(19) 日本国特許庁(JP)

再公表特許(A1) (11)国際公開番号

W02018/173812

発行日	令和	11年6月2	7日 (2019.6.27)			(43) 国際公開日	平成30年9月2	7日 (2018.9.27)
(51) Int.	.C1.			FΙ			テーマコー	ド (参考)
G2	1 K	1/14	(2006.01)	G 2 1 K	1/14		2G085	
G2	1 K	1/00	(2006.01)	G 2 1 K	1/00	А	2G188	
GO	1 T	1/185	(2006.01)	GO1T	1/185	А	5CO3O	
HO	5H	5/06	(2006.01)	H05H	5/06		5CO34	
но	1 J	37/ 30	(2006.01)	HO1J	37/30	А		
				審査請求	くうう 予備	靜審查請求 未請求	え (全 35 頁)	最終頁に続く
出愿	顧番号		特願2019-507550) (P2019-507550)	(71) 出願。	人 505374783		
(21) 国際	祭出願	番号	PCT/JP2018/0092	288		国立研究開到	発法人日本原子グ	〕 研究開発機構
(22) 国際	祭出願	E	平成30年3月9日((2018.3.9)		茨城県那珂郡	「東海村大字舟る	5川765番地
(31) 優先	も権主	張番号	特願2017-55416 (P2017-55416)			1		
(32) 優労	E日		平成29年3月22日	(2017.3.22)	(71)出願	人 597156502		
(33) 優労	も権主	張国	日本国(JP)			株式会社ペン	スコ	
						東京都港区東	「「新橋二丁目5番	昏地12号
					(74)代理,	人 100139114		
						弁理士 田中	p 貞嗣	
					(74)代理	人 100088041		
						弁理士 阿部	彩 龍吉	
					(74)代理	人 100139103		
						弁理士 小山	山卓志	
							員	最終頁に続く

(54) 【発明の名称】イオンビーム機能性透過膜、イオンビーム機能性透過膜を用いたビームライン機器、イオンビー ム機能性透過膜を用いたフィルター機器、フィルター機器の調整方法

(57)【要約】

イオンビームの透過率を高めることが可能となり、エ ミッタンスの改善を図ることができるイオンビーム機能 性透過膜を提供するために、本発明に係るイオンビーム 機能性透過膜は、一方向に進行するイオンビームが通過 するビームライン機器に用いられ、チャネルを有するイ オンビーム機能性透過膜であって、チャネル軸が、前記 イオンビームの進行方向と実質的に平行であることを特 徴とする。

- AA Advancing direction (+z direction) of ion beam in beam line device BB Arrangement of atomic rows is in an atomic plane CC Channeling ion DD Atom

(2)

【特許請求の範囲】

【請求項1】

- 一方向に進行するイオンビームが通過するビームライン機器に用いられ、チャネルを有す るイオンビーム機能性透過膜であって、
- チャネル軸が、前記イオンビームの進行方向と実質的に平行であることを特徴とするイオ ンビーム機能性透過膜。

【請求項2】

- 前記イオンビーム機能性透過膜が結晶であることを特徴とする請求項1に記載のイオンビ ーム機能性透過膜。
- 【請求項3】

10

前記イオンビーム機能性透過膜が、空洞が形成されたポーラス物質であることを特徴とす る請求項1に記載のイオンビーム機能性透過膜。

【請求項4】

- イオンビームが内部を通過する真空容器と、
- チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、
- 前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を 調整する位置決めステージと、を有し、
- 前記位置決めステージによって、イオンビームのビームライン中に前記イオンビーム機能 性透過膜が配されように、かつ、前記イオンビーム機能性透過膜のチャネル軸が、前記イ オンビームの進行方向と実質的に平行となるように調整されることを特徴とするビームラ イン機器。

【請求項5】

前記イオンビーム機能性透過膜が結晶であり、前記位置決めステージによって、前記結晶 における結晶軸が前記イオンビームの進行方向と実質的に平行となるように調整すること で、チャネル軸を前記イオンビームの進行方向と実質的に平行とすることを特徴とする請 求項4に記載のビームライン機器。

【請求項6】

前記結晶が単結晶であることを特徴とする請求項5に記載のビームライン機器。

【請求項7】

前記イオンビーム機能性透過膜が、 空洞が形成されたポーラス物質からなる薄膜であるこ とを特徴とする請求項 4 に記載のビームライン機器。

【請求項8】

ビームライン機器が加速器であることを特徴とする請求項4乃至請求項7のいずれか1項 に記載のビームライン機器。

【請求項9】

ビームライン機器がストリッパーであることを特徴とする請求項4乃至請求項7のいずれ か1項に記載のビームライン機器。

【請求項10】

ビームライン機器がディグレーダーであることを特徴とする請求項 4 乃至請求項 7 のいず れか 1 項に記載のビームライン機器。

【請求項11】

ビームライン機器が電離箱であることを特徴とする請求項4乃至請求項7のいずれか1項 に記載のビームライン機器。

【請求項12】

- 真空容器内で進行するイオンビームに含まれる不要分子を除去するフィルター機器であっ て、
- チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、
- 前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を 調整する位置決めステージと、を有し、

前記位置決めステージによって、イオンビームのビームライン中に前記イオンビーム機能 50

20

30

性透過膜が配されように、かつ、前記イオンビーム機能性透過膜のチャネル軸が、前記イ オンビームの進行方向と実質的に平行となるように調整されることを特徴とするフィルタ

