(12)公開特許公報(A)

(11) 特許出願公開番号

特開2014-174123

(P2014-174123A)

(43) 公開日 平成26年9月22日 (2014.9.22)

(51) Int.Cl.			FΙ				テーマコート	* (参考)	
G01T	1/167	(2006.01)	GO 1 T	1/167	С		2G001		
G01T	3/00	(2006.01)	G O 1 T	3/00	Н		2G075		
G21K	5/02	(2006.01)	G 2 1 K	5/02	Ν		2G188		
GO1N	23/05	(2006.01)	GO1N	23/05					
G21K	5/10	(2006.01)	G 2 1 K	5/10	Т				
			審査請求 未	請求請求項	iの数 10 C) L	(全 16 頁)	最終頁に続く	
(21) 出願番号		特願2013-496	97 (P2013-49697)	(71) 出願人	505374783	3			
(22) 出願日		平成25年3月12	2日 (2013.3.12)		独立行政法	去人日本	原子力研究	開発機構	
					茨城県那玛	河郡東湖	፼村村松4番	地49	
特許法第30	条第2項	貢適用申請有り	第33回核物質管	(74)代理人	100100549)			
理学会日本支	部年次ナ	、会 開催日	平成24年10月2		弁理士 丿	ゴロ 募	之		
6日 開催場	所 東京	マジン マンチ・マンク マンク マンチ・マンク マンク マンク マンク マンク マンク マンク マンク マンク マンク	京都千代田区神田錦	(74)代理人	100113608	3			
町3-28)	htt	:p://ww	w. jnmcc. o		弁理士 3	平川 即	1		
r. jp∕i	n mm/	/ 掲載日 平	成24年12月19	(74)代理人	100175190)			
日					弁理士 フ	大竹 裕	锕		
				(72)発明者	大図 章				
		茨城県那珂郡東海村白方白根2番地4 独							
					立行政法人日本原子力研究開発機構 東海				
					研究開発	センター	- 原子力科	学研究所内	
							最	終頁に続く	

(54) 【発明の名称】核分裂性物質量の測定方法、及び測定装置

(57)【要約】

(19) 日本国特許庁(JP)

【課題】放射性廃棄物中の核分裂性物質量を精度よく測 定する技術を提供する。

【解決手段】測定方法は、高速中性子源より中性子を所 定時間、放射性廃棄物に照射するステップと、放射性廃 棄物外に配置された検出器で検出される核分裂中性子数 を測定するステップと、中性子発生源より中性子を放射 性廃棄物に照射後、所定のタイミングで測定された中性 子数のうち、放射性廃棄物に入射した中性子が放射性廃 棄物中の核分裂性物質と核反応を引き起こして発生する 測定装置固有の中性子の発生特性に基づいて放射性廃棄 物中の核分裂性物質量を算出するステップと、を有する

【選択図】図1

【特許請求の範囲】

【請求項1】

高速中性子源より中性子を所定時間、放射性廃棄物に照射するステップと、 前記放射性廃棄物外に配置された検出器により中性子数を測定するステップと、

前記中性子発生源より前記放射性廃棄物に入射した中性子が前記放射性廃棄物中の核分 裂性物質と核反応を引き起こして発生する核分裂中性子の発生特性に基づいて前記放射性 廃棄物中の核分裂性物質量を算出するステップと、を有する核分裂性物質量の測定方法。 【請求項2】

前記算出するステップは、前記中性子発生源より中性子を照射後に測定された核分裂中 性子数のうち、前記放射性廃棄物に入射した中性子が前記放射性廃棄物中の核分裂性物質 と核反応を引き起こして発生する核分裂中性子の発生数を算出するステップと、

前記核分裂中性子の発生数の時間変動から核分裂中性子の消滅時間を算出するステップと、

前記核分裂中性子の発生数の総カウント数を算出するステップと、

前記消滅時間と前記総カウント数から放射性廃棄物中の核分裂性物質量を導出するステップと、を含む請求項1に記載の核分裂性物質量の測定方法。

【請求項3】

請求項2に記載の核分裂性物質量を導出するステップは、使用する測定装置において予め計測した前記消滅時間と核分裂性物質の単位質量当たりの総カウント数との校正された 相関関係を基に、測定対象の放射性廃棄物から得られる消滅時間に対応する校正総カウント数を求めるステップと前記測定対象の放射性廃棄物から得られる総カウント数を前記校 正総カウント数で除算するステップと、を含む請求項2に記載の核分裂性物質量の測定方法。

【請求項4】

放射性廃棄物に高速中性子を照射する高速中性子発生源と、

中性子検出器と、

前記高速中性子発生源より前記放射性廃棄物に入射した中性子が前記放射性廃棄物中の 核分裂性物質と核反応を引き起こして発生する中性子の発生特性に基づいて前記放射性廃 棄物中の核分裂性物質量を算出する演算部と、を備える測定装置。

【請求項5】

前記演算部は、前記高速中性子発生源より中性子を照射後に測定された中性子数のうち、前記放射性廃棄物に入射した中性子が前記放射性廃棄物中の核分裂性物質と核反応を引き起こして発生する核分裂中性子の発生数を算出する手段と、

前記核分裂中性子の発生数の時間変動から核分裂中性子の消滅時間を算出する手段と、 前記核分裂中性子の発生数の総カウント数を算出する手段と、

前記消滅時間と前記総カウント数から放射性廃棄物中の核分裂性物質量を導出する手段と、を含む請求項4に記載の測定装置。

【請求項6】

前記消滅時間と核分裂性物質の単位質量当たりの校正総カウント数との相関関係を記憶する手段をさらに備え、

前記導出する手段は、

前記相関関係を基に、測定対象の放射性廃棄物から得られる消滅時間に対応する校正 総カウント数を求める手段と、

前記測定対象の放射性廃棄物から得られる総カウント数を前記校正総カウント数で除 算する手段と、を有する請求項5に記載の測定装置。

【請求項7】

前記放射性廃棄物、前記高速中性子発生源、及び前記中性子検出器を取り囲む高速中性 子反射体と前記高速中性子反射体の内壁面に内張された熱中性子吸収材とを有する構造物 をさらに備える請求項4から6のいずれか1項に記載の測定装置。

