be its
robustness, and the reduced resolution demands for an
integration to the wall. The SST model instead combines the
use of the k-t model near the wall with the k-8 model away
from the wall where the k-® has shown some weakness.

1. Wall Treatment

The commonly used high Reynolds number versions of
the k-g model, as well known, cannot be applied near the
vicinity of the wall since the model neglects the effects of
viscosity. The typical approach to avoid modeling these
effects is through the use of empirical wall functions, to
bridge the gap between the solid boundary and the turbulent
core. However, the universality of such functions break
down for complex flows. Another common approach is the
use of a two-layer formulation, where the g-equation is only
solved in the outer part of the boundary layer, whereas the
inner portion of the logarithmic layer, and the viscous
sub-layer, are treated by a mixing length formulation '®.
Again, for complex flows, the coupling between the mixing
length and the e-equation becomes problematic, and the
solution depends strongly on the specification of the
matching location; the uniqueness of the solution can
therefore not be guaranteed.

Since our study deals with analyzing novel fuel
geometries, both these approaches cannot be considered
acceptable for our intent. Hence, near wall k-¢ models or
low Reynolds number models, which attempt to model the
direct influence of viscosity, are the only suitable approach.

These formulation uses the standard transport equation for
k, but augments the equation for € with an extra term, which
depends on the distance to the wail, to render the model
valid up to solid wall. It is anyhow computationally more
intensive and in particular requires the values of the y+ in
the near wall cell to be of the order of 1. This condition
produces an extremely high meshing requirements making
the simulation of large geometries problematic. For this
reason, in the work, particular attention is posed on the
balance between accuracy and mesh requirements of the
different low Reynolds approaches, as compared to the high
Reynolds form.

A particularly attracting wall treatment is represented by
the V2F model developed by Durbin '”. The V2F model
avoids explicit low-Re terms in the e equation by using an
elliptic relaxation equation near the wall. In addition, an
equation for the fluctuating v, is introduced. This model
does not require the calculation of wall distance, and does
not require the use of dumping functions or wall functions to
adjust the behavior of turbulence quantities. It is claimed to
have reduced computational overhead and to produce better
friction and heat transfer predictions through the correct
modeling of the viscous sub-layer. This model is not
evaluated in this work but will be tested in the near future.

111. Model Descriptions
1. Linear and Non-Linear Turbulence Closure
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The calculations have been performed with the
commercial code Star-CD version 3.15. The formulation of
the k-g model has been published in many papers and will
not be repeated here for conciseness, but can be found in
reference '®. We instead briefly describe the turbulence
closure formulations for the linear and non linear models,
which are of main interest.

Linear model

For the standard linear k-& model, the constitutive
relations for the Reynolds stresses are as follows:

- 2 ou
—puiuj =2‘U,Sﬁ- _g[ﬂr .._.._k_+kaJU ( I )

ox,
where, due to the linear correlation, each component of
the shear stress influences only one component of the
velocity gradient, therefore being unable to account for
anisotropy. Non linear models try to cater for this defect by
adopting non-linear relationships between Reynolds stresses
and the rate of strain.

Quadratic model

For the quadratic model, the constitutive relations for the
Reynolds stresses are as follows:

_u; 2, du, 4
=—| = +p |0, - =8
P (k ax, P )% *
'Z’[k&, 5SS] [QS+QS]+ (2)
g 1
Cs %[Qiknjk _galeHQH]
where
c
C = NLI (3)
l (CNLG +Cpq SS)C;:
c
C = NL2 (4)
: (CNLG +Cpq Ss)c,u
€
C = NL3 (5)
} (CNL6+CNL7 Sj)c,u
and
A (6)

€=
A+AS+AQ

where Ay, A, Ay, Ay, Cypis Crpas €y Cangs Cagy A€ empirical
coefficients whose values are shown in table 1. Sij and Qij
are elements of the mean strain and vorticity tensors,
respectively, and are given by: ‘

g o Ou o du,

7
™ 7
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The other two terms required to complete the definition
of Cu are as follows:
E |1

S =555 (9)

Q=£J—Q Q,
eV2

the introduction of these quadratic terms has shown to be
able to successfully reproduce turbulence driven secondary
flows in various case. Anyhow the various quadratic models
have shown limits in the sensitivity to minor strains. The
quadratic models in particular do not have sensitivity to
streamline curvature.

Cubic model

In order to capture the streamline curvature effects it is
necessary to introduce further cubic terms. A cubic term is -
therefore added to correlation ( 2 ) ,as follows:

(10)

u,u =g_;&_aui +p5,- ﬂ’S-i-
k k ox, k
cli’;[smskj -%a,jsﬂsu]w Lla,s,+Q,8.+ (1)

03%[9,}9# --;Ts,jnug}rcdy, (5.0, +5,9, )8, +

+Csy, (s Sy —Q,Q,)5;
C,=cy.C} (12)
Cs=cpysCa (13)

C, and C;s are again empirical coefficients given in table 1.

Table 1 Coefficient for turbulence closures
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k- models

For the k- model, as implemented in Star-cd, the general
forms of the k and w equations are as follows:

Turbulence Energy

A Oz H |9k
\/g_ ot (Jgpk)+ ox; [pu (IH. ]ax J

PR —pBke

(14)
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Specific dissipation rate
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Standard

For the standard model the closure coefficients and
auxiliary relations are:

13 - * ok a o
a=g » B=Bfs s B =8sfs . of=0)=2,

5 _9 f _ 1470z, | @@ st
Y125 7 P T 1480y, Tt (o) |
1 , %<0 (16)
—-— l_ 2
B=009 , f;= 1+680;(; >0
1+400y
1 ok ow
F i S =0
'@ ox; ax, ?

where s,} =%S,.j

and the eddy viscosity is given by

k
Ho=p—
@

(17)

SST model

For the SST model, the coefficients are expressed in the
following general form:

C,=FC,+(1-F)c, (18)
where
F =tanh(arg;‘) (19)
arg, = min| max Jk 200, 4ok (20)
: 0.09wy’ y’w | 62,CD, ¥
CDm=max( 20 g-’f-g—“’,w"mJ (21)
o, Ox; Ox;

The coefficient set 1 is

o2 =1.176 , 0%=2 , B,=0075 , B =009 ,

A1 @ 2

and the coefficient set 2 is

on=1, 05,=1176 , B,=0.0828 , 8;=009 ,
o B 1 2 (23)
? B o -‘lﬁ; '
1 10w ok
S,=2Ill-F ——— 24
» =2 1)0'32 @ ox; 0x, (24)
The eddy viscosity for this mode! is
i=p ak
! maxia,.fo,Q'F2 )
where
a, =031 , F2=tanh(arg§) ,arg, = 2 JE ,5020‘,
009y y'w
(25)

. ’1

For the low Reynolds number adopted,  at the near-wall
cell is fixed algebraically according to:

@ = 60v

By

where vis the kinetic viscosity, y the normal distance from
the wall and §,=0.075.

(26)

IV. Benchmark Problems Description
1, Air flow in a tight lattice rod bundle

The first benchmark, adopted for the wrbulence models,
refers to the evaluation of shear stress, and velocity field
distribution, in an hexagonal tight lattice rod bundle. The p/d
ratio of the lattice is 1.17 ',

The experiments were performed in a wind tunnel using a
19-rods model of the fuel assembly. Geometrical data of the
model cross section are shown in figure 1. Length of the
mtodel is 6 m. Only a short description of the results is given
in this work but a more detailed analysis can be found in

reference 22,
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Fig.1 Rod Bundle Geometry

Measurement in the experiment have been performed in the
region of hydraulically fully developed turbulent flow and
without the back effect of outlet cross-section change. Data
refer to the middle-cell, and we therefore assume that the
influence of the walls around the rod bundle is negligible.
Shear stress and axial mean velocities have been obtained
with Pitot and Preston probes.

The following table shows the physical parameters of the
experiment.

Table 2 Physical parameters

Kinematice Reynolds
Fluid Density

Viscosity Number
Air 1131 keg/m® | 1.591e-5 m¥s 64300

2, Temperature distribution in a rod bundle with sodium
flow

The second benchmark regards a heated bundle with
sodium flow. The experiment, named TEGENA %, was
performed at the Karlsruhe Institute. Once again we present
only a short description of the results, while a complete
report will be published in future work.

The test geometry is presented in fig. 2. It consists of 4
heater rods of 25 mm in diameter and 6 m in length, with a
p/d ratio of 1.147, suspended vertically in a rectangular
channel,

The temperature values of the sodium have been
measured in an horizontal plane, 29 mm ahead of the end of
the rectangular channel, in the zone of thermally fully
developed flow.

The main physical parameters are listed in table 3.

Table 3 Tegena parameters
Sodium Heat Flux
Fluid Re Pe
Flow at rod surface
Sodium | 60100 | 35252 | 3.13kess 50 Wicm®

Measuring Measuring
Chamber Device
] iz
] &
Measuring level ——
Heater Rod’
(Heated Zone)
— e
Rectangular A
Channel b
—_—
. @;-
Rod Extension — o
T Inlet e
o g
\ g

Bundle Cross
Section

Channel
Insulation

Fig.2 Tegena test geometry

V. Numerical Simulation

1. Numerical procedure

. The differential equations governing the conservation of
mass, momentum, energy, etc. within the fluid, are
discretized in the code by the finite volume (FV) method.
The discretized equations are solved in a segregated manner
with the SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) algorithm 22,

For the spatial discretization a first order upwind
differencing (UD) scheme has shown sufficient, but a
quadratic upstream interpolation of convective kinematics
(QUICK) has also been applied in all cases to assess the
independency of results from discretization practices.