前記イオンビーム機能性透過膜が結晶であり、前記位置決めステージによって、前記結晶 における結晶軸が前記イオンビームの進行方向と実質的に平行となるように調整すること で、チャネル軸を前記イオンビームの進行方向と実質的に平行とすることを特徴とする請 求項12に記載のフィルター機器。 【請求項14】 前記結晶が単結晶であることを特徴とする請求項13に記載のフィルター機器。 【請求項15】 前記イオンビーム機能性透過膜が、空洞が形成されたポーラス物質からなる薄膜であるこ とを特徴とする請求項12に記載のフィルター機器。 【請求項16】 イオンビームが内部を通過する真空容器と、 チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、 前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を 調整する位置決めステージと、 前記位置決めステージの下流側に配され、イオンビームを補足するファラデーカップと、 前記ファラデーカップで補足されたイオンビームに基づく電流を計測する電流計測部と、 を有するフィルター機器の調整方法であって、 前記位置決めステージによってビームライン中に前記イオンビーム機能性透過膜が配され ようにし、前記電流計測部で計測される電流が最大となるように前記位置決めステージの 姿勢を調整するステップと、を有することを特徴とするフィルター機器の調整方法。 【請求項17】 イオンビームが内部を通過する真空容器と、 チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、 前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を 調整する位置決めステージと、 前記位置決めステージの下流側に配され、イオンビームを補足するファラデーカップと、 前記ファラデーカップで補足されたイオンビームに基づく電流を計測する電流計測部と、 を有するフィルター機器の調整方法であって、 前記位置決めステージにおける前記イオンビーム機能性透過膜が配されていない位置に、 イオンビームが通過するように配し、前記電流計測部で計測される電流が最大となるよう に前記位置決めステージの姿勢を調整する第1ステップと、 前記第1ステップの後、前記位置決めステージによってビームライン中に前記イオンビー ム機能性透過膜が配されようにし、前記電流計測部で計測される電流が最大となるように 前記位置決めステージの姿勢を調整する第2ステップと、を有することを特徴とするフィ ルター機器の調整方法。 【請求項18】 前記第2ステップの後、前記ファラデーカップをビームラインから外す第3ステップを有 することを特徴とする請求項13に記載のフィルター機器の調整方法。 【発明の詳細な説明】 【技術分野】 [0001]本発明は、イオンビームが透過する透過率を改善したイオンビーム機能性透過膜、その ようなイオンビーム機能性透過膜を用いたビームライン機器、イオンビーム機能性透過膜 の調整方法に関する。

【背景技術】

一機器。

【請求項13】

[0002]

50

20

30

40

加速器などの機器において、通常、イオンビームのエネルギーが1 MeV(数10k eV)程度以上になると1µm(数10nm)程度の薄膜を透過できる。従来のイオンビ ーム機能性透過膜(Functional Membrane for Ion beam Transmission(以下、「FMI T」とも称す)は、その透過現象を基礎として利用するものである。 【0003】

FMITの用途は、荷電変換等を機能としたタンデム加速器の荷電ストリッパー、ビームライン上での荷電数上昇を機能としたポストストリッパー、エネルギー減衰を機能としたディグレーダーがある。荷電ストリッパーとポストストリッパーは単にストリッパーと称することもある。なお、セカンドストリッパーと呼ばれる言葉があるが、上記の荷電ストリッパー用薄膜としてもポストストリッパー薄膜としても用いられるため、その用語は使用しないこととする(非特許文献1、2)。

【0004】

荷電ストリッパーおよびポストストリッパーの機能は、イオンが薄膜を通過する際のイ オンの電子脱離という現象を利用している。イオンが薄膜を通過するとき、イオンと固体 中の電子や原子核との衝突が発生する。入射イオンは、電子脱離と電子捕獲、励起と脱励 起を繰り返しながら、入射エネルギーで決まる荷電分布(すなわち平衡荷電分布)に至る 。このときの平衡電荷は、入射イオンの電荷よりも通常高いため、通過するイオンの電荷 は、平均として入射イオンの電荷に比べ高くなる(非特許文献3)。

【 0 0 0 5 】

荷電ストリッパーは、加速器に入射した負イオンを正イオンに変換し射出する機能を持つ。荷電ストリッパーは代表的にはタンデム加速器に用いられる。タンデム加速器は、入 射口と出射口の中央にターミナルという部位を備え、これと入出射口とは加速管で結ばれ た構造になっている。

【0006】

ターミナルに正電荷を外部から与えることで、ターミナルの電位が最も高くなり、入出 射口に向かって電位が徐々に下がるような,山なりの電位分布が形成される。入射した負 イオンは、正電位のターミナルに向かって加速され、ターミナル部の荷電ストリッパーに おいて、電子が剥ぎ取られ正イオンになる。正イオンは、正電位のターミナルとの電気的 反発力を受け、出射口に向かって再び加速される。このように荷電ストリッパーは、タン デム加速器の機構において本質的な役割を担っている(非特許文献1)。

【0007】

荷電ストリッパーは、加速器質量分析(Accelerator Mass Spectrometry: 以後、「 AMS」と称す)においては、分析を妨害する分子のフィルター機能を兼ねる。具体的に は、AMSでは、分析目的の核種とほぼ同じ質量を持つ分子(以後、「妨害分子」と称す)は目的核種の検出を妨害するが、荷電ストリッパーは妨害分子を解離させる働きを持つ (非特許文献2、5)。

[0008]

ポストストリッパーは、通常、タンデム加速器等より加速されたイオンに対し、学術的 な実験目的等のためイオンの荷電数を上昇させる機能を持つ。代表的なものとしては、重 イオン照射医療等に有用な物理データベースの構築に必要な実験、すなわち、イオンと固 体の相互作用において、固体に入射するイオンの荷電数を調節することにある(非特許文 献4)。

【0009】

ディグレーダーは、タンデム加速器等により加速されたイオンに対し、目的に応じてイ オンのエネルギーを減衰させる機能を持つ。代表的には、AMSでの分析目的核種と妨害 核種の分別において、両者を薄膜に入射し、阻止能の違いにより両者のエネルギーの間に 差を作ることにある。加速器質量分析では、目的核種と等しい質量をもつ安定した同重体 等が存在する場合、例えば、¹⁰ B e に対する¹⁰ B、³⁵ C 1 に対する³⁵ S、⁵³ M n に対する ⁵³ C r 等、これらの同重体等は目的核種の測定を妨害する核種(以下、「妨害核種」と称 す)となり、これらの妨害核種の分別が主要な技術となっている(非特許文献 2、5)

20

。ディグレーダーは検出器(例えば電離箱)の手前、あるいはその付近のビームライン上 に設置することが一般的である。検出器の窓にディグレーダーの機能を持たせたものを本 明細書ではディグレーダーウィンドウと称す。

[0010]

以上述べた F M I T のいずれの用途でも、イオンは薄膜中の原子核との多重散乱により ビームの品質の指標となるビームエミッタンス(ビームの空間的な広がりの標準偏差 と 角度拡がりの標準偏差 との積)の増加と透過率の減衰が発生する。

[0011]