【請求項8】

40

10

前記高速中性子反射体は、鉄、鉄合金、鉛、ジルコニウム合金、及びコンクリートの少なくとも1つを含み、

前 記 熱 中 性 子 吸 収 材 は 、 カ ド ミ ウ ム 及 び 炭 化 ホ ウ 素 の 少 な く と も 1 つ を 含 む 請 求 項 7 に 記 載 の 測 定 装 置 。

【請求項9】

前記放射性廃棄物を内蔵する容器を前記容器の中心軸周りに回転する回転手段をさらに 備え、

前記容器は、前記高速中性子発生源と前記中性子検出器との間に配置されて回転される請求項4から8のいずれか1項に記載の測定装置。

【請求項10】

10

前記放射性廃棄物の外面を被覆し、または前記放射性廃棄物の外面から離間した位置で前記放射性廃棄物を包囲する中性子減速材をさらに備える請求項4から9のいずれか1項に記載の測定装置。

【発明の詳細な説明】

【技術分野】

[0001]

【背景技術】 【0002】

本 発 明 は 、 ウ ラ ン 、 プ ル ト ニ ウ ム 等 の 核 分 裂 性 物 質 が 混 入 さ れ た ド ラ ム 缶 等 の 放 射 性 固 体 廃 棄 物 内 の 核 分 裂 性 物 質 含 有 量 を 放 射 線 に よ り 測 定 す る 技 術 に 関 す る 。

20

30

40

放射性固体廃棄物に内蔵される核分裂性物質の量を非破壊測定法によって測定検査す る従来の方法として、アクティブ中性子法が知られている(例えば、特許文献1~8、非 特許文献1~3)。

[0003]

アクティブ中性子法では、測定システム内に設置した中性子発生源から発生した高速中 性子は検出対象の放射性固体廃棄物に照射され、放射性固体廃棄物中の核分裂性核種と核 分裂反応を誘発する。核分裂反応の結果発生する核分裂中性子を測定システム内に設置し た中性子検出器で測定することにより、放射性固体廃棄物の核分裂性物質含有量が測定さ れる。特に、従来の測定システムは、所定時間パルス状に高速中性子を発生させて核分裂 性物質に照射し、パルス状の中性子の照射から得られる核分裂中性子の総カウント数を基 に、放射性固体廃棄物中の核分裂性物質量を導出していた。

【先行技術文献】

【特許文献】 【0004】

【特許文献1】特許第3845685号公報

- 【特許文献2】特開平11-64528号公報
- 【特許文献3】特開2007-218663号公報
- 【特許文献4】特開2009-281878号公報

【特許文献 5 】特許第 2 9 7 8 1 0 3 号公報

【特許文献6】特許第2978106号公報

【特許文献7】特表2002-541491号公報

【特許文献 8 】特開平 5 - 2 8 1 1 5 8 号公報

【非特許文献】

[0 0 0 5]

【非特許文献1】春山満夫他、日本原子力学会誌、2001年、Vol.43, No.4, p.397-40 4

【非特許文献 2 】春山満夫他、日本原子力学会和文論文誌、 2 0 0 4 年、Vol.3, No.2, p .185-192 (4)

【非特許文献 3 】春山満夫他、日本原子力学会和文論文誌、 2 0 0 7 年、Vol.6, No.1, p .65-72 【発明の概要】 【発明が解決しようとする課題】 [0006]しかしながら、例えば、同量の核分裂性物質を含む放射性固体廃棄物であっても、放射 性固体廃棄物に含まれる内容物の中性子吸収特性あるいは中性子減速特性が異なる場合に は、同一量の中性子の照射から得られる核分裂中性子の総カウント数が異なることがある 。したがって、核分裂中性子の総カウント数だけでは、放射性固体廃棄物中の核分裂性物 10 質量を精度よく測定することは困難であった。 [0007]本発明の課題は、放射性廃棄物中の核分裂性物質量を精度よく測定する技術を提供する ことにある。 【課題を解決するための手段】 $\begin{bmatrix} 0 & 0 & 0 & 8 \end{bmatrix}$ 1つの側面では、本発明は、核分裂性物質量の測定方法として例示できる。本方法は、 高速中性子源より中性子を所定時間、放射性廃棄物に照射するステップと、 放射性廃棄物外に配置された検出器により中性子数を測定するステップと、 中性子発生源より放射性廃棄物に入射した中性子が放射性廃棄物中の核分裂性物質と核 20 反応を引き起こして発生する中性子の発生特性に基づいて放射性廃棄物中の核分裂性物質 量を算出するステップと、を有する。 【発明の効果】 [0009]本方法によれば、放射性廃棄物中の核分裂性物質量を精度よく測定できる。 【図面の簡単な説明】 [0010]【図1】実施形態に係る測定装置1の側面図である。 【図2】測定装置1の上面図である。 【図3】計測制御 P C システムの構成を例示する図である。 30 【図4】中性子検出器でのカウント数を例示する図である。 【図5】核分裂性物質量の測定処理の手順を例示する図である。 【図6】種々の放射性固体廃棄物の中性子カウント数の測定装置での測定結果と、中性子 輸送計算によって放射性廃棄物に対して高速中性子を照射するシミュレーション結果とを 例示する図である。 【図7】シミュレーションにより得られた消滅時間と中性子総カウント数の関係を例示す る図である。 【図8】消滅時間と核分裂性物質の単位質量当たり中性子総カウント数の関係を例示する 図である。 【発明を実施するための形態】 40 [0011]以下、図面を参照して、一実施形態に係るに核分裂性物質量の測定方法を説明する。こ の測定方法は、核分裂性物質量の測定装置において実行される。以下の実施形態の構成は 例示であり、本測定装置は実施形態の構成には限定されない。 図1から図4を参照して、測定装置1を説明する。測定装置1は、アクティブ中性子法 を用いて放射性固体廃棄物中の核分裂性物質の非破壊測定を実行する。測定装置1は、測 定 に お け る 放 射 性 固 体 廃 棄 物 に 対 す る 位 置 感 度 差 を 低 減 す る と と も に 、 放 射 性 固 体 廃 棄 物