Description of these methods can be found in reference %,

2. Computational grid

In our simulations, particular attention is always posed on
the dependency of the results on the grid resolution, to
demonstrate the grid-convergence of the solution. For this
reason, after preliminary sensitivity studies, three different
grid resolutions are adopted for every geometry. Figures 4
and 5 show the various grids respectively for the first and
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second benchmark. The grids shown are the one adopted for
the low-Re number models, where the y+ value for the first
cell is of the order of 1. For the first case, due to the
symmetry of the problem we it has been sufficient to
describe the elementary cell, as showed in figure 3, with the
appropriate symmetry boundaries.

Fual Rexd

Coarse mesh

Fig.4 Benchmark 1 grids

In the second benchmark, the minimum symmetric
geometry modeled is represented by one fourth of the bundle
section. We show a particular, to appreciate the different
mesh finesse.

Refined mesh
Fig.5 Benchmark 2 grids

V1. Presentation and Discussion of Results
In both berchmarks, grid convergence of the results, and

independence of the results from discretization methods,
have been assessed with the methodology previously
presented, but will not be presented for brevity.
1. Benchmark 1

Regarding benchmark 1, experimental data were available
for the wall shear stress distribution along the wetted surface
of the rod, versus the azimuth ¢, as shown in fig. 6.
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Fig.6 Stress distribution

These data are compared to those calculated from the
simulation for the different turbulent models. Figure 7 and 8§
present respectively the predictions of the linear and
nonlinear models.
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Fig.7 Linear low-Re model
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Fig.8 Non-linear low-Re models

We clearly see that the standard k-e model, even though
correctly predicting the shear stress in the small gap region,
highly over predicts the values in the large gap region, In
this respect the non-linear model shows a much flatter
distribution, obtaining an acceptable quantitative agreement
with experimental data. This is due to the ability of these
models to account in some extent for anisotropic effects,
thus predicting secondary flow in the channel, as shown in
fig. 9. Still these models can not qualitatively reproduce the
distribution flattening typical of the experimental data,

towards the center of the channel. This might be related to
the fact that the velocity scale of the secondary motion is
only less than 1% of the axial velocity.

Fig.9 Secondary velocity field

Experimental velocity profiles were also available at three
different locations, at 0, 15 and 30 degrees location, as
shown in fig. 10. Comparisons again with the linear and
non-linear models are shown in figures 11,12 and 13.

Fig.10 Velocity sensors location
T F T ]
18 | 4
e A B G
o i
’3,._-& A"‘A
. B g .
Tl o s -
P -l
g o A&
= o &
> 12t o /“/ ©  Euperimental 7
Ef ’ -4 Low-Re
10 ,/ ~0— Quadratic y
a -=--Cuble
8 | i
1 3 1 i
0 2 4 8 ) 10

¥ (mm)

Fig.11 Velocities at $=0 location
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Fig.12 Velocities at ¢=15 location
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The comparison shows how the non-linearity in the
models allows to better describe the velocity distributions in
the flow. In particular this is clear in the narrow gap region
( 0 degrees), while at the 15 degrees location all models give
good predictions. A particular discussion is related to the
velocity distribution at the 30 degrees location. As shown,
the non-linear models are able to correctly predict velocities
in the near wall and bulk region but show a different
behavior in between these two points. The experimental
distribution is very flat in this zone in contrast with the
calculated values. This might be a limitation of the models,
but some doubts exist about the correctness of the
experimental data,

1. Benchmark 2

Regarding benchmark 2, experimental distribution of the
sodium temperatures is available along the line shown in
fig.14.

Temperoture distribution gleng this line

O O

Fig.13 Temperature measurement location

In the following figures the predictions of the various
models simulation are presented. The sodium temperature
minus the flow averaged temperature in the measuring plane
is graphed against the distance from the channel wall,
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Fig.14 Temperature measurement location
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Fig.15 Temperature measurement location

Figure 14 shows how the low-Reynolds form of k-g,
k-w and the SST model produce the same predictions for the
sodium temperature distribution, and therefore only the k-g
is presented in the comparison with the experimental data.
All these models over predict in the same measure the
temperature values in the small gap region between pins.
Only the non linear models are capable of producing a closer
agreement with the experimental data (only the result of the
quadratic [ow-Reynolds model are shown, since they present
no difference from the cubic one). The figure also shows
how, the hi-Reynolds form of the quadratic model, with the
use of a law-of-the-wall, can benefit from the anisotropic
modeling.

The various linear models show therefore a strong
consistency, but at the same time, being unable to account
for anisotropy, cannot produce a qualitatively correct
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prediction, in this respect the non-linear modeling correctly
captures the trend but still cannot get a close agreement in
the narrow gap region.

VII. Conclusion

A large number of isothermal, and heat transfer
simulations have been carried out to test the performances of
numerous turbulence models. The results have clearly shown
that to correctly model flow in tight lattice bundle it is
necessary to adopt an approach capable of describing
anisotropic  turbulence. Comparisons show that the
secondary fiow, that arises from this anisotropy, seems to be
responsible of an homogenization of velocity and
temperature distribution in the channel. In particular
experimental data show a strong flattening of the wall shear
stress towards the channel center, which numerical
predictions could not correctly reproduce. In all cases the
non-linear models could therefore show improved
predictions, due to their ability to reproduce in some extent
the turbulence driven secondary motion, but improvements
to the models are needed for a better agreement.

From the point of view of computational requirements, all
low-Re form of the models have shown to require very fine
grids in the near wall region to obtain a correctly converged
solution. This requirement does not allows us, at the moment,
to adopt these models for the simulation of large geometries
involving heat transfer, as for instance a complete assembly.
For the benchmark 2 case for example, the model of 4 of the
channel, for a height of 150 hydraulic diameters required the
use of almost 3 million cells, which showed to be an upper
limit for our computations.

High Reynolds number version of the non-linear model is
still the only available approach for large geometries. In this
regard we intend to test the performances of the V2F
approach in a near future being claimed to produce a correct
modeling of the viscous sub-layer with reduced
computational requirements.
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PERFORMANCES OF NOVEL FUEL GEOMETRIES FOR THE ‘IRIS” REACTOR
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ABSTRACT

A comparative study of different turbulence models is
presented to select the most appropriate one for the evaluation
of thermo-hydraulic performances of innovative core designs.
The standard k-¢ and different, linear and non linear, low
Reynolds k-g models are applied to fully developed flow in a
triangular lattice rod bundle. Shear stresses and velocity
distributions are evaluated using the commercial code Star-CD.
The relative performance of the models is assessed indicating
different predictions between linear and non linear turbulence
closures. The results show that the capability of non linear
models to account for anisotropic effects leads to better
performances in modeling turbulent flow in tight lattice rod
bundles. This capability is clearly shown by the existence of a
secondary flow field in the plane normal to the flow direction.

INTRODUCTION

The International Reactor Innovative and Secure (IRIS) is an
advanced, Generation IV [1], light water reactor being
developed by an international consortium of industry,
laboratory, university and utility establishments, led by
Westinghouse. Its design is based on proven LWR technology,
so that no new technology development is needed and near
term deployment is possible [2]. At the same time evolutionary
core solutions are being developed for future reloads [3].

An ultra long life, high conversion core design is currently
under development. This core will be characterized by a very
tight lattice, with relatively small water volume fraction. To
obtain such a result we must introduce innovative fuel
configurations to obtain a more uniform utilization of the
coolant. A main undesirable aspect of classic triangular
lattice in fact is the non-homogeneous distribution of water
around fuel pins, which results in non-uniform circumferential
clad temperature and wall shear stress distribution [4]. To
address these goals we aim to enhance turbulence and
flow-mixing, keeping at the same time the pressure drops

through the core as low as possible.

To evaluate the performances of the novel configurations we
must employ a suitable method able to model 3-dimensionai
thermal hydraulics of complex geometries. Classical codes used
in nuclear industries, such as sub-channel analysis codes are not
appropriate for our purpose, being calibrated on specific
geometries and operational conditions.  As it is well known,
the finest instruments for modeling turbulence are DNS and
LES. The computing requirements however are extremely
high; in the DNS case for example they scale as Re*”, making
them, at the moment, unsuitable for our analysis [5]). Modern
CFD codes of practical use are based on the so-called Reynolds
Averaged Navier Stokes equations (RANS) models, where the
terms representing turbulence interactions are modeled in terms
of the mean flow variables, as for example in the widely used
k-g approach. However, the reliability and accuracy of the
results cannot easily be assured [6]. Turbulence modeling is
usually considered the weakest point in CFD analysis. This
work intends to systematically assess the turbulence models
available and determine if they could be used to successfully
evaluate the thermo-hydraulic performances of the new
geometries. In particular we intend to evaluate the importance
of anisotropy in modeling flow inside fuel bundles.

THE IRIS PROJECT

Reactor Design
IRIS (International Reactor Innovative and Secure) is being

developed by an international consortium of industry,
laboratory, university and utility establishments, led by
Westinghouse. The consortium currently includes 20 members
from 9 countries. The IRIS design addresses key requirements
associated with advanced reactors, including enhanced safety,
improved proliferation resistance, competitive electricity
production cost, and improved waste management. This reactor
design is based on proven LWR technology, so that no new
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technology development is needed. As a result, IRIS has
potential for near term deployment, around 2012. IRIS is a
modular, medium size (335 MWe) PWR with an integral
pressure vessel configuration (Fig. 1).

In contrast to loop PWRs where the primary system
components are located outside the reactor pressure vessel,
these components are either eliminated (large external loop
pipes) or relocated (reactor coolant pumps, pressurizer, steam
generators) in the IRIS integral configuration. This may be
exploited to improve safety characteristics as well as to reduce
the containment size. Indeed, one of the main reasons for the
attractiveness of IRIS is its improved safety, which is achieved
through the Safety by Design approach [7] [8].
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Figure 1 - IRIS Integral Primary System

Long and Witra-Long Life Core
The reactor design is, as already stated, based on proven

technology but, at the same time, aim was to introduce
improvements as compared to present PWRs. These opposing
requirements resulted in an evolutionary approach to fuel and
core design, balancing new features and the need to avoid
extensive testing and demonstration programs.