従来、荷電ストリッパーに対しては透過率の高さを優先する場合、薄膜ではなくガスが 用いられる。一方、高い電荷を得ることを優先する場合、薄膜が望まれる。薄膜で発生す る大角散乱による透過率の減衰及びエミッタンスの増加に対しては、従来、薄膜の後にビ ーム収束レンズを設置して対処されてきた。しかしビーム集束レンズを用いたとしても、 一旦悪化したエミッタンスはもはや改善することができない。(非特許文献1)

従来、AMS装置の小型化に向けた技術開発においては、イオンエネルギーの低下に伴い、妨害分子除去の機能を兼ねる荷電ストリッパーに対してはガスを使用せざるを得ない とされてきた。これは、イオンのエネルギーが1MeVよりも小さくなると、透過膜中で の散乱(特に原子との弾性散乱)が顕著になり、エミッタンスと透過率がともに大きく悪 化するためである。

【0012】

ところで、AMS装置の小型化を制限している主要な問題は、ガスを用いた荷電ストリッパーの機能維持とビームラインの高真空を両立させることが困難であることである。ガスを用いた荷電ストリッパーの機能を保持するためにストリッパーへのガス量を増やすと ビームラインへのガス漏れが増加し、イオンは漏れ出たガス分子に衝突・散乱し、その軌 道がずれる確率が高くなる。

[0013]

逆に、ガスを用いた荷電ストリッパーのガス量を減らすとストリッパーの機能が低下す る。現在、AMS装置の小型化は、そのような荷電ストリッパー機能維持とビームライン の真空度維持のせめぎ合いで制限されている。しかしながら、イオンビームの透過率の高 い透過膜が存在すれば、それらの両立が可能となり、その制限を取り除くことができる。 したがって、透過率が改善されたFMITの開発はAMS装置を劇的な小型化に結びつく

30

10

20

【先行技術文献】 【特許文献】 [0014]【特許文献1】特表2013-019509号公報 【特許文献 2 】特表 1 9 9 7 - 1 8 9 4 3 6 号公報 【非特許文献1】「Electrostatic Accelerators - Fundamentals and Applications」, R. Hellborg 編, Springer 2005, 第10章. 【非特許文献 2 】「Developments in accelerator mass spectrometry」, H.A.Synal Int ernational Journal of Mass Spectrometry, 349 350 (2013) 192 202. 【非特許文献3】「イオンビーム工学(イオン・固体相互作用編)」 藤本文範、小牧研 一郎、内田老鶴圃1995第4章 【非特許文献4】「Equilibrium and non equilibrium charge state distributions of 2.0 MeV/u carbon ions passing through carbon foils」, M. Imai他、 Nuclear Instrum ents and Methods in Physics Research B 354 (2015) 172 176. 【非特許文献 5】「加速器質量分析の原理」 東京大学 松崎 浩之氏 学会誌 真空 Vo 1.50, No.7 (2007) 467 474. 【発明の概要】 【発明が解決しようとする課題】 [0015]

50

上述したように、従来、イオンビームの透過率が高いイオンビーム機能性透過膜が求め られていたが、そのようなイオンビーム機能性透過膜が開発されておらず、問題であった

【課題を解決するための手段】

【0016】

上記のような問題点を解決するために、本発明に係るイオンビーム機能性透過膜は、一 方向に進行するイオンビームが通過するビームライン機器に用いられ、チャネルを有する イオンビーム機能性透過膜であって、チャネル軸が、前記イオンビームの進行方向と実質 的に平行であることを特徴とする。

[0017]

また、本発明に係るイオンビーム機能性透過膜は、前記イオンビーム機能性透過膜が結 晶であることを特徴とする。

【0018】

また、本発明に係るイオンビーム機能性透過膜は、前記イオンビーム機能性透過膜が、 空洞が形成されたポーラス物質であることを特徴とする。

【0019】

また、本発明に係るビームライン機器は、イオンビームが内部を通過する真空容器と、 チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、前記イオンビ ーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を調整する位置 決めステージと、を有し、前記位置決めステージによって、イオンビームのビームライン 中に前記イオンビーム機能性透過膜が配されように、かつ、前記イオンビーム機能性透過 膜のチャネル軸が、前記イオンビームの進行方向と実質的に平行となるように調整される ことを特徴とする。

【0020】

また、本発明に係るビームライン機器は、前記イオンビーム機能性透過膜が結晶であり 、前記位置決めステージによって、前記結晶における結晶軸が前記イオンビームの進行方 向と実質的に平行となるように調整することで、チャネル軸を前記イオンビームの進行方 向と実質的に平行とすることを特徴とする。

【0021】

また、本発明に係るビームライン機器は、前記結晶が単結晶であることを特徴とする。 【0022】

また、本発明に係るビームライン機器は、前記イオンビーム機能性透過膜が、空洞が形成されたポーラス物質からなる薄膜であることを特徴とする。

[0023]

また、本発明に係るビームライン機器は、ビームライン機器が加速器であることを特徴とする。

[0024]

また、本発明に係るビームライン機器は、ビームライン機器がストリッパーであること を特徴とする。

【0025】

また、本発明に係るビームライン機器は、ビームライン機器がディグレーダーであることを特徴とする。

[0026]

また、本発明に係るビームライン機器は、ビームライン機器が電離箱であることを特徴とする。

【0027】

また、本発明に係るフィルター機器は、真空容器内で進行するイオンビームに含まれる 不要分子を除去するフィルター機器であって、チャネルを有し、前記真空容器内に配され るイオンビーム機能性透過膜と、前記イオンビーム機能性透過膜が取り付けられ、前記イ オンビーム機能性透過膜の姿勢を調整する位置決めステージと、を有し、前記位置決めス

(6)

20

30

40

テージによって、イオンビームのビームライン中に前記イオンビーム機能性透過膜が配さ れように、かつ、前記イオンビーム機能性透過膜のチャネル軸が、前記イオンビームの進 行方向と実質的に平行となるように調整されることを特徴とする。

【0028】

また、本発明に係るフィルター機器は、前記イオンビーム機能性透過膜が結晶であり、 前記位置決めステージによって、前記結晶における結晶軸が前記イオンビームの進行方向 と実質的に平行となるように調整することで、チャネル軸を前記イオンビームの進行方向 と実質的に平行とすることを特徴とする。