の内容物の中性子吸収及び減速特性を考慮することで核分裂性物質量の測定精度を向上す

- る。
- 【0013】

具体的には、測定装置1は、核分裂性物質量測定の精度を向上するために、核分裂性物 質から発生する核分裂中性子の消滅時間と総カウント数から核分裂性物質量を導出する。 測定手順の一例として、測定装置1は、中性子発生源からパルス状に高速中性子を発生さ せ、固体廃棄物に照射する。すると固体廃棄物内に含まれる核分裂性物質からは核分裂中 性子がパルス状に発生し、中性子検出器に到達する。このとき発生する核分裂中性子は、 ある一定の時定数で指数関数的に減衰する。この時定数は、アクティブ中性子法では消滅 時間(Die-away time)と呼ばれる。

[0014]

消滅時間は放射性固体廃棄物内に含まれる物質の中性子吸収及び減速特性に依存する。 例えば固体廃棄物の内容物が金属系の場合には比較的消滅時間は短くなり、コンクリート またはウエス(紙または布)の場合には、消滅時間は金属系の場合より長くなる。消滅時間 は固体廃棄物内に含まれる物質の中性子吸収及び減速特性を示す指標となる。したがって 、放射性固体廃棄物における消滅時間を精度よく計測することによって、放射性固体廃棄 物内に含まれる物質の中性子吸収及び減速特性を特定することができる。 【0015】

また、パルス状に照射される高速中性子に対応して、放射性固体廃棄物中の核分裂性物 質からパルス状に発生し検出器に到達して検出される核分裂中性子の総計数値である総カ ウント数を以下、単に総カウント数と呼ぶ。核分裂中性子の総カウント数は核分裂性物質 の量に比例し、かつ固体廃棄物内に含まれる物質の中性子吸収及び減速特性で変化する。 そこで、校正試験を行い、固体廃棄物内に含まれる物質の中性子吸収及び減速性能を示す 特性値を変化させて、既知の核分裂性物質を既知の量含んだ状態で検出される核分裂中性 子の消滅時間と総カウント数の関係を予め求めておく。例えば、消滅時間と核分裂性物質 の単位質量あたりの核分裂中性子の総カウント数の関係を求めておく。この関係を事前に 求めておけば、この関係を基準にして固体廃棄物内の未知の核分裂性物質量を導出するこ とが可能となる。

【0016】

例えば、まず、固体廃棄物内の核分裂性物質から発生する核分裂中性子の消滅時間を計 測する。次に予め校正試験により決定された消滅時間と核分裂性物質の単位質量あたりの 核分裂中性子の総カウント数の関係を参照する。そして、計測された消滅時間に対応する 核分裂性物質の単位質量の校正された核分裂中性子の総カウント数を特定する。最後に、 実際に計測された核分裂性物質からの核分裂中性子の総カウント数をその単位質量あたり の校正された核分裂中性子の総カウント数で除算すれば、固体廃棄物内に含まれる未知の 核分裂性物質量を求めることができる。

[0017]

図1、図2に、測定装置1の構成を例示する。図1は、測定装置1の側面図であり、図 2は、上面図である。上述のように、測定装置1は、アクティブ中性子法を用いて放射性 固体廃棄物中の核分裂性物質量を非破壊で測定する。測定装置1は、核分裂性物質を格納 する容器6を搭載するテーブル13と、パルス状に高速中性子を発生し、容器6内の核分 裂性物質に高速中性子を照射するための中性子発生源11と、中性子検出器12とを有す る。さらに、測定装置1は、容器6、テーブル13、中性子発生源11、及び中性子検出 器12を包囲する構造物14と、中性子発生源11を制御する中性子発生源制御器2と、 中性子検出器12の検出信号を増幅する中性子パルス信号増幅器3と、中性子の発生数を 計数する中性子パルス信号計数器4と、計測制御PC (Personal Computer)5 とを有す る。

[0018]

容器6は、例えば、金属製の柱状の箱体である。容器6は、母材とともに、核分裂性物質を格納している。容器6内の核分裂性物質を測定する際、容器6はテーブル13に載置 される。容器6の一例はドラム缶である。

【 0 0 1 9 】

テーブル13は、例えば、回転駆動されるターンテーブルを有することが望ましい。す 50

20

10

なわち、ターンテーブルを回転駆動することにより、テーブル13に載置された容器6は 、容器6の中心軸周りに回転できることが望ましい。ターンテーブルが回転手段の一例で ある。

【 0 0 2 0 】

中性子発生源11は、パルス状の駆動電圧によって高速中性子をパルス状に発生する。 本実施形態において中性子発生源11は、パルス状に中性子を発生するものであれば、そ の構造、構成に限定はない。中性子発生源11は、例えば、重水素、三重水素イオンが含 まれる電離気体から重水素または三重水素イオンを引き出し、重水素、三重水素が含まれ た中性子発生用ターゲットに衝突させて中性子を発生させるものでもよい。 【0021】

アクティブ中性子法による核分裂性物質量の測定精度は、核分裂中性子の検出効率に依存する。そこで、中性子発生源11は、効率よく高速中性子を発生できること、及び、中 性子検出器12での再現性と信号対ノイズ比とが十分に確保できる程度の高強度の高速中 性子をパルス状に発生できるものであることが望ましい。