Most of the present power reactors operate on a 12-month or
18-month multi-batch refueling cycle. Objective for IRIS is to
extend the cycle length significantly, to four or more years and
to operate in a straight burn (single batch) mode. In particular,
to avoid licensing issues, improved fuel utilization is required
instead of an increased fissile content.

Fuel utilization may be improved in LWRs either via
enhanced conversion achieved by reduced moderation, or via
enhanced thermal neutron utilization achieved by increased

moderation [9][10]. The second option has been selected for the
first deployment of the reactor. In place of the typical 17x17
PWR fuel assembly, IRIS adopts a 15x15 assembly with an
increased fuel to moderator volume ratio, and a reduced soluble
boron concentration to retain a negative moderator temperature
coefficient (MTC).

At the same time an ultra long life core design is pursued. In
order to increase core life to over 10 years, a very tight lattice
design is necessary, capable of consistently increasing fuel
utilization. This new core represents a strong engineering
chalienge, requiring introduction of innovative solutions and
will require licensing because of its higher enrichment. Thus it
can be envisioned as a reload option available after 2020,

Novel Geometries

As stated, in order to achieve a life of over ten years it is
necessary to adopt a tight lattice design core, with a p/d ratio of
~1.1, respecting of course important constraints as:

— Same power as the open lattice core
—  Fitted in the same envelope

— Negative void coefficient

— Economically competitive

It is known that a tightly pack design presents diverse
drawbacks, both on neutronics and thermo-hydraulics. The
attention in this first stage is directed to the thermo-hydraulic
design which presents obstacles that have to be overcome
before proceeding in the design.

Preliminary comparisons have shown that novel fuel shapes,
as for example hexagonal pins, could improve the coolant
utilization and reduce the fuel centerline temperature in
comparison to the classical cylindrical pins solution. In tusn,
these solutions, which also require the presence of spacers,
induce unacceptably high pressure drops through the core.

To overcome this limitations very innovative shapes are
envisioned to achieve better coolant utilization through
increased turbulence, and in particular to highly reduce the
hot-channel problem typical in tight geometries, Moreover this
new designs eliminate the need for spacers through a
self-standing solution.

TURBULENCE MODELING

It is undeniable that CFD has become an irreplaceable tool
for thermo-hydraulics. However, the turbulence modeling is
up-to-date an unsolved issue. There is no generally applicable
modeling strategy that has satisfactory accuracy in arbitrary
flow problems [11]. Commercial codes offer several turbulent
ciosure models already implemented and the code that we adopt,
in particular, Star-CD, offers various forms of low and high
Reynolds number k-¢ models. This work intends to
systematically assess the turbulence models available and
determine if they could be used to successfully evaluate the
thermo-hydraulic performances of the new geometries.

The classical approach to CFD analysis is through the high
Reynolds number form of the k-e. One important deficiency of
such a model is the fact that anisotropic effects are not
accounted for. In simple terms, since the viscosity is a scalar,
each component of the stress affects its strain to the same extent.
For this reason, flows where turbulent intensity gradients, and
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hence the augmentation effects of secondary strain rates, are
important cannot be accurately predicted. The most quoted
example is the secondary flow that originates in a square duct
due to the gradients of the turbulent shear stresses [12]. This
kind of secondary flows will originate in some extent also in a
tight lattice sub-channel, and could be important for a correct
evaluation of the convective heat transfer. For this reason we
select a benchmark that refers to such geometry, to evaluate the
different closure relationships.

Another limit of the standard approach, based on the high
Reynolds formulation of the k-¢ model, is that it cannot be
applied in the immediate vicinity of the wall, thus requiring the
use of empirical wall functions to bridge the gap between the

solid boundary and the turbulent core. The universality of such

functions however breaks down for complex flows, and
therefore low Reynolds formulations are preferable for our
analysis

Low Reynolds number model
We do not illustrate the standard k-g model, which can be

found in reference {13]. We present only the closure equations
for the low Reynolds number formulation especially pointing
out the difference between the linear and non-linear models.

Turbulence energy
1 9 ] ~, Hg ok
——— k 4+ — &k — —t=
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g 1dp
P o=t
# o'h.r P axa
{ 5 )
=_p”§u_'._ 2% £ | %u;
M Y ox 3lox, u Jox
( 6 )

Py = 0 for linear models and o, is an empirical coefficient.
The first term on the right-hand side of equation (1) represents
turbulent generation by shear and normal stresses and buoyancy
forces, the second viscous dissipation, and the third

amplification or attenuation due to compressibility effects. The
last term accounts for the non-linear contributions.

Turbnlence dissipation rate

£ ’ 2 au- au‘ E
Coll P+ P) -2y Py i | Pl Epp,
ﬂk[ﬂ,( +P) B[P,ax +p ]ax.}’ s ZHPs

=) & du; &
- C£2(1—0.3e . )PT"" Cs4P£§;.'+ Ca ;ﬂ:PNL
where o,, Cq, Cay, Cisang Ciq are empirical coefficients whose
values are given in Table 1. The right-hand side terms represent

analogous effects to those described above for the k equation.

Table 1: Values Assigned to Model Coefficients

Cy Oy & oh Om Ca Ca Ca Cet k E

009 § 1.0 | 122 | 09 | 09 L.44 1.92 1.44 D33 | D42 | 9.0

The term P’ is given by:

2

P'=133 [1—0.3 e ][P+ 2ﬁ—k—] g ITIRS

r

( 8 )

X, is defined in equation (3) with f, given by

5.29
= 1_ -0.0198Re, 1+
fo=h-e 22

¥

( 9 )
in which

w

v
( 1 0 )

Re, =

¥

R, is the turbulent Reynolds number given by

( 1 1 )

The equation for dissipation is not solved at the near-wall
cell. Rather, the dissipation, &p, at the near-wall cell is fixed as
follows:

f#E—3 (113)
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( I 2 )
where y+ for the near-wall cell is of the order of 1.0.

Linear and Non-linear Constitutive Relations
Linear model

The turbulent Reynolds stresses and scalar fluxes are linked
to the ensemble averaged flow properties as follows

=77 2 du
—Pu;=2ps; -?[ﬂra_l:"i'l’k]‘s;j

( 1 3 )
pui=—ta Oh
Lo axj
( 1 4 }
= M, om,
P4 O, OX;
( 1 5 )
where
pe ik
2
( 1 6 )

is the turbulent kinetic energy, g, is the turbulent viscosity,
and @, On, are the turbulent Prandtl and Schmidt numbers,
respectively. The turbulent viscosity g, is, as said, linked to &
and ¢ via the equation (3) while £, is given by equation (9).

We can notice in the above relationships that each
component of the shear stress influences only one component
of the velocity gradient, and therefore anisotropy cannot be
accounted for. Non linear models try to cater for this defect by
adopting non-linear relationships between Reynolds stresses
and the rate of strain.

Quadratic model
For the quadratic model, the constitutive relations for the
Reynolds stresses are as follows:

7
i

_ﬁuui 23[14 du +p]'§l}'_ﬂ_rs

L
kK 30k ox kY
c

£
a7

H |
Ca ?'[Qikgjk -3’ %ngu]

|
SuSy ——0;8uSy [+ CIEL[QEJ:SU +ijsh']+
3 £

where

C = Cwei ,C, = Caea
{CNLs ey S : JC;: (CNLG *Cny SaJCy
( 1 8 )
C3 — Cnea

N (cnm +Cez Sa)c,u

and
C =—~——A°
u
A+AS+HAQ
( 1 9 )
where Ay Ay Ay Ay Cpys Cupas Coran Cago Cner are

empirical coefficients whose values are shown in table 2. Once
again the turbulent viscosity u, is defined in equation (3).

Sy and Oy are elements of the mean strain and vorticity
tensors, respectively, and are given by

R =%+§ﬁ
Y oox; ox
( 2 0 )
_du, Ou;
Y —gj— ox,
( 2 I )

The other two terms required to complete the definition of o
are as follows:

k [1
S=E ESJ]‘SU
( 2 2 )
k[
N PR
( 2 3 )

Cubic model

The constitutive equation for the cubic model is obtained by
adding a high order term to the equation (17). The final
expression is

w2 p o, S _H
- =] £ ==L 5
=% 3(1: ax, P )T T

i '
(5.5, =305, r 0 s, vl
(24)
1 k
G, %[gugﬁt _E‘ngugﬂ]-'- Cutt P (Sh'grj + Skj'Q'Ir')SH +

k
+Col, E?(Su Sy =2, Qy )Sij

where
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Co=cCpa Cj
( 2 5 )
Cy =cps Cj
( 2 6 )

the turbulent viscosity u, is defined in equation (3),
Cass Cyrs are empirical coeificients given in table 2.

Table 2: Values Assigned to Coefficients

Ap Ar Az Ay | ene | emz | onta | o | oms | ooms | ene

0657 15 10 ® 75 3 475 {00 | 20 it} 1)

BENCHMARK PROBLEM

The benchmark selected for our work refers to the evaluation
of shear stress and velocity field distribution in an hexagonal
tight lattice rod bundle. The p/d ratio of the lattice is 1.17 [14].

The experiments were performed in a wind tunnel using a
19-rods model of the fuel assembly. Geometrical data of the
model cross section are shown in figure 2. Length of the model
is 6m. The wetted model perimeters for the assumed flow
regimes can be taken as hydraulically smooth.

Figure 2 — Benchmark Geometry

Measurements have been performed inside the bundle at a
distance of 5600 mm from the model inlet and 400 mm from

the outlet, that is in the region of hydraulically fully developed-

turbulent flow and without the back effect of outlet
cross-section change. Data refer to the middle-cell, and we
therefore assume that the influence of the walls around the rod
bundle is negligible. Shear stress and axial mean velocities
have been obtained with Pitot and Preston probes.

The following table shows the physical parameters of the
experiment.