【0029】

また、本発明に係るフィルター機器は、前記結晶が単結晶であることを特徴とする。 【0030】 10

20

30

40

また、本発明に係るフィルター機器は、前記イオンビーム機能性透過膜が、空洞が形成 されたポーラス物質からなる薄膜であることを特徴とする。

【0031】

また、本発明に係るフィルター機器の調整方法は、イオンビームが内部を通過する真空 容器と、

チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、前記イオンビ ーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を調整する位置 決めステージと、前記位置決めステージの下流側に配され、イオンビームを補足するファ ラデーカップと、前記ファラデーカップで補足されたイオンビームに基づく電流を計測す る電流計測部と、を有するフィルター機器の調整方法であって、前記位置決めステージに よってビームライン中に前記イオンビーム機能性透過膜が配されようにし、前記電流計測 部で計測される電流が最大となるように前記位置決めステージの姿勢を調整するステップ と、を有することを特徴とする。

[0032]

また、本発明に係るフィルター機器の調整方法は、イオンビームが内部を通過する真空 容器と、チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、前記 イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を調整 する位置決めステージと、前記位置決めステージの下流側に配され、イオンビームを補足 するファラデーカップと、前記ファラデーカップで補足されたイオンビームに基づく電流 を計測する電流計測部と、を有するフィルター機器の調整方法であって、前記位置決めス テージにおける前記イオンビーム機能性透過膜が配されていない位置に、イオンビームが 通過するように配し、前記電流計測部で計測される電流が最大となるように前記位置決め ステージの姿勢を調整する第1ステップと、前記第1ステップの後、前記位置決めステー ジによってビームライン中に前記イオンビーム機能性透過膜が配されようにし、前記電流 計測部で計測される電流が最大となるように前記位置決めステージの姿勢を調整する第2 ステップと、を有することを特徴とする。

【 0 0 3 3 】

また、本発明に係るフィルター機器の調整方法は、前記第2ステップの後、前記ファラ デーカップをビームラインから外す第3ステップを有することを特徴とする。 【0034】

本発明は、具体的には、FMIT(イオンビーム機能性透過膜)として結晶等の薄膜を 用い、適正な厚みを持つ結晶等の薄膜に、イオンを適正な入射角度で透過させるときに発 生する「イオンチャネリング透過(Ion Channeling Transmission:ICT)」なる現象 を利用し、ストリッパーやディグレーダーの機能を保ちつつ 大角散乱によるイオン透過 率の低下及びエミッタンスの増加を著しく抑える方法である。従来使用される透過膜は非 晶質の薄膜でありICTは発生しない。以後、ICTが発生しない状況を、イオンランダ ム透過(Ion Random Transmission:IRT)と呼ぶ。 【発明の効果】

[0 0 3 5]

本発明に係るイオンビーム機能性透過膜を用いたビームライン機器、イオンビーム機能 性透過膜を用いたフィルター機器、フィルター機器の調整方法は、イオンビーム機能性透 過膜の結晶における結晶面がイオンビームの進行方向と実質的に平行となるように調整さ れており、イオンビームの透過率を高めることが可能となり、エミッタンスの改善を図る ことができる。

【図面の簡単な説明】

【0036】

- 【図1】本発明の実施形態に係るイオンビーム機能性透過膜が適用される機器構成例を示 す図である。
- 【図2】本発明の実施形態に係るイオンビーム機能性透過膜の原理を説明する図である。
- 【図3】本発明の実施形態に係るイオンビーム機能性透過膜が複数枚搭載されるマルチ薄 膜システム210の構成を説明する図である。
- 【図4】本発明の実施形態に係るイオンビーム機能性透過膜が1枚搭載されるシングル薄膜システム320の構成を説明する図である。
- 【図5】本発明の実施形態に係るイオンビーム機能性透過膜をタンデム加速器10に適用 した例を示す図である。
- 【図6】本発明の実施形態に係るイオンビーム機能性透過膜をポストストリッパー30に 適用した例を示す図である。
- 【図7】本発明の実施形態に係るイオンビーム機能性透過膜をディグレーダー50に適用 した例を示す図である。
- 【図8】本発明の実施形態に係るイオンビーム機能性透過膜を電離箱70に適用した例を 示す図である。
- 【図9】本発明の実施形態に係るイオンビーム機能性透過膜のICT状態の実施例を示す 図である。
- 【図10】本発明の実施形態に係るイオンビーム機能性透過膜による、特にAMSの妨害 核種分別性能向上効果の実施例を説明する図である。
- 【図11】本発明の実施形態に係る小型AMSシステム500の概要構成を説明する図で ある。
- 【図12】本発明の実施形態に係るフィルター機器600を構成するマルチ薄膜システム 610の構成を説明する図である。
- 【図13】本発明の実施形態に係るフィルター機器600及びこれを制御するフィルター 機器制御装置650を示す図である。
- 【図14】ポーラス物質の構造を説明する模式図である。
- 【図15】測定目的核種検出器580の詳細構成を説明する図である。

【図16】静電偏向器への電圧Ⅴ₀に対する規格化計数の変化を示す図である。

【発明を実施するための形態】

【0037】

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明の実施形態に係 るイオンビーム機能性透過膜が適用される機器構成例を示す図である。本発明に係るイオ ンビーム機能性透過膜が適用される機器においては、一方向に進行するイオンビームがビ ームラインを通過するものである。また、本発明に係るイオンビーム機能性透過膜として は結晶等の薄膜が用いられる。

【0038】

なお、図において、 z 方向は機器の内部を通過するイオンビームが進行する方向である。また、 y 方向は鉛直上方であり、 x 方向は y 方向及び z 方向の双方と直交する方向として定義される。

【0039】

また、本発明に係るイオンビーム機能性透過膜が複数枚搭載されるシステムをマルチ薄 膜システム210と称し、本発明に係るイオンビーム機能性透過膜が1枚搭載されるシス テムをシングル薄膜システム320と称する。 20

[0040]

図1は、本発明に係るイオンビーム機能性透過膜を、タンデム加速器10の荷電ストリッパー11に適用した場合を示すものであり、より具体的には図5に示すタンデム加速器 10の要部模式図である。

[0041]