[0022]

中性子検出器12は、核分裂性物質を内蔵する容器6から発生する核分裂中性子が中性 子検出器12に入射して核分裂中性子の個数を計数するものである。本実施形態において 中性子検出器12の構造、構成に限定はない。例えば、中性子検出器12は、電極間にへ リウム(³He)等の不活性ガスを導入した構造である。例えば、中性子検出器12では、 不活性ガス中に中性子を入射させ、電離した不活性ガスの電子とイオンを電極に収集すれ ばよい。また、中性子検出器12は、シンチレータに中性子を入射させ、シンチレータで 発生した光子を電気信号に変換して計数する構成でもよい。

[0023]

ただし、高速中性子を効率よく検出するために、中性子検出器12は、例えば、特開2 009-281878において、本発明者らが提案した構造が望ましい。中性子検出器1 2は、一例としては、中性子を検出する複数の検出器(A)と、検出器(A)の周囲を取 り囲むカドミウム等の熱中性子吸収体(B)と、熱中性子吸収体(B)を取り囲むポリエ チレン等の中性子減速体(C)と、中性子減速体(C)の周囲を取り囲むホウ素含有物質 を含む熱中性子及びエピサーマル中性子吸収体(D)と、熱中性子及びエピサーマル中性 子吸収体(D)の周囲を取り囲む構造材と具備する検出器バンクである。 【0024】

構造物14内の空間から検出器バンク内に侵入した熱中性子及びエピサーマル中性子は、熱中性子及びエピサーマル中性子吸収体(D)に吸収される。一方、構造物14内の空間から検出器バンク内に侵入した高速中性子は、中性子減速体(C)に減速され、熱中性子、エピサーマル中性子、または減速されなかった高速中性子に分化する。このうち、高速中性子から変化した熱中性子は、熱中性子吸収体(B)に吸収される。したがって、検出器バンク中の検出器に検出されるのは、高速中性子から分化したエピサーマル中性子と減速されなかった高速中性子とが大半となる。つまり、上記検出器バンクの構成を有する中性子検出器12は、選択的に高速中性子を検出できる。したがって、検出器バンクの構成を有する中性子検出器12は、容器6外ですでに熱中性子となったものを除外し、高速

【0025】

中性子発生源制御器2は、例えば、パルス波形の制御信号にしたがって駆動電圧を生成 し、中性子発生源11を駆動する。また、中性子発生源制御器2は、駆動電圧を生成する パルス波形の制御信号と同期したパルス信号を計測制御PCシステム5に伝送する。計測 制御PCシステム5は、伝送されたパルス信号によって、中性子性発生源11における高 速中性子の発生タイミングを検知する。なお、計測制御PCシステム5がパルス信号を生 成し、中性子発生源制御器2に通知するようにしてもよい。その場合には、中性子発生源 制御器2は、計測制御PCシステム5からのパルス信号にしたがって、パルス波形の駆動 電圧を生成し、中性子発生源11を駆動すればよい。 10

[0026]

中性子パルス信号増幅器3は、中性子検出器12の検出信号を増幅し、中性子パルス信号計数器4に伝達する。中性子パルス信号計数器4は、例えば、ノイズレベルと識別可能な検出信号を検知するコンパレータと、コンパレータのオンオフ回数を計数するカウンタとを含む。中性子パルス信号計数器4は、カウンタで計数したカウント数を計測制御PCシステム5に通知する。ただし、計測制御PCシステム5が中性子パルス信号計数器4のカウンタからカウント数を読み取るようにしてもよい。

計測制御 P C システム 5 は、中性子発生源制御器 2 でパルス状の中性子が発生したタイ ミングから所定時間経過毎に連続的に中性子のカウント数を取得する。例えば、計測制御 P C システム 5 は、中性子パルス信号計数器 4 のカウント数を入力する回路上にスイッチ を設けておけばよい。そして、中性子発生源制御器 2 でパルス状の中性子が発生したタイ ミング(例えば、時刻 0)から所定時間(T 1)経過後、次のパルス波形が発生するまで の時間(T)の間、計測制御 P C システム 5 は、スイッチをオンにして、パルスを取得 すればよい。ただし、計測制御 P C システム 5 は、中性子発生源制御器 2 でパルス状の中 性子が発生させたタイミング(例えば、時刻 0)からのカウント数を取得し、コンピュー タ上の情報処理によって、中性子発生源制御器 2 でパルス状の中性子が発生させたタイミ ングから所定時間経過後の中性子のカウント数を取得してもよい。

【0028】

構造物14は、箱状の構造物である高速中性子反射体14Aと、高速中性子反射体14 20 Aの内壁を被覆する熱中性子吸収材14Bとを有する。高速中性子反射体14Aは、例え ば、内部空間を有する6面体である。高速中性子反射体14Aは、鉄、鉄合金、鉛、ジル コニウム合金及びコンクリートの少なくとも1つを含む。また、熱中性子吸収材14Bは 、カドミウム及び炭化ホウ素の少なくとも1つを含む板状の材料である。 【0029】

測定装置1としては、放射性固体廃棄物内における核分裂性物質に対する位置感度差を 極力低減させるものであることが望ましい。このため、測定装置1において、測定対象の 容器6を包囲する構造物14は、上述のように、外枠である箱状の高速中性子反射体14 Aの内壁に、熱中性子吸収材14Bが内張された構造となっている。また、構造物14に 内張された熱中性子吸収材14Bの内面から容器6に至る空間は中空となっている。 【0030】