Table 3 — Physical Parameters

. . Kinematic Reynolds
Fluid Density Viscosity Number
Air L1131 kg/m® 1.591e-5 m¥s 64300

SIMULATION MODEL
As stated before the code Star-CD has been used for the

simulation. Due to the symmetry of the problem we do not need
to simulate the complete bundle. It is sufficient to describe the
elementary cell, as showed in figure 3, with the appropriate
symmetry boundaries.

\

[y

N\ .

Fual Aod
\
Figure 3 — Elementary Cell

In the axial direction, as the flow is fully developed, periodic
conditions can be applied to limit the mesh number. The
simulated cell has a height of 15mm.

Numerical Procedure

The differential equations governing the conservation of
mass, momentum, energy, etc, within the fluid, are discretized
in the code by the finite volume (FV) method. The discretized
equations are salved in a segregated manner with the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations)
algorithm [15].

For the spatial discretization a first order upwind differencing
{UD) schemeis considered sufficient, but a quadratic upstream
interpolation of convective kinematics (QUICK)is also applied
to assess the independency of results from discretization
practices. Description of these methods can be found in
reference {13].

Computational Grids
It is very important to study the dependency of the results on

the grid resolution, to demonstrate the grid-convergence of the
solution, as also the Journal of Fluid Engineering has invoked
in the new policy statement on numerical uncertainty. For this
reason three different grid resolutions have been used in our
analysis as shown in figure 4.

N S A A 0 N A A A A A A
7 e ;

Coarse mesh
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Figure 4 — Grid resolutions

As shown in the figures, in the near wall region the grid is
very fine. For low Reynolds number models indeed this region
is in most respects treated in the same way as the interior flow,
with the no-slip condition imposed at the boundary cell faces.
Prescription is nevertheless that the y+ value in the first cell be
around 1.0.

In the case instead of standard high Reynolds modef,
laws-of-the-wall are adopted in the near wall region, and thus
the y+ value of the first cell should be >20. If y+ values are too
low; the point where the logarithmic velocity profile starts is
too close to the wall and hence the velocity gradient is too high.
Figure 5 shows the corresponding fine mesh for the high
Reynolds number case.

Figure 5 - Standard Method Grid

The total number of cells varies from 10,000 for the coarse
grid, to 16,000 for the finest one in the case of low Reynolds
models, and from 4,000 to 7,000 for the standard method,

RESULTS

Convergence and Grid Dependence
All turbulence models have been tested on the different

meshes to analyze grid dependency. In general, for all models
the results obtained for the fine and refined grids provided the
same values, showing that the fine grid is satisfactory for our
case, In particular the standard method exhibited very low
dependency on grid resolution, presenting very close results for
the coarse mesh as well.

1] 500 1eg0 1500 2000 0 500 1008 1500 2000 2500 396D
Heration Beraian

a) Standard (UD) b} Low-Re (UD)

T T T T 10! T T T T T

10 | Ures -
=r- Vres
w' | — —Wras i
----- Massies

-] 100¢ 2909 3000 4G0% 5000 [} 580 1800 1500 2000 2500 3004
ftasation Reration

<) Cubic (UD} d) Cubic (QUICK)

Figure 6 — Convergence histories for velocities, mass, kand
£ dissipation residuals

The comparison between the first order upwind difference
and the QUICK discretization schemes showed no dependency
of the results upon the numerical technique. Figure 6 shows the
residual histories, normalized by their values at the first
iteration, for the various methods.

It is clear that the number of iterations needed to reach
convergence increases with the complexity of the model. The
use of a higher order scheme anyhow can accelerate the
convergence as shown by the comparison between ¢) and d).

Shear Stress

Experimental data are available for the shear distribution
along the wetted surface of the rod versus the azimuth ¢, as
shown in figure 7.
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Figure 7 —~ Stress Distribution

These data are compared to those calculated from the
simulation for the different turbulence models. Figure 8 shows
that, as expected, the standard k-¢ model cannot correctly
follow the flattening of the shear stress towards the center of
the channel, being unable to account for anisotropic effects, but
can obtain quantitatively good predictions. The next figure
shows the results of the linear low Reynolds k-¢ model. The
behavior is clearly the same as that for the standard method, but
the quantitative disagreement is higher, The difference can be
explained by the fact that in the standard model, the code uses
an algebraic law-of-the-wail that is adjusted to give optimal
average predictions, on the contrary the low Reynolds model
solves the standard equations also in the near wall regions,
retaining validity in any geometry, but thus showing the limits
of isotropic modeling, which can predict correctly the narrow
region, but completely ignore the flattening due to anisotropy.

Figure 10 shows the results of the two non-linear models.
As we can see the curve is flatter in this case, since some
anisotvopy is accounted for, and even if the qualitative
agreement is still limited, quantitatively the agreement is
satisfactory.
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Velocity Distribution

Velocity profiles are compared with experimental data for
three lines normal to the rod surface as shown in figure 11.

Figure 11 - Velocity sensors location

Figures 12, 13 and 14 show the results for the 0, 15 and 30
degrees location.
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Figure 14 - Velocity at ¢=30 degrees

The comparison with the experimental values shows how,
adopting linear k-¢ models, the simulations are underpredicting
the velocity in the namrow area while overpredicting the
distribution towards the center of the channel. This behavior is
clearly explained by the inability of such models to account for
anisotropy. The predictions of low and high Reynolds numbers
are very similar, but we can see that near the wall, the use of
law-of-the-wall gives poor qualitative and quantitative
predictions. As expected, the non linear models provide more
accurate predictions, still showing some underprediction in the
narrow part of the channel, These models indeed are, as said,
able to account for some anisotropy and this is evident in the
formation of a secondary velocity field, as shown in figure 16.
Here the velocity scale of the motion is about 0.5% of the axial
velocity.

A particular discussion is related to the velocity distribution
at the 30 degrees location. As shown the non-linear models are
able to correctly predict velocities in the near wall and bulk
region but show a different behavior in between these two
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points. The experimental distribution is very fiat in this zone as
can be seen in figure 15. This might be a limitation of the
models, but some doubts exist about the correctness of the
experimental data.
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Figure 15— Flat velocity distribution

Figure 16— Mean secondary velocity field

CONCLUSIONS

A comparison of shear stress and velocity distribution
predictions of different turbulence models has been presented
for the case of fully developed flow in a tight triangular lattice
assembly. Four models have been used, the standard k-g, and
three low Reynolds versions, linear quadratic and cubic. Grid
convergence has been demonstrated with the use of three
different resolutions. Accuracy of the spatial discretization has
been evaluated with comparisons between a first and a third
order accuracy method.

Evaluations have shown that all methods show limits in the
shear stress predictions towards the center of the channel but
have, in general, a2 reasonable quantitative agreement, in
particular for the non linear models. Velocity fields predictions
have shown that linear models, being incapable to account for
anisotropy, cannot provide qualitatively accurate predictions,
but can in general obtain an acceptable quantitative agreement,
within 8-9% error. The standard method though exhibits
limitations in the near wall region due to the use of an algebraic
law-of-the-wall. Non linear models are instead able to account
in some extent for anisotropy as shown by the existence of a
secondary velocity field, thus providing much better qualitative
and quantitative agreement capturing the correct velocity
distrtbutions within a 2-3%.

In the selection of an appropriate tool, for innovative
geometries performance evaluation, we can conclude that the

linear models showed limits in predicting the near wall region
velocity distribution, that will be essential when evaluating the
heat transfer coeffictents and temperature distributions in the
sub-channel. In this respect the accuracy of the non linear
models showed to be much higher, making them, at the moment,
our choice for performance evaluation. The case analyzed
anyhow is fairly simple and it will be necessary to test such
models on more complex flow problems, such as swirling flows,
before proceeding further.

The work has in addition shown that low Reynolds models
involve the use of a fine grid, which in our case required about
13,000 cells to obtain a convergent solution. This makes the
requirement absolutely too high for studying a complete
assembly, and limits the use of such models, for the moment, to
smaller sections. On the opposite side lies the standard methed,
which even if incapable of correctly modeling anisotropic
effects, showed a very low dependency on grid size, obtaining
quasi-convergent results with very coarse meshes. This
characteristic makes it suwitable for modeling very complex
geometries, up probably to a full core, with a number of cells
around 10 miilions.
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Predictions on sodium cooled subchannel for
various P/Ds

introduction

Calculations adopting the low-Reynolds k-g model have been performed on tight

lattice subchannels with sodium cooling. The considered cases are p/d = 1.15, 1.10,
and 1.05.

p/d1.15

For all three cases the flow conditions are such to obtain a Re ~ 40,000 and the same total
AT, The table presents the main flow parameters.