不図示のイオン源で生成した負イオンはタンデム加速器10に導かれ、図5に示すよう にターミナル5に向かって加速させる。このターミナル5には、本発明に係るイオンビー ム機能性透過膜が複数枚搭載されているマルチ薄膜システム210が設置される。 【0042】

本発明では、ターミナル5に設置したマルチ薄膜システム210(図3)のイオンビーム機能性透過膜に入射させ、ICT(ICT: Ion Channeling Transmission、イオンチャネリング透過)状態を作ることでストリッパーの機能を保持しつつ、大角散乱を抑制することによるイオン透過率及びエミッタンスの改善を図る。

[0043]

本発明に係るイオンビーム機能性透過膜を、ポストストリッパー30に適用した場合、 図6に示すように加速器で加速したイオンをポストストリッパー部に導き、ここに設置し たマルチ薄膜システム210(図3)のイオンビーム機能性透過膜に入射させ、ICT状 態を作ることでストリッパーの機能を保持しつつ大角散乱を抑制することによるイオン透 過率及びエミッタンスの改善を図る。

【0044】

本発明に係るイオンビーム機能性透過膜を、ディグレーダー50に適用した場合、分析 電磁石で価数選別されたイオンを、図7に示すようにディグレーダー部に導き、ここに設 置したマルチ薄膜システム210(図3)のイオンビーム機能性透過膜に入射させ、IC T状態を作ることでディグレーダーの機能を保持しつつ、AMSでの妨害核種分別の効率 を格段に改善する。

【0045】

本発明に係るイオンビーム機能性透過膜を、例えば、ディグレーダーウィンドウに適用 した場合、図8に示すようにイオンビームを加速器装置の末端部にあたる電離箱70の入 射窓に導き、ここに設置したシングル薄膜システム320(図4)のイオンビーム機能性 透過膜に入射させ、ICT状態を作ることでディグレーダーの機能を保持しつつ、ディグ レーダーウィンドウのイオン透過率及びエミッタンスを改善する。

【0046】

以上のような実施形態に対して、表1に示す結晶薄膜に入射するイオンのエネルギーに 対応して定めた結晶薄膜の厚みの基準に従ってICT状態を作り、本発明に係るイオンビ ーム機能性透過膜の機能を保持するものである。表1は、本発明に使用できるイオンのエ ネルギー領域、これに対応する結晶薄膜の厚みの基準を示す数値表である。 【0047】 20

【表1】

本発明のイオンのエネルギー領域、これに対応する結晶薄膜の厚みの基準

入射イオン*の エネルギー領域	FMITの厚みの 下限の目安**	FMITの厚みの 上限の目安***
10 keV	1 nm ⁽¹⁾	25 nm
100 keV	数 nm ⁽²⁾	80 nm
1 MeV	数 nm ⁽²⁾	250 nm
10 MeV	数10 nm ⁽³⁾	2.5 μm
100 MeV	数100 nm ⁽³⁾	100 µm

本表では、FMITとしてSi単結晶薄膜を想定

* 本表ではイオン核種として¹⁰Bを想定

** 平衡荷電状態に到達する厚みを文献値を基に推定

***FMIT通過中のエネルギー損失が入射エネルギーの10%に到達することに 対応する厚みを数値計算コード(SRIM/TRIM)により算出 (チャネリング効果としてエネルギー損失効率がIRT状態の1/2であること を仮定。すなわち厚みはIRT状態に対しては記載数値の半分。)

(1) H. A. Synal, et al., Nucl. Instrum. Methods B 294 (2013) 349-352.

(2) M. Sarkar, et al., Phys. Rev. ST Accel. Beams 15 (2012) 100101.

(3) M. Imai, et al., Nucl. Instrum. Methods B 354 (2015) 172-176.

【0048】

ここで、ICT状態について、図2により詳しく説明する。図2は結晶の中を進むイオンを模式的に表したものである。

【0049】

結晶内の原子は、規則正しく列をなして並んでいるが、この原子列に沿った方向(以後、結晶軸方向と呼ぶ)から眺めると、各原子列の間に原子の存在しない大きな空間(以後、チャネルと呼ぶ)が広がっていること分かる。

【0050】

したがって、図2に示すように、イオンをほぼ結晶軸方向に入射すると、イオンは原子 列に近づいたとしても緩やかに離れること(小角散乱)を繰り返しながらチャネルを進行 する。このような現象をイオンのチャネリングという。

[0051]

特に結晶軸に沿ったチャネリングを軸チャネリング、結晶面に沿ったチャネリングを面 チャネリングと呼ぶ。軸チャネリングの方がチャネリングの効果を得やすい。

【0052】

以下、ICT状態は断りのない限りイオンが軸チャネリングで結晶等の薄膜を透過する 状態を指すが、面チャネリングによっても本発明を実現することができる。

【0053】

チャネリングするイオンは結晶原子に衝突しても、その進行方向がチャネルから大きく 逸れることはない(チャネリング効果)。したがって、ICT状態を作ることにより透過 薄膜中での大角散乱を格段に抑えることができため、透過薄膜の透過率の改善と、エミッ タンス増加の抑制に結びつく。実際ICT状態が作られると透過薄膜の透過率は10倍程 度以上になる(非特許文献3)。

【0054】

本発明は、以上のようなチャネリング現象を、イオンビーム装置のビームライン機器に おける、イオンビームが衝突する結晶等の薄膜で発現させ、本発明に係るイオンビーム機 能性透過膜となしたことが特徴点である。

【0055】

より詳しくは、本発明に係るイオンビーム機能性透過膜は、一方向に進行するイオンビ ームが通過するビームライン機器に用いられ、結晶からなるイオンビーム機能性透過膜で あって、前記結晶の結晶面が前記イオンビームの進行方向と平行であることを特徴として いる。さらに、前記結晶の結晶軸が前記イオンビームの進行方向と平行であるようにする と、軸チャネリングを発現させることができ、より効果が高い。 【0056】

(11)

このような本発明に係るイオンビーム機能性透過膜によれば、各種機器において、イオ ンビームの透過率を高めることが可能となり、エミッタンスの改善を図ることができる。 【0057】