このため、中性子発生源11で発生した高速中性子は、構造物14内の空間を通過し、 そのまま容器6内に入射可能となっている。また、中性子発生源11で発生した高速中性 子のうち、容器6に入射しないものは、例えば、熱中性子吸収材14Bを突き抜け、高速 中性子反射体14Aに入射する。高速中性子反射体14Aに入射した高速中性子は、反射 して熱中性子吸収材14Bの内面から容器6に至る空間に戻るか、減速されて熱中性子と なる。そして、熱中性子の多くは、高速中性子反射体14Aに留まるか、高速中性子反射 体14Aで反射されて熱中性子吸収材14Bに吸収される。このため、中性子発生源11 で発生した高速中性子のうち、熱中性子に減速されて容器6に入射するものは少ない。 【0031】

容器6には、核分裂性物質の他、例えば、コンクリート、ポリエチレン等の中性子吸収 物質が母材の一部として含まれる。したがって、容器6に入射した高速中性子は、容器6 内の母材に減速され、熱中性子に変化し、核分裂性物質と核分裂反応を引き起こす。すで に、特開平11-64528、特開2003-90883において、本発明者らが報告の 通り、熱中性子に代えて高速中性子を直接容器6に入射させることによって、容器6の表 面付近と中心軸付近とで、核分裂性物質量の測定感度の位置依存性が1/75程度に抑制 される。図1に示した、外枠である箱状の高速中性子反射体14Aの内壁に、熱中性子吸 収体14Bが内張された構造物14は、このような核分裂性物質量の測定感度の位置依存 性をさらに改善できる構造となっている。熱中性子吸収体14Bが測定感度の位置依存性 の原因となる熱中性子を容器6の外部で吸収するからである。

30

10

[0032]

図1、図2に例示するように、測定装置1では、中性子検出感度の放射性固体廃棄物内 での位置依存性を軽減するため、放射性固体廃棄物を格納する容器6が中性子検出器12 と中性子発生源11との間でターンテーブルを有するテーブル13上に設置される。そし て、核分裂中性子量の測定中には、ターンテーブルにより、容器6を所定の速度で回転さ せることが望まれる。加えて、測定対象物である放射性固体廃棄物の母材が自己中性子減 速効果の小さい物質(例えば金属系物質)である場合には、中性子減速材であるポリエチ レン製等の付加モデレータを容器6の外側に近接包囲して装備することが望ましい。ただ し、ポリエチレン製等の付加モデレータを容器6の外側から離間した状態で包囲してもよ い。

【0033】

図3に、計測制御PCシステム5の構成を例示する。計測制御PCシステム5は、CP U51と、主記憶装置52と、外部記憶装置53と、着脱可能記憶装置54と、操作装置 55と、表示装置56と、入出力インターフェース57と、通信インターフェース58と を有する。

【0034】

CPU51は、主記憶装置52に実行可能に展開されたコンピュータプログラムを実行 し、計測制御PCシステム5としての機能を提供する。CPU51が演算部に相当する。 主記憶装置52は、CPU51が実行するコンピュータプログラム及びCPU51が処理 するデータ等を記憶する。外部記憶装置53は、不揮発性記憶装置として機能し、主記憶 装置52に記憶されるコンピュータプログラム、データ等を保存する。外部記憶装置53 は、ハードディスクドライブ、SSD(Solid State Drive)等である。着脱可能記憶装 置54は、着脱可能な記憶媒体にコンピュータプログラム、データ等を入出力する。着脱 可能な記憶媒体は、CD(Compact Disc)、DVD(Digital Versatile Disk, Digital Versatile Disc)、USBメモリ等である。

【0035】

操作装置 5 5 は、キーボード等の情報入力装置、マウス、タッチパネル等のポインティングデバイス等である。表示装置 5 6 は、例えば、液晶ディスプレイ、EL(エレクトロルミネッセンス)ディスプレイ等である。

【0036】

入出力インターフェース57は、例えば、中性子発生制御器2、中性子パルス信号計数 器4との間のデータ入出力インターフェースである。入出力インターフェース57は、中 性子発生制御器2から中性子発生源11への駆動電圧のパルスと同期したパルス信号を受 信する。また、入出力インターフェース57は、中性子パルス信号計数器4から中性子検 出器12で検出された中性子のカウント数を取得する。 【0037】

なお、入出力インターフェース57は、中性子検出器12で検出された中性子のカウント数のうち、中性子発生源制御器2でパルス状の中性子が発生したタイミングから所定時間経過後の中性子のカウント数を取得するためのスイッチを有してもよい。ただし、CPU51が、中性子発生制御器2から中性子発生源11への駆動電圧のパルスと同期したパルス信号のタイミングの時刻(時刻0)と、時刻0から所定の測定間隔ごとのカウント数を取得してもよい。そして、CPU51が、中性子検出器12で検出された中性子のカウント数のうち、中性子発生源制御器2でパルス状の中性子が発生したタイミングから所定時間経過後の中性子のカウント数を抽出するようにしてもよい。

通信インターフェース58は、例えば、LAN(Local Area Network)カード等である。通信インターフェース58は、計測制御PCシステム5をネットワーク上の通信機器に接続する。

【0039】

図 4 に、 C P U 5 1 が取得する中性子検出器 1 2 でのカウント数を例示する。このカウ 50

20

10

ント数は、中性子検出器12で検出された中性子のカウント数のうち、中性子発生源制御器2でパルス状の中性子が発生したタイミングから所定時間経過毎の中性子のカウント数を抽出した一例である。すなわち、図2の縦軸に例示する中性子カウント数は、図1の中性子発生源11からの中性子照射開始時刻(例えば、時刻0)に同期させて、その照射開始時間(時刻0)より所定時間(T1)遅れて中性子検出器12に検知される単位時間あたりの中性子カウント数を表す。

[0040]

上述のように、測定装置1内に誘起される熱中性子成分は測定装置1の構成上殆ど除去 される。このため、測定される中性子成分は、図4のように、中性子発生源からの高速中 性子成分(L1)と核分裂性物質からの核分裂中性子成分(L2)となる。 【0041】