The following resulis are preliminary and not subject to quantitative assessment yet.
Nevertheless a qualitative trend of velocity and temperature distributions is depicted and

in general the friction factor in tight lattice bundles is calculated by STAR-CD in good
agreement with Chen-Todreas model as shown in 4.3.2.
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Flow conditions for the three cases

pld=1.15 pid=1.10 p/d=1.05
Dequi(m) 2.978E-03 Dequi(m) 2.172E-03 Degui (m)

Re 41839.000 Re 38893.000 Re

Mass Flux

(ke 4.195E-03 Miass Flux (kg/s) 3.884B-03 Mass Flux (kgis)
Heat

Flux(W/n?) 1.81625 Heat Flux(W/m?) 1.681e5 Heat Flax(W/m?)
Tout 770.914 T out 770.923 T out

V out 408838 Vout 523189 V out
Velocity Distributions

..

p/d 1.05 'R
PROSTAR 3.10

SG—AOpr—GB
xl% CITY MAGNITUDE
ITER= 2780

LOCAL Mx= 9,408 .
LOCAL MN= 0.0000

8408
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p/d 1.10

p/d 1.15

HF—3 (123)

%‘ﬁﬁ%

PROSTAR 8,10

36-Apr-03

VELCCITY MAGNITUDE
S

[TER= 1870

LOCAL MX= 6227
LOCAL MN= 0.0000

PROSTAR 310

30-Apr-03
xl%_OCITY MAGNITUDE

ITER = 1910
LOQCAL Mr= 4738
LOCAL iN= 0.0000




JNCTY9400 2003-010

- &—1.05

- &—11

- B—1.15

440

420

Anga(ing

AN

340 360 380 440
¥ (i)

az0

A —— O— —f
g 58

7]
<
-

i

- S
- B—1.15

-0.2 -

0.6 |

«©
o

ANGALINGAA)

-1

360 370 380

350

¥ {mm)

340

330

320

{#F—4 (124)



JNCTY9400 2003-010

Temperature Distributions

p/d 1.05 ,
PROSTAR 3.10

ITER = 2780
LOCAL Mx= 7738
LOCAL MN= 769.7

p/d 1.10 -
PROSTAR 3.10
30-A

LOCAL MX= 7723
LOCAL MN= 763.9
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p/d 1.15
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Pressure Drops
The pressure drops obtained from the CDF calculation are compared with those predicted
adopting classical friction correlations:

Blasius
0.316
f= Reﬂ.l‘s
Cheng Todreas
C’
=" n=0.18
(Re?)
2
c, =a+b,(%-l)+b2(%—lj
1<pid<1.l li<p/d<15
a bl b2 a bl b2
0.09378 1.398 -8.664 0.1458 0.03632 -0.03333
410° , ! :
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: i & StarcCD
310° [ q,r, ------ QO Blasius |- 1
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ABSTRACT

A comparative evaluation of different turbulence models is presented in this work, to select
which one could be adopted for the evaluation of thermo-hydraulic performances of tight lattice fuel
bundles. The individual models are briefly introduced and discussed; they comprehend linear,
quadratic and cubic version of the k- model, the k-® model, and the SST model by Menter. The
capabilities of the various turbulence closures are evaluated on a benchmark describing a heated
bundle, containing four rods arranged in one row, with sodium cooling. The coolant temperatures
from the experiment are compared with the computed values, for the region between the rods, and
near the channel periphery. The results show that linear k-¢, k- and SST model, obtain a very close
agreement with each other, but are not capable of correctly predicting the temperature field, due to
their mnability to account for anisotropy. Quadratic and cubic models are instead capable to produce

a close agreement with experimental data, being able to account, in some extent, for anisotropy.

1. INTRODUCTION

The International Reactor Innovative and Secure (IRIS) s an advanced, light water reactor being
developed by an international consortium of industry, laboratory, university and utility
establishments, led by Westinghouse. The reactor design is based on proven LWR technology, so
that no new technology development is needed and near term deployment is possible (Carelli et al.,
2002). At the same time evolutionary solutions are being developed for future reloads (Petrovic et

al., 2002).

An ultra-long life, high conversion, core design is currently under development. This core will
be characterized by a very tight lattice, with relatively small water volume fraction. It is therefore
clear that the termohydraulic design will represent a key point in the development of such a solution.
In order to successfully tackle this challenge we must introduce innovative fuel configurations, to
obtain a more uniform utilization of the coolant. A main undesirable aspect of classic triangular
lattice is in fact the non-optimal distribution of water around fuel pins, which leads to a non uniform
circumferential clad temperature and wall shear stress distribution (Romano et al., 2001). The target
is therefore to minimize the maximum clad and fuel centerline temperatures, keeping at the same

time the pressure drops through the core as low as possible.
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A large range of arrangements is taken into consideration for the design of the future core. In
particular evolutionary and exotic fuel pin designs are considered promising and have shown the
possibility of highly increasing fuel performances (Romano and Todreas, 2000). Performances of
these new designs need to be evaluated and compared with a detailed analysis, capable of correctly
modeling three dimensional phenomena. Classical lumped parameters codes adopted in nuclear
industries, such as subchannel analysis codes are not appropriate for our purpose, being calibrated
on specific geometries and operational conditions. As it is well known, the finest instruments for
modeling turbulence are DNS and LES. The computing requirements however are extremely high;
in the DNS case for example they scale as Re™, making them, at the moment, unsuitable for our
analysis. Modern CFD codes of practical use are based on the so-called Reynolds Averaged
Navier Stokes equations (RANS) models, where the terms representing turbulence interactions are
modeled in terms of the mean flow variables, as for example in the widely used k. approach.
However, the reliability and accuracy of the results cannot easily be assured (Freitas, 1995).
Turbulence modeling is usually considered the weakest point in CFD analysis.

For this reason we are performing a profound and critical analysis of the modern turbulence
models, to evaluate their capabilities and limitations in describing flow in a tight lattice geometry.
The first results of this research come from the evaluation of various low Reynolds k-. models on an
isothermal benchmark (Baglietto and Ninokata, 2003). They have shown that quadratic and cubic
closure relationships offer higher fidelity in predicting wal stresses and velocity fields in tight
lattice rod bundles. The higher accuracy is due to the ability of these models to account, to some
extent, for the anisotropy of the flow, as opposed to classical linear models, where, being viscosity a
scalar, each component of the stress affects its strain to the same extent. This capability is clearly
shown by the existence of a secondary flow field in the subchannel.

As next step we focus in this work on the performances of various turbulence closures in
predicting the temperature fields in a tight lattice geometry. In particular attention is concentrated on
the relation between accuracy and computational requirements of the various models. In addition to
classical low and high Reynolds formulation of the k& model, we analyze the behavior of two
alternative approaches, the k-w and the Shear Stress Transport (SST) model. In the k- model,
instead of the equation for the turbulent dissipation rate, €, an equation for the turbulent frequency,
o, of the large scales is used. The w-equation is claimed to have significant advantages near the
surface and to correctly predict the turbulent length scale, leading to improved wall shear stress and
heat transfer predictions. This model should also offer the advantage of reduced resolution demands
for an integration to the wall (Vieser et al., 2002). The SST model is aimed at avoiding the possible
limitations of the k-w model in the region distant from the wall, adopting the k-¢ description for this
region.

2. TURBULENCE MODELS

2.1 Linear and non-linear k-z models

It is well known that, despite of the large variety of available models, the standard k -¢ is
nevertheless the most popular and applicable to a large variety of flow cases with reasonable
prediction accuracy. However, there still are fundamentals problems that need to be resolved.In
particular, it is well known that the usual formulations of the model assume an isotropic eddy
diffusivity in modeling the Reynolds stress tensor. One important deficiency of such a model is the
fact that anisotropic effects are not accounted for. In simple terms, since the viscosity is a scalar,
each component of the stress affects its strain to the same extent. For this reason, flows where
turbulent intensity gradients, and hence the augmentation effects of secondary strain rates, are
important cannot be accurately predicted. The most quoted example is the secondary flow that
originates in a square duct due to the gradients of the turbulent shear stresses (Myong, 1991).
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Consequently our attention in this work is directed not only to the standard approach but also to a
non-linear formulation of the k-& model. This approach is intended to realistically describe the
effects of anisotropy in the flow through a non-linear extensjon of the stress-strain relation. This
approach forms a Non-Linear Eddy Viscosity Model (NLEVM) sometimes also refereed to as an
Explicit Algebraic Reynolds Stress Model (Suga, 1998).

The formulation of the k-¢ model has been presented in many papers and will not be repeated
here, for conciseness, but can be found in reference (Launder and Spalding, 1974). We instead
briefly present the turbulence closure correlations for the linear and non-linear formulations.

Linear Model
For the standard linear k- model, the constitutive relations for the Reynolds stresses are as
follows:
——— 2 du
~pun, =2us, ——|u —%5+pkl|d. 1
puu; =2u,s, 3(#,% p],, 1)

where, due to the linear correlation, each component of the shear stress influences only one
component of the velocity gradient, therefore being unable to account for anisotropy. Non linear
models try to cater for this defect by adopting non-linear relationships between Reynolds stresses
and the rate of strain.

Quadratic Model

For the quadratic model, the constitutive relations for the Reynolds stresses are as follows:
__u,fu'. 2 H, ou &y H, 1 H,
- =§(7371+ P )6,,. LS, +C S8, 30,88 |+ G 2o, s, 10,8, ]+
k

#, 1 @
cj-;[sz,.,,gj,‘ --ga,,.gk,g,,]

where

c
C = AL 3)
' (cm,e +Cpyq S 3)C,u

c
C NL2 (4)
: (C.N'LG + Cp7 Sa)C.u

c .
C = NL3 (5)
? (CNL6 +Cps Ss)c

»”
and

BTA+A,S+AQ

6)
where A, A, A, A, Cuns Couz> Carss Cre» Capn  2T€ €Impirical coefficients whose values are shown in
table 1. 5ij and £2ij are elements of the mean strain and vorticity tensors, respectively, and are given

by:
du. 6uj
L=+ 7
Toax,  ax, @
ou. ou,
Q =—i_—L 8
*oox; ox ' (8)

The other two terms required to complete the definition of Cu are as follows:
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k [1

S =—355:5, ©)
k ,1

Q---9,9, (10)

The introduction of these quadratic terms has shown to be able to successfully reproduce
turbulence driven secondary flows in various cases. Anyhow the various quadratic models have
shown limits in the sensitivity to minor strains. The quadratic models in particular do not have
sensitivity to streamline curvature.

Cubic Model

In order to capture the streamline curvature effects it is necessary to introduce further terms. A
cubic term is therefore added to correlation (2),as follows:

_wu; 2(u du B, H, 1 p
-t =§(fﬁ+ P )a,.,. -Ees, +C1?{S,.,,S,q. -Eéﬁs,,sﬂ] +Cz—;[§a*s,q. +Q,8, |+
11)
i, 1 k k (
ca?[sz&szﬂt -55,}.9”9”] Jr(:‘,,u;,g—z(s,,.sa,j +8,Q, )5, ++Cyn, (8.5, -02,9,)s,
C, =y, C? - (12)
Cy = CpqsC? (13)

C, and Cs are again empirical coefficients given in table 1.