なお、結晶等の薄膜の厚みが適切であれば、ICT状態が作られていても、荷電ストリ ッパー11、ポストストリッパー30やディグレーダー50等のイオンビーム機能性透過 膜としての機能を持たせることができる。ICT状態では、前述のようにイオンは結晶の 原子列に近づいたり離れたり(小角散乱)を繰り返しながらチャネルを進行する。近づい たときイオンに束縛されている電子は、結晶の原子に衝突し、電子の損失・捕獲、イオン 励起・脱励起等の素過程が発生する。結晶薄膜の厚みが表1に示す基準を満たせば、IC T状態であっても、前記の素過程が繰り返えされイオンビーム機能性透過膜の機能を持た せることができる。

[0058]

本発明に係るイオンビーム機能性透過膜として用い得る結晶等の薄膜は、あらゆる元素 で構成されたものでも使用可能である。この中でも、結晶薄膜としてはSiCなどの多結 晶のものも用い得るが、単結晶薄膜はチャネルの幅が大きくICT状態を作り出すうえで 有利である。さらに、ケイ素(シリコンSi)の単結晶薄膜は、市販されており入手が容 易であるだけでなく、結晶間隔の比較的信頼性が高いためICT状態を作り出すための結 晶薄膜としては望ましい。結晶薄膜としてはSi単結晶薄膜が最も汎用性がある。

【 0 0 5 9 】

本発明に係るイオンビーム機能性透過膜として用いる結晶等の薄膜に入射できるイオン の核種としては任意のものとすることができる。

【0060】

本発明に係るイオンビーム機能性透過膜の機能を保持するための結晶薄膜の厚みの基準 [表1参照]は、次のような考え方と方法で定められる。厚みの下限は、基本的には、入 射イオンの荷電分布が平衡状態を保つことができる厚みである。厚みを原子一層分から増 やすと、入射イオンの価数は、複数の価数に分かれ荷電分布を形成する。厚みをさらに増 やすと荷電分布は厚みによらず一定となる。

【0061】

この平衡状態に到達する厚みは、非特許文献4の中で使用されている数値計算コード(ETACHA code等)で推定することができる。一例として、10MeVのホウ素Bをシリコ ン単結晶に入射する場合、厚みの下限は数十nmとなる。この厚みをさらに薄くすると非 平衡状態となり、平均電荷が厚みに強く依存することや、特許文献1におけるコヒーレン ト共鳴励起の影響が強まるため、荷電分布の予測が複雑になり、本発明に係るイオンビー ム機能性透過膜として機能は期待できない。

【0062】

一方、厚みの上限は、入射イオンが透過薄膜を通過中に失うエネルギーが、イオンビー ムの利用目的において問題にならないほど十分小さい状態を保つことができる厚さである 。チャネリング中のイオンは小角散乱に伴って、電子の損失・捕獲、励起・脱励起等の素 過程を繰り返し、エネルギーを徐々に失っていく。これらの素過程の頻度は、厚みが増え ると増加し、エネルギーが低下するだけでなく、エネルギーのばらつきが拡大する(エネ ルギー・ストラグリングの増大)。

【 0 0 6 3 】

エネルギーのばらつきは、イオンビームの偏向・収束でイオン数の損失をもたらすため 50

(12)

[0064]

したがって、その数値計算コードにより厚みの上限の目安が得られる。表1には、当発 明で規定するイオンビーム機能性透過膜への入射イオンのエネルギー領域と、これに対応 する厚みの上限と下限を記載した。上限としては、例として、イオンビーム機能性透過膜 通過中のエネルギー損失が入射エネルギーの10%に到達することに対応する厚みを数値 計算コード(SRIM/TRIM)により算出したものである。本発明に係るイオンビーム機能性 透過膜の厚みをこの上限と下限の間に取ることにより、本発明に係るイオンビーム機能性 透過膜の機能を持たせることができる。

【0065】

ICT状態を作るためには、結晶軸に対するイオンの入射角度を、チャネリングの臨界 角と呼ばれる角度よりも小さな角度にする必要がある。その臨界角 ₀文字は、近似的に は下式(1)により表すことができる。

【0066】

【数1】

$$\phi_c \approx \sqrt{\frac{Z_1 Z_2 e^2}{2\pi \varepsilon_0 E d}} \quad (1),$$

【0067】

ここで、Z1とZ2はそれぞれ入射および透過薄膜の原子番号、eは電気素量、 Eは入 射イオンのエネルギー、 dは原子列の原子間隔である。臨界角は、入射イオンの元素と エネルギー、透過薄膜の元素によって与えられる(非特許文献 2)。一例として、10M e Vのホウ素 B をシリコン単結晶(d = 5 . 4 [オングストローム])に入射する場合、 。= ± 0 . 4 9 °となる。このようにして入射角度の基準が臨界角でもってあらかじめ 定められる。

【0068】

イオンの入射角度をチャネリングの臨界角以内に調節しICT状態を作るため、透過薄膜の角度、位置を図3や図4に示す結晶等の薄膜を支持する薄膜システムを使用し、その 位置決めステージにより薄膜の角度 , 、位置×,yを精密に調節する。

【0069】

荷電ストリッパー11、ポストストリッパー30、ディグレーダー50に対しては、使 用目的上、結晶等の薄膜を支持する円盤を真空中において自由に動かすことができるよう にする。図3に示すマルチ薄膜システム210ように、結晶等の薄膜を予備として複数備 え、その場で交換できる機能をもつ構造にすることが好ましい。

[0070]

具体的には、リボルバー型のマルチ薄膜ホルダ214に複数の薄膜アセンブリ213(薄膜212とフレーム211からなる)を装着した状態でビームラインに組み込み、長時 間のビーム透過により結晶等の薄膜が劣化した際、例えば、図示時計回り方向にマルチ薄 膜ホルダ214を順次回転させ未使用の結晶薄膜を使用するというものである。

【0071】

図3において、マルチ薄膜用位置決めステージ215は基台部230を有している。第 1軸231は基台部230に対して回転可能とされている。また、第1軸231には枠体 235が取り付けられており、基台部230に対して第1軸231が± 方向に回転する ことにより、枠体235も± 方向に回転することができるようになっている。 【0072】

50

40

また、枠体235には、第2軸232が枠体235に対して回転可能に配されている。 第2軸232にはマルチ薄膜ホルダ214が取り付けられており、第2軸232の±方 向の回転に伴い、マルチ薄膜ホルダ214も± 方向に回転することができるようになっ ている。

(13)