中性子発生源11からの高速中性子成分(L1)は、中性子発生源11が10E-5秒以下の極めて短時間にパルス的に高速で動作して高速中性子を発生させたものである。図4のように、高速中性子成分(L1)は、比較的早い時間に減速され熱中性子に変化するため 急激な減衰を示す。

一方、容器6内の核分裂性物質からの核分裂中性子成分は、容器6内での核分裂に起因 する。すなわち、中性子発生源11からパルス的に容器6に照射された高速中性子は、容 器6内の放射性固体廃棄物中に浸透し、容器6内の母材によって減速されて熱中性子に変 化して放射性固体廃棄物中に存在する。そして、容器6内の熱中性子は核分裂性物質との 核分裂反応を誘発して高速中性子(以下、核分裂中性子)を放出しながら減衰する。 【0043】

容器6内の放射性固体廃棄物中に存在する熱中性子量の減衰に応じて核分裂性物質から放出される核分裂中性子量も減衰する。この減衰時間(T)を消滅時間(T)と呼ぶ。つまり、核分裂中性子の消滅時間(T)は、核分裂中性子のカウント数が1/eになる時間に相当する。核分裂中性子の消滅時間(T)は放射性固体廃棄物に含まれる内容物の中性子吸収及び減速特性に依存する。ただし、核分裂中性子の消滅時間(T)は、高速中性子成分(L1)の減衰時間より長い。このため、図4のように核分裂中性子成分(L2)のカウント数は、中性子発生源11からの高速中性子成分(L1)と区別可能である。測定装置1は、中性子パルス信号計数器4で計数され、入出力インターフェース57を通じて取得した中性子のカウント数を核分裂中性子成分(L2)と、中性子発生源11からの高速中性子成分(L1)の直線を最小自乗法等により、算出すればよい。また、測定装置1のCPU51は、核分裂中性子成分(L2)の直線を最小自乗法等により、算出すればよい。また、測定装置1のCPU51は、核分裂中性子成分(L2)の直線を最小自乗法等により、算出すればよい。

[0044]

また、図4のメッシュで例示される中性子総カウント数(S)は、中性子検出器12に 検知される単位時間あたりの中性子カウント数を積算することで取得できる。中性子総カ ウント数(S)は、位置感度差がないので放射性固体廃棄物中の核分裂性物質量に比例す る。

【0045】

以上のような手順で、測定装置1のCPU51は、核分裂中性子成分(L2)の消滅時間(T)とその中性子総カウント数(S)を算出し、分析して放射性固体廃棄物中の核分 裂性物質量を特定する。

【0046】

測定装置1による核分裂性物質量の測定にあたっては、事前の校正試験が行われる。例 えば、放射性固体廃棄物中に既知の核分裂性物質を内在させた状態で、測定装置1で得ら れる図2の消滅時間(T)、中性子総カウント数(S)との関係を予め求めておく。校正 試験では、容器6内の母材の密度、種類等を変化させて、複数の放射性固体廃棄物につい 10

30

て、 消滅 時間 (T)、 中性子 総カウント数 (S) との関係を予め求めておく。 【 0 0 4 7】

次の実施例に例示するように、核分裂中性子の消滅時間(T)と中性子総カウント数(S)との関係は、放射性固体廃棄物に含まれる母材の種類、密度等の依存性は少ない。すなわち、核分裂中性子の消滅時間(T)と中性子総カウント数(S)との関係は、測定装置1ごとに特有の相関関係ということができる。そこで、事前の校正試験により、母材の種類、密度等の異なる複数の放射性個体廃棄物から測定装置1における、核分裂中性子の消滅時間(T)と中性子総カウント数(S)との相関関係を複数の測定点のデータから求める。そして、この相関関係をテーブル等によってデータベース化しておく。または、核分裂中性子の消滅時間(T)と中性子総カウント数(S)との関係より相関式を求めておいてもよい。

[0048]

以上のような校正試験により、測定装置1のCPU51は、主記憶装置52、外部記憶 装置53等に上記相関関係を示すデータベース、あるいは、相関式の係数等を記憶する。 その結果、CPU51は、所定範囲の消滅時間(T)に対応する単位質量当たりの核分裂 性物質での中性子総カウント数(S)を基準値として参照できるようになる。

【0049】

図5に、計測制御PCシステム5による容器6内の核分裂性物質量の測定処理の手順を 例示する。図4の手順は、例えば、CPU51がコンピュータプログラムにしたがって実 行する。この処理では、まず、CPU51が、核分裂性中性子のカウント数を取得する(S1)。上述のように、CPU51は、中性子発生源制御器2でパルス状の中性子が発生 したタイミングから所定時間経過後の中性子のカウント数を取得すればよい。ただし、C PU51は、中性子パルス信号計数機4で検出された中性子のカウント数から、図4に例 示した直線L2の領域の中性子のカウント数を取得してもよい。例えば、CPU51は、 中性子カウント数から、直線L1と、L2とを求め、2つの直線の交点より右側の領域の 中性子カウント数を求めればよい。S1の処理を実行するCPU51が、核分裂中性子の 発生数を算出する手段の一例である。

[0050]

次ぎに、 C P U 5 1 は、 図 4 に例示した核分裂中性子成分(L 2)から消滅時間 T を測 定(算出)する(S 2)。 S 2 の処理を実行する C P U 5 1 が、消滅時間を算出する手段 ³⁰ の一例である。

【0051】

なお、消滅時間 T に対する単位質量での核分裂性物質から発生する核分裂中性子の総カ ウント数(Nu)のデータベースまたは相関式が主記憶装置 5 2 、外部記憶装置 5 3 等に 設定されている(PRE)。上記データベースまたは相関式を記憶する主記憶装置 5 2 、 外部記憶装置 5 3 等が相関関係を記憶する手段の一例である。