Table 1 Coefficient for turbulence closures

A A; Az As CNLI Cyr2 CNL3 CnL4 CNLs CNLs Cxr7

0.667 125 10 09 075 375 475 -100 20 1000 10

2.2 Wall Treatment

The commonly used high Reynolds number versions of the k- model, as well known, cannot be
applied near the vicinity of the wall since the model neglects the effects of viscosity. The typical
approach to avoid modeling these effects is through the use of empirical wall functions, to bridge the
gap between the solid boundary and the turbulent core. However, the universality of such functions
breaks down for complex flows. Another common approach is the use of a two-layer formulation,
where the s-equation is only solved in the outer part of the boundary layer, whereas the inner portion
of the logarithmic layer, and the viscous sub-layer, are treated by a mixing length formulation (Patel
et al., 1985). Again, for complex flows, the coupling between the mixing length and the s-equation
becomes problematic, and the solution depends strongly on the specification of the matching
location; the uniqueness of the solution can therefore not be guaranteed.

Since our study will deal with analyzing complex geometries, both these approaches cannot be
considered acceptable for our intent. Hence, near wall k-¢ models or low Reynolds number models,
which attempt to model the direct influence of viscosity, are the only suitable approach. This
formulation uses the standard transport equation for k, but augments the equation for ¢ with an extra
term, which depends on the distance to the wall, to render the model valid up to solid wall. Details
of the implemented scheme are not given for brevity, but can be found in reference (CDL, 1999).
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Such a technique is anyhow computationally more intensive and in particular requires the values of
the y+ in the near wall cell to be of the order of 1. This condition produces extremely high meshing
requirements making the simulation of large geometries problematic. For this reason, in the work,
particular attention is posed on the balance between accuracy and mesh requirements of the different
low Reynolds approaches, as compared to the high Reynolds form.

23 k-o and SST models

For the k-« model, the general forms of the k and w equations are as follows (Wilcox, 1998):

Turbulence Energy
B, ) ok .
,/"at( p) (.ouk (u —a,) = pF, - pB"kw 14
g, |ox;
Speciﬁc dissipation rate
a U, \ dw w 2
+-< L 100 2p, - S 15
J‘a(‘/—pw) axj(puw (“g:;)axj) pa—F—pfo”+pS, (15)

Standard
For the standard model the closure coefficients and auxiliary relations are:

13 ® L] 2 @ ar
a=£ * ﬁ=ﬁofp . B =ﬁ0fﬁ » Oy =0, =2,

9 1+70x, W50, S,
ﬁn =T s fﬁ =.—x sy Xo= a3 »
125 1+80y, ( o)
1 s XSO (16)
B, =009 , f,=41+680x, x>0
1+400y,
1 9k dw
s———, § =
A =3 ax; ox
where s =%Sij and the eddy viscosity is given by
k
= p— 17
= P a7

SST model
The SST model implemented is that proposed by Menter (1993), the coefficients in this case are

expressed in the following general form:

¢, =FC,+{-F)C,, (18)
where ‘
F, - tanh(arg;) (19

vk _sow} 4pk )

0.0%y " y*w | 02,CD, y*

arg, = min [max(
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CD,, = max| 22 9% 30 4q-m 1)
o, 9X; dx; :

The coefficient set 1 is
0,=1176 , of =2 , B8, =0075, B =009 ,

2 (22)

and the coefficient set 2 is
o,=1, o),=1176., B,=0.0828 , B, =0.09 ,

g 1 «* @)
a, =—4t-—0 ,
AT
S.=20-F)——~22 % @9
G, @ OX; O,
The eddy viscosity for this mode] is
ak
= 25
a pmax(alw,Q'Fz) @3)
where
a, =031 , F, =tanh{arg?) ,arg, = max{ 2 Vi ,5020’
0.0%y" v'w
. 1 (26)
Q =/-0Q.Q
2 Ty

2.4 k-o Wall Treatment

Both k- models are adopted in the low Reynolds number form, for which w at the near-wall
cell is fixed algebraically according to:
w = 60v

By

where v is the Kinetic viscosity, y the normal distance from the wall and 8,=0.075.

27)

3. SOLUTION METHOD

3.1 Code Description

The commercial code Star-CD is adopted for our simulations. The presented models are
available as already implemented. The differential equations governing the conservation of mass,
momentum, energy, etc, within the fluid, are discretized by the finite volume (FV) method Thus,
they are first integrated over the individual computational cells and then approximated in terms of
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the cell-centered nodal values of the dependent variables. This approach has the merit, amongst
others, of ensuring that the discretized forms preserve the conservation properties of the parent
differential equations.

3.2 Discretization Practice and Solution Scheme

The manner in which the convective and diffusive fluxes are expressed in terms of nodal values
is one of the key factors defermining accuracy and stability of the calculations. The choice of
convective flux approximation is particularly important. There are essentially two main classes of
convective flux approximation in widespread use, namely:

Low-order schemes, which characteristically generate discretized equation forms that are easy io
solve, produce solutions which obey the expected physical bounds, but sometimes give rise to
smearing of gradients, also known as numerical diffusion.

Higher-order schemes, which better preserve steep gradients, but may result in equations that
are more difficult to solve (and, in extreme cases, may provoke numerical instabilities) or have
solutions exhibiting non-physical spatial oscillations. These oscillations may, in some cases, lead to
spurious values, e.g. negative species concentration or turbulent kinetic energy. This phenomenon is
often termed numerical dispersion.

In this work a first order upwind differencing (UD) scheme is considered sufficient, due to the
good quality of the mesh adopted, and to the forced convection regime of the considered case. A
Quadratic Upstream Interpolation of Convective Kinematics (QUICK) is nevertheless furthermore
applied to assess the independency of results from discretization practices.

The discretized equations are then solved in a segregated manner with the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) algorithm (Patankar and Spalding, 1972). In
particular, for our steady-state calculations it is adopted in an iterative mode, i.e. the time derivative
terms are deleted from the FV equations. For this reason, in order to avoid instability, we must
introduce under-relaxation. Thus, if the iteration counter is , the solution for the selected variable ¢
is taken as a weighted mean of the previous iterate ¢7 and the current one, denoted by ¢, as
follows:

¢* =a,9" + (-, p* (28)

where ay, the under-relaxation factor, lies in the range 0< gy < 1

4. BENCHMARK PROBLEM
4.1 Experiment description

The experiment adopted as a benchmark was performed at the Karlsruhe Nuclear Research
Center in 1989, and is named TEGENA (Moller, 1989). Since considerable variations in
temperature occur in the bundle boundary zone, and this zone has shown to be the most critical for a
correct numerical prediction, the experiments were performed in typical subchannels of the bundle
boundary zone. The selected geometry is in fact a 4-rod in one row inside a rectangular channel box.
The pitch to diameter ratio of the rod, p/d=1.147, was selected as typical of an advanced reactor
concept.

Sodium was chosen as the liquid-metal coolant because a suitable test bench and practical
experience had been available.
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Figure 1. TEGENA Test Geometry

The test section is schematically represented in figure 1. The heater rods are 25 mm in diameter
and about 4 m in length, 2.5 m of them heated. The sodium flows from an inlet section in the open
rectangular channel into the 4-rod bundle. It first passes an unheated zone of 1288 mm length, it is
then heated and leaves the cylindrical measuring chamber through a nozzle provided on its site. The
maximum heat flux densities generated on the rod surfaces are 60 W/em?® The selected heated
length of 2456 mm (201 hydraulic diameters) is sufficient to obtain thermally developed flow
conditions during uniform heating,

The temperatures in the sodium flowing through the bundle subchannels are carefully measured
in the horizontal main measuring level, 29 mm ahead of the end of the rectangular channel. A
measuring probe is fixed to an externally adjustable measuring slides in such a manner that it can be
moved in X and Y direction within the subchannels. Four miniature thermocouples protrude from
the end of the vertical probe. They are designated TE21, TE22, TE23 and TE24. The geometry is
shown in figure 2.
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Figure 2. TEGENA Measuring Probe

Operational Conditions

Among the numerous experiments of TEGENA we select two cases. For these, the sodinm
temperature distributions are known along a line, as shown in figures 3 and 4. The Flow conditions
are very similar, the Reynolds number is around 60,000, with a heat flux density generated on the
rod surfaces of about S0 W/cm®. Detailed data of the two cases considered are presented in table 2.

Termperature distribution along this line

Figure 4. CASE 2 Measuring Location

Table 2 TEGENA Experimental Parameters

CASE Re Mass Inlet Qutlet Heat Flux Heat Flux Heat Flux Heat Flux
Flow Temp Temp PIN1 PIN2 PIN3 PIN4
49.38 49.00 49.42 49.74
1 60,100 | 3.12kg/s | 257.98 C | 350.74 C W/cm? W/ em? W/cm? W/ em?
51.01 50.59 50.02 51.37
2 61,300 | 3.19kg/s | 256.55C | 350.74 C W/ cm? W/em? W/cm? W/cm?

4.3 Simulation Model
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Due to the geometrical symmetry, only % of the bundle has been modeled in our calculations, as
can be seen in figure 5. Since our intention has been to adopt low Reynolds number form of the
turbulence model, and being for these the meshing requirements extremely severe, we limited the
height of the modeled region. The lower part of the rectangular channel and the unheated rod bundle
zone have not been modeled, and a preliminary calculation has been run to evaluate the minimum
height required to obtain thermally fully developed flow conditions.
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Figure 6. Thermal Development of the Flow

As shown in figure 6, the normalized temperature difference, i.e. the maximum temperature
minus the flow averaged temperature divided the flow averaged temperature in the plane, has been
evaluated at growing elevations in the model. As we can see the thermal field is largely fully
developed after 110 hydraulic diameters. We therefore adopted a model with a height of 120
hydranlic diameters, which corresponds to 1466 mm.