【0073】

ICT状態は、上記のようなマルチ薄膜用位置決めステージ215を用いて結晶等の薄膜の角度及び位置を調整して作り上げ、本発明に係るイオンビーム機能性透過膜となす。 荷電ストリッパー11及びポストストリッパー30では、イオンビーム強度が比較的強い ため、結晶等の薄膜の劣化が比較的早まる。したがって、予備の薄膜をその場で交換でき る機能を備えておくことは重要である。特に、前タンデム型加速器10の荷電ストリッパ -11については、薄膜システムの取外しが加速器タンク内での手作業になり時間がかか るため、その重要性は一層高い。

【0074】

電離箱70におけるディグレーダーウィンドウ71に対しては、使用目的上、図4に示 すように、結晶等の薄膜を支持する円盤自体が真空を封じる真空フランジ12等も兼ねる ことがある。

【 0 0 7 5 】

このため、構造上、薄膜システムに予備となる結晶等の薄膜を備えることは難しい。したがって、ディグレーダーウィンドウ71用のシングル薄膜システム320は、単一の結晶等の薄膜を使用することとなる。この構成は、薄膜アセンブリ213、シングル薄膜ホルダ321、シングル薄膜用位置決めステージ322からなる。多くの場合、ディグレーダーウィンドウ71をビームラインから取り外すことは比較的容易であるため、予備の薄膜をその場で交換する機能をもたせる必要性は低い。

【0076】

図4において、シングル薄膜用位置決めステージ322は基台部330を有している。 第1軸331は基台部330に対して回転可能とされている。また、第1軸331には枠 体335が取り付けられており、基台部330に対して第1軸331が± 方向に回転す ることにより、枠体335も± 方向に回転することができるようになっている。 【0077】

また、枠体335には、第2軸332が枠体335に対して回転可能に配されている。 第2軸332にはシングル薄膜ホルダ321が取り付けられており、第2軸332の± 方向の回転に伴い、シングル薄膜ホルダ321も± 方向に回転することができるように なっている。

[0078]

本発明を実施するための最小単位となる前記基本機器構成は、図1に示すように、図3 や図4で示した薄膜システムを中心に置き、磁気四重極(Magnetic Quadrupole)あるい は電気四重極(Electric Quadrupole)によるビーム収束レンズ(以後、単にレンズ)3 をビーム軸に沿って配置したものである。

[0079]

前記のようにICT状態の生成には入射角度の調節が必要である。イオンビーム中ので きるだけ多くのイオンに対してICT状態を作るためには、結晶等の薄膜の入射前に平行 ビームを作ることが重要になる。薄膜システムの上流側に置くレンズは平行ビームを作る ためである。下流側に置くレンズは、イオンビームの利用目的に応じてビームの収束する 必要性があれば用いるものである。この下流側レンズは、荷電ストリッパー11、ポスト ストリッパー30、ディグレーダー50に対しては有用である。一方、電離箱70のディ グレーダーウィンドウ71に対して必要性は低い。

【 0 0 8 0 】

本発明を、タンデム型加速器10の荷電ストリッパー11に適用した場合を図5に示す。マルチ薄膜システム210はタンデム型加速器10のターミナル5に取り付け、レンズ 3はタンデム型加速器10の出入口に設置する。薄膜システムは図3に示したマルチ薄膜

システム210である。レンズでの質量分別は、電気四重極レンズでは生じないため、特に複数の同位体をほぼ同時に加速器に入射させる必要があるAMSにおいて有利となる。 入口のレンズを調節し平行ビームにしてイオンを結晶等の薄膜に入射し、ICT状態を作る。

[0081]

本発明をポストストリッパー30に適用した場合を図6に示す。図1の構成はほぼその ままの形でポストストリッパー部に組み入れる。この場合、マルチ薄膜システム210を 使用する。レンズ3は前記と同様に電気四重極レンズの方が有利となる場合がある。いず れにしてもレンズの効果はイオンの荷電数に依存するため、どの荷電数のイオンに対して ICT状態を作るのかを予め定めておく必要がある。

【0082】

本発明をディグレーダー50に適用した場合を図7に示す。図1の基本構成をほぼ同じ 形でディグレーダー部に組み入れる。ディグレーダー50は、AMSの希少核種用ビーム ライン、すなわち複数の同位体が混在しないビームラインに用いるため、比較的取り扱い やすい磁気四重極レンズの使用が可能となる。このAMSにおけるディグレーダーを使用 した場合の実施例については後述する。

[0083]

本発明を電離箱70のディグレーダーウィンドウ71に適用した場合を図8に示す。基 本構成は、シングル薄膜システム320、イオンビームの上流側のレンズ3で構成される 。シングル薄膜システム320による結晶等の薄膜の位置及び角度の調節は、電離箱70 ごと動く仕組みとなる。上流側の真空容器との間に生じる力学的な歪はベローズで吸収す る。

[実施例1]

ICT状態を作り上げる実施例を図9に示す。本実施例は、同図左側に描いた実験系を 用いて、7.0MeVの¹⁰B²⁺をピンホールに通してSi結晶薄膜へ入射して行ったもの である。ICTとIRTのそれぞれの状態に対して、結晶薄膜を透過するイオンを静電偏 向器で振り分けながら電離箱での収量を測定し、それより荷電分布を求めた。 なお、厚 さ200nmのSi結晶薄膜の厚みは、表1に示した厚みの基準を満たしており、本発明 に係るイオンビーム機能性透過膜の機能を果たすことが保証される。実際、同図から求め られる平均電荷は4.0程度であり、文献から得られる値に等しい。すなわち、荷電分布 は平衡状態に達し、本発明に係るイオンビーム機能性透過膜の機能を有する証となる。同 図より、荷電数4+でのICT状態の透過量は、IRT状態の透過量の6倍に達すること が分かる。これは、IRT状態よりもICT状態に対して、本発明に係るイオンビーム機 能性透過膜でのイオンの大角散乱が大幅に低減していることの証左となる。したがって、 本発明により、イオンビーム機能性透過膜の機能を保持しつつイオンビーム機能性透過膜 の透過率とエミッタンスが格段の改善されることが明らかになった。 [実施例2]