【 0 0 5 2 】

そこで、 C P U 5 1 は、 消滅時間 T に対応する測定装置 1 での単位質量での核分裂性物 質から発生する核分裂中性子の総カウント数 (Nu)を導出する (S 3)。 S 3 の処理を 実行する C P U 5 1 が、校正総カウント数を求める手段の一例である。 【 0 0 5 3 】

一方、CPU51は、核分裂中性子総カウント数(Nt)を測定する(S4)。核分裂 中性子総カウント数(Nt)は、測定装置1内のハードウェアのカウンタで行ってもよい し、CPU51が取得した核分裂性中性子のカウント数を加算してもよい。例えば、CP U51は、中性子発生源制御器2でパルス状の中性子が発生したタイミング(例えば、時 刻0)から所定時間(T1)経過後、次のパルス波形が発生するまでの時間(T)の間 のカウント数を加算すればよい。S4の処理を実行するCPU51が総カウント数を算出 する手段の一例である。

【0054】

そして、 C P U 5 1 は、核分裂中性子総カウント数(N t)を単位質量(1g)での核分裂 50

40

10

10

20

30

40

性物質から発生する核分裂中性子の総カウント数(Nu)で割り算する(S5)。S5の 処理を実行するCPU51が核分裂性物質量を導出する手段の一例である。また、S5の 処理を実行するCPU51が除算する手段の一例である。以上の手順で、CPU51は、 放射性固体廃棄物内に含まれる核分裂性物質の質量Mfを算出し、例えば、表示装置56 に出力する。

[0055]

(数1)

放射性固体廃棄物内に含まれる核分裂性物質の質量Mf=Nt/Nu;

なお、ここでは、計測制御PCシステム5のCPU51によって自動的に放射性固体廃 棄物内に含まれる核分裂性物質の質量Mfを算出する処理を例示した。しかし、例えば、 計測制御PCシステム5が、図4に例示するカウント数を出力するものでもよい。つまり 、計測制御PCシステム5は、中性子パルス信号計数器4からの信号を出力する単純な測 定器であってもよい。すなわち、図1、図2の構成によって、容器6内の放射性廃棄物か ら、中性子の検出値が得られた後の手順は、どのような手順でもよい。例えば、図5に例 示した手順の一部を手計算で実行してもよい。

【実施例】

[0056]

図4、及び図6-8により、測定装置1による実施例を説明する。測定装置1を用いて、放射性固体廃棄物中の核分裂性物質量、図4のTに例示される消滅時間、及び図4のSで例示される高速中性子成分の中性子総カウント数の関係を実験的に求めた。その結果、放射性固体廃棄物中の核分裂性物質量、消滅時間、及び中性子総カウント数の間に明確な相関関係があることが判明した。

[0057]

図4の中性子総カウント数(S)は、放射性固体廃棄物中の核分裂性物質量に比例する。また、図4の消滅時間(T)は、放射性固体廃棄物に含まれる内容物である物質の中性 子吸収及び減速を示す特性値(例えば物質密度等)に依存することが分かった。

【0058】

さらに、図6に、種々の放射性固体廃棄物の中性子カウント数の測定装置1での200 リットルドラム缶の内容物に鉄材を用いた場合の実際の測定結果と、中性子輸送計算によ って放射性廃棄物に対して高速中性子を照射するシミュレーション結果とを例示する。図 6では、横軸は、中性子発生源11での中性子の発生からの時刻であり、縦軸は、中性子 検出器12で検出される中性子のカウント数である。

[0059]

シミュレーションで用いた放射性個体廃棄物及び測定装置のモデル構造は、以下の通り である。図1の構造物4として、厚さ20cmの鉄製反射体(図1の14A)を設け、さ らに鉄製反射体の周囲に、厚さ10cmのポリエチレン反射体を設けた。また、中性子検 出器12として、検出器6個を直線上に並べた検出器バンクを5個(合計30個の検出器 を含む)設置した。放射性個体廃棄物を挟んで、検出器バンクと向き合う位置に、中性子 発生源11を配置した。

[0060]

容器 6 として、 2 0 0 リットルドラム缶に、以下の 3 種類の母材を充填し、シミュレーションを行った。

【 0 0 6 1 】

(母材1)ウエス系試験体

200リットルのドラム缶に、模擬の母材としてウエスを充填密度0.1~0.6g/ 立方センチメートルの範囲で充填し、ウラン235(U-235)を72gセットした条件で、シ ミュレーションを行った。

【 0 0 6 2 】

(母材2)金属系試験体

200リットルのドラム缶に、模擬の母材として鉄を充填密度0.1~2.0g/立方センチ ⁵⁰

メートルの範囲で充填し、中心に、ウラン235(U-235)を72gセットし、ドラム缶の周 囲に、ポリエチレンのモデレータを厚さ20mm設定した条件で、シミュレーションを行 った。

(12)

【0063】

(母材3) コンクリート系試験体

200リットルのドラム缶に、模擬の母材としてコンクリートを充填密度0.5~2.2g/ 立方センチメートルの範囲で充填し、中心に、ウラン235(U-235)を72gセットし、ド ラム缶の周囲に、ポリエチレンのモデレータを厚さ20mm設定した条件で、シミュレー ションを行った。

[0064]

図 6 のように、中性子カウント数の時間変化について、計測試験結果とシミュレーション結果がよく一致し、シミュレーションで試験結果がよく再現できることが確認できた。 【 0 0 6 5 】

さらに、試験で実施していない領域での物質密度を変化させたシミュレーションによっ ても、消滅時間と高速中性子成分の中性子総カウント数との相関関係を求めた。その結果 、これまで試験的に得られていた消滅時間と高速中性子成分の中性子総カウント数との関 係が試験よりも広い範囲の物質の中性子吸収及び減速を示す特性値(例えば、異なる物質 の種類と、その物質密度)の領域でも適用できることが確認できた。そのシミュレーショ ン結果を中心に放射性固体廃棄物中の核分裂性物質量の導出法の実施例を説明する。 【0066】