Since it is very important to study the dependency of the results on the grid resolution, to
demonstrate the grid-convergence of the solution, three different grid resolutions have been used in
our analysis, and are shown in figure 7. The total number of nodes varies from 800,000, for the
coarse grid, to 3,000,000 for the superfine one.
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a ) Coatse Mesh
b ) Fine Mesh

¢ ) Supetfine mesh

Figure 7. Calculational Grids

3. PRESENTATION AND DISCUSSION OF RESULTS
5.1 Numerical and grid convergence

The calculations performed are extremely requiring from the numerical point of view. The
adoption of a model with a tall and narrow geometry puts a strong challenge on the convergence of
the calculation, and requires the adoption of a very low under-relaxation ceefficient for the pressure
solution, of the order of 0.1. When adopting fine and superfine meshes the convergence of the
enthalpy solution is too slow if adopting a typical under-relaxation of 0.95. We must adopt a
coefficient of 0.99 to effectively reach convergence.

As previously discussed all calculations have been performed adopting both the first order
Upwind Differential (UD) scheme and the higher order QUICK scheme. The results have shown
that in all cases the two schemes produce the same results. The UD scheme is as expected more
stable but requires a much higher number of iterations when dealing with fine mesh. The QUICK
scheme on the other hand is less stable but much less sensible to the quality of the grid, requiring
anyhow an increased calculation time for each step.

Figure 8 presents the residuals histories of some of the analyzed cases. It is also interesting to
note that the k- model, when dealing with fine meshes shows a much quicker convergence as
compared to k-& models.
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All turbulence models have been tested on the different meshes, previously presented, to
analyze grid dependency. In general, for all models the results obtained for the fine and refined grids
provided the same values, showing that the quality of the fine grid is sufficient for our analysis. The
results for the coarse grid case show little difference, and in particular, if adopting a high Reynolds
number k- model, this difference is not relevant. The k-w and the SST models did not present the
expected advantage for the mesh requirement, even for these models the y+ values in the first cell
attached to the wall must be of the order of 1.0.
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Figure 8. Normalized Residuals
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5.2 CASE 1 Temperature distribution

The temperature distributions calculated for the case 1 are presented in comparison with the
experimental values, along the line shown in figure 3. The values X21 through X24 represent the
temperatures measured by the thermocouples, shown in figure 2.
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Figure 9. k-g, k-0 and SST Models

Figure 9 clearly shows that the linear k-g, the k-, and the SST model produce closely the same
temperature distribution. All models over predict in the same measure the temperature values in the
narrow gap region between the heated rods. The difference in the peak temperature is in the order of
5 K. These predictions, adopting linear turbulence models do show a strong consistency, proving the
maturity of the implementations, for the high Reynolds flow conditions analyzed. At the same time
anyhow they prove how, their inability to account for anisotropy render them unable to produce a
qualitatively and quantitatively correct prediction.

In this respect figure 10 shows the comparison between the linear and non-linear modeling
approach. The quadratic non-linear model only, is presented, since the cubic model presents exactly
the same outcome. In fact the cubic term, which is introduced to account for curvature of the
streamline, does not produce, as expected, difference in the evaluated geometry.
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The agreement is indeed rather satisfactory, and the small over prediction in the region close
two the wall of the rectangular channel, might be a model limitations, but is considered by the
authors, most likely related to the non-perfectly adiabatic experimental conditions.

In figure 11 we have presented a comparison between the linear and the quadratic model, as
applied in the high Reynolds k-e¢ formulation, with the adoption of a law-of-the-wall for the near
wall region. Such treatment allows to drastically reduce the number of nodes required for the
calculation, and radically increases the speed of the calculations. For this reason such an approach is,
at present, the only acceptable to model large geometries, as for example a whole fuel assembly. The
comparison shows how, although we cannot correctly describe the near wall region, the model can
anyway benefit from the non-linear modeling, producing a somehow smaller over prediction of the
maximum sodium temperature.

Figure 12 in addition shows the present of a secondary flow field in the flow, caused by the
gradients of the shear stresses. The magnitude of such a motion is extremely low, less than 1% of
the coolant velocity, but, as shown, it is capable of strongly influencing the temperature distribution
in the bundle.

Figure 12. Secondary flow field

5.3 CASE 2 Temperature distribution

The second case, considered in our work, compares the temperature distribution along a line
close to the channel box, as shown in figure 3. As for case 1, the predictions of all linear models
were in very close agreement, and therefore only the k-¢ is shown, as representative. In figure 13 we
compared the results of the linear and quadratic closure for the low Reynolds k-€ model. We clearly
see that our results have a large qualitative difference in the two peaks as compared with the
experiment. The TEGENA data present a difference in the temperature between the two peaks of
about 5 K. This difference is related to the different heat flux in the pin3 and 4, that, as shown in
table 2, is of the order of 3%. Since in our calculations we did not modeled the complete heated
length, the difference in the peak for the calculation resulis is very small, only about 1 K.
Furthermore, this difference could be in part related to the different isolations around the rectangular
channel, shown in figure 1, which could cause a higher heat dispersion in the region close to the
pin3.
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Figure 13. Linear and Quadratic k-€ Models

The results anyhow seem once again to show the importance of the anisotropic modeling which
can produce a flatter temperature distribution, which better conforms to the experimental one. The
case anyhow would require further investigations for a correct analysis.

3. CONCLUSIONS

A comparative study between different turbulence models has been presented in this work. The
different turbulence closures have been applied to a benchmark referring to the TEGENA
experiment, performed at the Karlsruhe Nuclear Research Center in 1989. The work was intended to
evaluate the mode] performances in predicting the temperature distributions in a tight lattice rod
bundle,

The comparisons firstly show the maturity of the implementations of the different models. All
linear models, k-¢, k-w and SST, in fact produced the same predictions. These models indeed over
predict the temperature values in the narrow gap region between pins, due to their inability to
account for anisotropy. The secondary flows, which arise from the gradients of the shear stresses,
produce a flattening in the temperature field, in the same extents of the flattening for the velocity
field that we discussed in a previous work (Baglietto and Ninokata, 2003). In this respect the
non-linear models are therefore capable of reproducing the temperature field with a higher accuracy.

The work therefore confirms the necessity of accounting for anisotropy in the models to obtain a
correct analysis of flow in a tight lattice geometry. At the same time, the low-Reynolds models
adopted in the work showed extremely high mesh requirements for a correct analysis, which makes
them, at present, unsuitable for modeling large geometries, as for example fuel bundies.

Correct comparisons between different fuel designs can therefore be obtained, on smaller
domains, with quadratic and cubic k-¢ models. These models, after a further refinement, will be
adopted in the first part of our fuel design. More extensive work is instead required to select a model
that could be successfully applied for a correct simulation of a complete fuel assembly. At present
the high Reynolds version of the non-linear models has shown relatively good performances in the
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predictions and the very low meshing and computational requirements and makes it appealing. At
the same time, the adoption of an empirical law, for the near wall region, does not guarantee the
applicability of such an approach to generic geometries, and complex flows.

It is intention of the authors to evaluate, in future work, the performances of the V2F model by

Durbin (1995} in this respect. The V2F model avoids explicit low-Re terms in the e equation by
using an elliptic relaxation equation near the wall, in addition, an equation for the fluctuating v2 is
introduced. This model does not require the calculation of wall distance, and does not requirethe
use of dumping functions or wall functions to adjust the behavior of turbulence quantities.It should
therefore present reduced computational overhead, and in particular reduced meshing requirements,
which are key points of our investigation. At the same time it is claimed to produce better friction
and heat transfer predictions through the correct modeling of the viscous sub-layer.

NOMENCLATURE

d; = | Kronecker delta £ = | Turbulent dissipation rate

k = | Turbulent kinetic energy A = | Turbulent viscosity

Sy = | Element of the mean strain tensor v = | Kinematic viscosity

i = | Rate of strain tensor D.N.S. = | Direct numerical simulation

y = | Normal distance from the wall LES. = | Large eddy simulation

2 = | Element of the mean vorticity RAN.S. | = | Reynolds Averaged Navier
tensor Stokes equations
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Calculation of Heat Transfer Coefficients on A Flat Plate by
Pseudo Direct Numerical Simulation of Turbulence
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The pseudo direct numerical simulation using finite difference method has been carried
out for fully-developed turbulent flows through heated paralleled flat plates. Uniform heat
flux is applied to both walls. The main objectives of this paper are to investigate the validity
of the numerical method, and the influence of the spatial resolution in the streamwise and
spanwise directions upon the turbulent field. The Reynolds number, based on the friction
velocity and the channel half-width is 180, and the Prandtl numbers are 5.9, 1.0, 0.72, 0.025,
and 0.0045.. The good results for the mean profile and the second-correlation of velocity and
temperarure, and the Nusselt number for various Prandtl numbers are obtained, and the
spatial resolution, in this paper, scarcely affected the calculated results.

KEYWORDS: pseudo direct numerical simulation, forced convection, finite difference
method, thermal transfer coefficient, flat plate, turbulent statistics '

L Introduction

It is necessary to perform detailed turbulent heat transfer analysis in a fuel assembly.
The attempt was made to use a pseudo direct numerical simulation using finite difference
method, in the hope that this method could replace a past empirical approaches based on
experiments or statistics. In this paper, we describe the pseudo direct numerical simulation
of fully-developed turbulent flow through heated paralleled flat plates.

It is discussed that the finer grid size, which can resolve the minimum scale
turbulent eddy, is necessary to perform the direct numerical simulation. However, for the
application of the thermal direct numerical simulation to engineering, it is significant to
investigate grid size affects necessary in estimating the mean velocity and temperature
profiles, and their second-order correlations.

The purpose of this work is to test the method to be applied for rod-bundle thermal

"Corresponding author, Tel. +81-3-5734-3062, Fax. +81-3-5734-3056, E-mail: 01d19077 @nr.titech.ac.jp
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hydraulic analysis, and to investigate the influence of a grid size on calculating the thermal
turbulent field.

II. Numerical Method and Parameters

1. Computational Domain

Figure.1 shows the computational domain. The size of the domain is given by 3.2 7,
200, and 6.4 &, in the spanwise, wall-normal, and streamwise directions, respectively,
where J denotes the channel half-width. The fluid is incompressible Newtonian fluid of
constant density o, constant viscosity «, constant thermal conductivity .2, and constant
thermal capacity Cp. Uniform heat flux g, is applied to both walls.

The friction Reynolds number Re ,( = w, &/ v) , is 180, and the Prandtl numbers
Pr(= «#Cy 1) are5.9 (water in normal temperature), /.0 (water in 15MPa, 330°C), 0.72
(air in normal temperature and pressure), 0.025 (Nak, 100°C), 0.0045 (sodium in normal

pressure, 500°C), where w_ denotes the friction velocity (= Jr,,.‘,,, o ), v the kinetic

viscosity, and 7,4y the wall shear stress.
2, Basic Equations

The flow variables and the equations are made dimensionless using the channel
half-width &, the density o, the friction velocity w,, and the friction temperature T,
{= Qu/(ﬂcp ‘w.)}

The governing equations for the simulations are the mass continuity equation:

+
auj _

L=0 LD
ox;
Navier-Stokes equation:
+ + + 2, + —*
oy, +u_,,au,. _op L1 d’u, dp 5 (2)

o ' ax’  ax  Re, ij.'z o

i

and the energy equation:

+ + 2+
E;T+ +u; aT‘ _ 1 d I:z ‘ (3)
t ox; Pr-Re, ox;

In Egs. (1)-(3), the following definitions are employed:
w't = wp
t=tew,/0
= plow.2)
™ = T/T. and

*

xi = x/0.
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Here the averaged value is indicated by (7).

The fluid is driven by a mean pressure difference in the streamwise direction. The
third term of the left-hand side in Eq. (2) is the mean constant pressure gradient term
dp /32", and the first term of the left-hand side is the fluctuation component from the mean
pressure difference.

The mixed mean temperature increases linearly in the streamwise direction. Then
the temperature 7" is divided into two parts:

e o e dTh |
T(x’yaz)_d g(x.)’Z) ('4)
where T, isthe mixed mean temperature:
W T+dy
L S
jway

In the present condition, this streamwise gradient becomes:

dTn__1
@ W,

bulk

(.6)

where W, isthe bulk mean velocity:
W:m'k =S I W+dyt. (.7)
With the above transformation, the energy equation (3) becomes:

26" +89* 1 9% W' (8
o e PrRe, 3c” Wem '
x R€ dx;, Wi

3. Numerical Method

Non-slip boundary conditions are imposed to velocities, Neumann condition to
pressure, and the transformed temperature #=0 on the both walls. Periodic conditions are
imposed to the velocities, pressure, and transformed temperature in the spanwise and
streamwise directions.

The numerical method is based on the fractional step method, with the staggered
grid. For the spatial derivatives, the consistent scheme " is applied for the convection terms,
the second order accurate central scheme for other terms. An explicit Adamus-Bashforth
scheme is used for time-advancement of convection and dissipation terms. However, for the
simulation of low Prandtl number fluids, an implicit Crank-Nicolson scheme is applied for
dissipation term in energy equation (8) to avoid the restriction of time-interval by explicit
description of dissipation term. The Poisson-type pressure equation is solved by the scaling
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CG method using FFT in the streamwise direction.

4. Solution Prodedure

In this work, both the fine-grid and coarse-grid computations are performed, in
order to investigate the influence of spatial resolutions in the spanwise and strearnwise
direction upon calculated thermal turbulent flow. The computational domain is divided into
128x64x128 grids in the fine-grid computation, and 64x64x64 grids in coarse-grid
computation, in the spanwise, wall-normal, streamwise direction. Non-uniform grids, which
are concentrated on the walls, are used in the wall-normal direction in order to resolve
viscous sublayer. The minimum and maximum grid sizes in wall units, which are defined
by yw ./ v, are 1.1 and 11.0. In this paper, the wall-normal mesh size is not varied between
fine-grid and coarse-grid computation. Uniform grids are applied in the streamwise and
spanwise direction. The grid sizes of the coarse-grid computation in wall units are 9.0 in the
spanwise direction, /8.0 in the streamwise direction. Those of the fine-grid computation in
wall units are 4.5 in the spanwise direction, 9.0 in the streamwise direction.

The time interval, which is defined by " = At - w ./ v, is 0.0005.

First, isothermal simulation is carried out. Fully-developed flow is reached after
£=25, and is judged by a linear shear stress in Fig.2, and by the fact that the sample data,
which is time-averaged for every 10000 time steps or for Af'=5, shows stationary state
behaviors. The results of velocity are time-averaged over *=25-50, and spatial-averaged
over streamwise and spanwise directions. After that, the heat transfer simulations for
various Prandtl numbers are performed. Fully-developed flow is reached after r*=80. It is
identified by the fact that the sample data, which is time-averaged for every 10000 time
steps, shows stationary state behaviors. The results of temperature are time-averaged over
1*=80-110, and spatial-averaged.

The computations are performed with the vector computer. Total CPU time of
fine-grid cases is, for example, about 80 hours.

I, Computational Results

1. Velocity Field

The mean streamwise velocity profile is shown in Fig.3, and is compared with the
results using the spectral method by Kim et al (1987) 2, and the finite difference method by
Kawamura ez al (1998) ¥, While the agreement of the fine-grid computation is good enough,
the coarse-grid case underestimates about 4% in the center of the channel.

The calculated bulk-Reynolds numbers Rep,y ( =WaaD, /v ), where Dy denotes the
equivalent diameter defined by Dy, = 4(S/L,,), § the cross-sectional area, and L,, the wetted
length, are 11400 in the fine-grid computation, and 11000 in the coarse-grid computation,
‘The trend is the same as for the streamwise velocity profiles. .
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The root-mean square of velocity variance is shown in Fig.4. The agreement of the
results.of V', is satisfactory. However, the coarse resolution case underestimates the peak
U s of about 2%, and W, of about 4%.

The Reynolds shear stress is shown in Fig.5. While the coarse grid computation
overestimates near the wall, agreement is satisfactory in the region of y*>30.

These results show that, the fine- and coarse-grid computations give a slight
difference on the streamwise velocity profile, U™ ,,,; and W* 5, and on the Reynolds shear
stresses near the wall, but are calculated to be both in good agreement with results of Kim
et al, and Kawamura et al.

2. Temperature field

The mean temperature profiles are shown in Fig.6 for various Prandt! numbers, and
are compared with Kader’s correlation (1981) and the results by Kawamura ef al (1998) ¥
with Re =180, Pr=0.71 and 0.025. The calculation results are in good agreement with
Kader’s correlations. The coarse-grid computation estimates the peak value about 5% less
than the fine-grid computation for Pr=>5.9, about 4% for Pr=1.0, and about 3% for Pr=0.72,
Both the fine- and coarse-grid cases show agreement within 1% for Pr=0.025, 0.0045. In
comparison with the result of Kawamura et al, the coarse-grid computation for Pr=0.72
underestimates the peak temperature &% of about 3%, while the fine-grid case shows
agreement within 1%. Both the fine- and coarse grid computation for Pr=0.025 show
agreement with the result of Kawamura et al within 1%. The difference of the results of the
fine- and coarse grid case decreases with a decrease of Prandtl number. It is well known
that the smallest scale of the temperature fluctuation decreases with an increase of Prandtl
number. Therefore, for high Prandtl number, because coarse grid case does not have enough
grid size, the spatial resolution affects the calculated results. For low Prandtl number, in
particular Pr=0.025, 0.00435, the influence of spatial resolution upon the results hardly find,
and the coarse-grid case can obtain the same accurate results as the fine-grid case.

The root-mean square of the temperature variance, and the turbulent heat flux for
Pr=0.72 and 0.025 are shown in Figs.7 and 8, compared with the results of Kawamura et
al for Pr=0.71 and 0.025. Both figures show that, while the coarse-grid case slightly
overestimates it near the wall, both fine- and coarse grid computations are in good
agreement with the result of Kawamura et al.

3. Heat Transfer Coefficient

The calculated Nusselt numbers for various Prandtl number are given in Fig.9,
compared with Dittus-Boelter correlation (1945) ¥, Seban correlation (1950) ®, and the
result of Kawamura et al for Pr=0.71 and 0.025. The calculated Nusselt numbers are given
by:
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h-D, 4Re Pr
A on

where £ denotes the heat transfer coefficient.

Nus= .9

The difference of the results of the fine- and coarse-grid case is about 5% for Pr=5 .9,
about 4% for Pr=1.0, about 3% for Pr=0.72. Both the fine- and coarse grid computations
show agreement within 1% for Pr=0.025, 0.0045. The trend is the same as for the mean
temperature profiles. The fine-grid case is in good agreement with the result of Kawamura
et al for Pr=0.71 within 1%, while coarse-grid case within 4%. Both the fine-grid and
coarse-grid cases for Pr=0.025, 0.0045 are in agreement with Seban correlation within
15-20%, and those for Pr=5.9, 1.0, 0.72 are in agreement with Dittus-Boelter correlation
within 15%, in spite of the fact that these correlations were originally for circular tube,

V. Conclusions

The pseudo direct numerical simulation for the heated parallel flat plates
for various Prandtl numbers was performed, and the influence of the spatial
resolutions in the streamwise and spanwise direction upon the thermal
turbulent field, was investigated.

It is confirmed that the calculated results by the numerical method
describes in this paper gave good results for the mean profiles, second-order
correlations of the velocity and temperature, especially for the estimation of the
Nusselt numbers in various Prandtl number fluids, and that the spatial
resolution, in the streamwise and spanwise directions, scarcely affects those
within the grid sizes, in particular for low Prandtl number fluids.

We will make the best use of the knowledge of those for rod-bundle analysis, in the
future.
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