核分裂性物質として、正味72gのU-235をドラム缶型放射性固体廃棄物の中心(200ccの 空間に均一に分布)に設置すると共に、廃棄物の内容物として金属(鉄)、ウエス(布等) 及びコンクリート瓦礫等を個々に200リットルドラム缶内に設置し、その内容物の物質密 度を変化させた計算を行った。

【0067】

図1の高速中性子線源11の照射条件は1パルス当たり14MeVのエネルギーの高速中性 子10E+6個を100ppsで発生させ100秒間動作させる状態とした。ここで、ppsは、1秒間の パルス数である。そして、その100秒間に測定される高速中性子成分(図4のL2)の消 滅時間(図4のT)と中性子総カウント数(図4のS)を計算した。図7には、その結果 得られた消滅時間と中性子総カウント数の関係を例示する。図7より、金属系(鉄)、ウエ ス系(布等)系、コンクリート瓦礫等の内容物を含むコンクリート系の場合でも消滅時間と 中性子総カウント数の関係はグラフ上ほぼ同一の直線状に分布する結果となることが判明 した。すなわち、廃棄物の内容物の種類やその密度に影響されず、消滅時間と中性子総カ ウント数との間には図7に示すような相関関係があることが分かった。 【0068】

この計算シミュレーションでは、核分裂性物質として正味72gのU-235を用いており、 中性子総カウント数は核分裂性物質の量に比例する。そのため、図7を核分裂性物質の単 位質量当たりにすると、図8の結果となり、消滅時間から核分裂性物質が放射性固体廃棄 物中に単位質量(1g)含まれる場合の中性子総カウント数が導き出せる。図8の消滅時間 と単位質量(1g)の核分裂性物質での中性子総カウント数の関係を基準とすることにより 、図5に例示した手順で、未知の放射性固体廃棄物中の核分裂性物質量を導くことが可能 となることが分かる。

【0069】

すなわち、測定装置1は、まず、未知の放射性固体廃棄物について消滅時間(T×)を 測定する。そして、測定装置1は、実際に測定された消滅時間(T×)から、その消滅時 間(T×)に対応する核分裂性物質の単位質量(1g)での中性子総カウント数(Nu)を 校正試験により求められた相関関係(データベース、相関誌式等)から求める。次に、測 定装置1は、実際に測定された中性子総カウント数(Nt)を測定したその消滅時間に対 応する単位質量(1g)当たりの中性子総カウント数(Nu)で除算すればよい。中性子総 カウント数は核分裂性物質に比例するので、図5に例示した手順通り、測定装置1は、計 20

10

測した放射性固体廃棄物中に含まれる核分裂性物質量を導出または定量することができる。以上述べたように、測定装置1によれば、母材の種類に依存せず、未知の放射性固体廃 棄物に、高速中性子を照射し、核分裂性物質量を測定することができる。 【0070】

また、図1、2に示すように、測定装置1の外壁となる構造物14が箱状の高速中性子 反射体14Aと、高速中性子反射体14Aの内壁を被覆する熱中性子吸収材14Bとを有 するので、構造物14の内面空間中の熱中性子を低減できる。その結果、容器6の表面付 近と中心軸付近とでの、核分裂性物質量の測定感度の位置依存性が中性子検出器12とし て特開2009-281878で提案されたものを用いることによって抑制されることに 加えて、さらに抑制される。

【0071】

《 コ ン ピ ュ ー タ が 読 み 取 り 可 能 な 記 録 媒 体 》

コンピュータその他の機械、装置(以下、コンピュータ等)に上記いずれかの機能を実 現させるプログラムをコンピュータ等が読み取り可能な記録媒体に記録することができる 。そして、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させること により、その機能を提供させることができる。

【0072】

ここで、コンピュータ等が読み取り可能な記録媒体とは、データやプログラム等の情報 を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータ等 から読み取ることができる記録媒体をいう。このような記録媒体のうちコンピュータ等か ら取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD、ブルーレイディスク、DAT、8mmテープ、フラッシ ュメモリなどのメモリカード等がある。また、コンピュータ等に固定された記録媒体とし てハードディスクやROM(リードオンリーメモリ)等がある。

- 【符号の説明】
- 【0073】 1 想定装置
 - 2 中性子発生制御器
 - 3 中性子パルス信号増幅器
 - 4 中性子パルス信号計数器
 - 5 計測制御 P C システム
 - 6 容器
- 11 中性子発生源
- 12 中性子検出器
- 13 テーブル
- 14 構造物
- 1 4 A 高速中性子反射体
- 14B 熱中性子吸収材
- 【産業上の利用可能性】
- [0074]

本発明の測定方法は、核燃料の計量管理、または原子力施設の解体廃棄物処理時におけ るクリアランス検認による核分裂性物質の測定技術に利用される。また、本発明の技術は 、アクティブ中性子非破壊測定技術による核分裂性物質の測定装置における核分裂性物質 量を導出する計測アルゴリズムに関する。

10

3

【図3】

【図4】

(15)

【図5】

【図6】

【図7】

フロントページの続き

(51)Int.CI.			FΙ			テーマコード (参考)
G 2 1 C	17/00	(2006.01)	G 2 1 C	17/00	D	

(72)発明者 春山 満夫

茨城県那珂郡東海村白方白根2番地4 独立行政法人日本原子力研究開発機構 東海研究開発セン ター 原子力科学研究所内

- (72)発明者 呉田 昌俊
 茨城県那珂郡東海村白方白根2番地4 独立行政法人日本原子力研究開発機構 東海研究開発セン
 ター 原子力科学研究所内
- F ターム(参考) 2G001 AA04 CA04 KA02 LA09 2G075 CA48 DA08 FA19 GA36 2G188 AA23 AA27 BB09 CC05 CC08 DD26 DD31 EE12