AMSのディグレーダー50に適用した場合の実施例を図10に示す。前記のようにAMSでは分析目的核種と等しい質量をもつ安定した同重体等の核種が存在する場合、例えば、¹⁰Beに対する¹⁰B、³⁰C1に対する³⁰S、⁵³Mnに対する⁵³Cr等、これらは目的 核種の測定を妨害する核種(妨害核種)となり、妨害核種分別が主要な技術課題となっている。

[0084]

ディグレーダー50は一つの分別技術として次のように用いられる。分析目的核種と妨 害核種の両者を薄膜に入射すると、阻止能の原子番号依存性により、双方のどちらかのエ ネルギーが比較的大きく損失し、両者のエネルギーの間に差が生じる。したがって、その 差を基に両者を後段のエネルギー分析器で分別する。

【0085】

図10は、ICT状態(本発明によるイオンビーム機能性透過膜使用)とIRT状態で のディグレーダー50による同重体分別の実施例を示したものである。この実施例では、 10

分析目的核種に¹⁰ B e 、同重体に¹⁰ B を充てている。なお本実施例は、前図9に描いた実 験系を用いて得たものである。ただし、実際の入射イオンは¹⁰ B e²⁺ではなくその安定同 位体の⁸ B e²⁺であり、得られた⁸ B e²⁺荷電分布の横軸(電場)に係数をかけ、¹⁰ B e²⁺ の荷電分布になるよう理論的に補正している。

[0086]

図10に示すように¹⁰Bの荷電分布は¹⁰Beの荷電分布よりも低い電場の側に計数のピ - クを持つ。これは、¹⁰Bのほうが¹⁰Beよりも原子番号が一つ大きいため、結晶薄膜中 でのエネルギー損失が¹⁰Bで大きくなることに起因する。すなわち、電離箱に入射するイ オンのエネルギーは¹⁰Beに比べ¹⁰Bがやや低くなる。図10を見ると、電場が1.0~ 1.5 k V / c mの範囲でICT、IRT状態ともに、¹⁰Beの計数が¹⁰Bの計数を上回 っており、この電場の範囲を用いると同重体分別の効率が高い。ICT状態とIRT状態 の差を数値的に評価するために、ディグレーダー50の効果を、次の二つのように規定す る。

(1) Beの計数率に対してBの計数率がどれだけ抑えられるか。

(2) Be自体の計数率をどれだけ稼ぐことができるか。

上記(1)の指標としてBe/Bを与えることができ、Be/Bが大きいほど有利である。一方上記(2)の指標としてはBeの計数自身と与えることができる。実際には、(1)と(2)の両方が同時に大きくなれば効果が高いため、両者を掛け合わせた指標としてBe²/Bと置くことができる。この指標についてICTとIRTの二つの状態についてまとめたものが図10の最下段である。この図より、ディグレーダーの効果は、ICT状態の方がIRT状態に比べ約2.6倍程度高いことが分かる。ちなみに、指標(1)のBe/B自体は、両者で差は大きくないが、ICT状態の指標(2)のBe計数自体が格段に大きい分だけディグレーダー50の効果が高くなっている。

【0087】

以上のように、本発明に係るイオンビーム機能性透過膜の機能を保持しつつ透過率を数 倍以上に改善できること、また、本発明に係るイオンビーム機能性透過膜が用いられるA MSにおけるディグレーダーの効果を数倍以上に向上できることを示した。これは、加速 器装置の小型化、加速器装置作業効率の改善の他、AMSでの測定精度の向上をもたらす 。特に荷電ストリッパーに適用した場合は、AMSの小型化で指標となる100keV程 度の低エネルギーのイオンに対しても、荷電ストリッパー機能維持とビームラインの高真 空維持との両立を可能にし、AMS装置の劇的な小型化に結びつく。

【0088】

以上、本発明に係るイオンビーム機能性透過膜及びイオンビーム機能性透過膜の調整方 法は、一方向に進行するイオンビームが通過するビームライン機器に用いられ、結晶から なるイオンビーム機能性透過膜であって、前記結晶の結晶面が前記イオンビームの進行方 向と平行であるので、本発明に係るイオンビーム機能性透過膜によれば、各種機器におい て、イオンビームの透過率を高めることが可能となり、エミッタンスの改善を図ることが できる。

【0089】

さらに、本発明に係るイオンビーム機能性透過膜のイオン透過率及びエミッタンスがI CT状態により格段に改善することにより、次の(a)~(b)に挙げる効果が得られる

(a)荷電ストリッパー及びポストストリッパーを透過した後のイオンビーム強度の減衰 が抑えられるため、加速器装置の利用にかかわるすべての作業、分析、測定の各効率が高 まる。

(b)前記AMSでは、ディグレーダーの妨害核種分別性能が高まるため、分析精度を向 上させることができる。電離箱への入射用ウィンドウを兼ねたディグレーダーに適用した 場合、ウィンドウでのイオンの散乱が大幅に抑えられ、電離箱のイオン検出領域に入るイ オン数が増加するため、電離箱から得られるエネルギースペクトルのピークプロファイル が先鋭になる。これも妨害核種分別性能の向上に繋がる。 10

(c)特に前記荷電ストリッパーに適用した場合、本発明により、AMSの小型化で指標 となる数十keV~百keV程度の低エネルギーのイオンに対しても、荷電ストリッパー 機能維持とビームラインの高真空維持との両立が可能となる。これは、従来、AMS装置 の小型化に向けた技術開発において障害になっていた、ガスを用いたストリッパーの機能 を維持しようとするとビームラインにガス漏れが著しくなり妨害核種が増える問題が解消 する。したがって、本発明は、AMS装置の劇的な小型化に結びつく。 【0090】

次に、本発明に係るイオンビーム機能性透過膜を用いたビームライン機器の一種である 小型AMSシステムのより具体的な構成について説明する。このような小型AMSシステ ムは、加速器質量分析(Accelerator Mass Spectrometry)法によって、試料に含まれる 極微量の同位体を計数することで、試料中の同位体比を測定するものである。本発明に係 る小型AMSシステムにおいては、イオンビーム機能性透過膜を、質量分析を妨害する不 要分子の除去手段として利用することで、従来の加速器より小型化を図ったことが大きな 特徴点となっている。ここで、本発明に係る小型AMSシステムで用いる、上記のような 不要分子除去手段をフィルター機器と称することとする。

【0091】

「小型AMSシステム」に含まれるアルファベットの「A」の文字は、「Accelerator 」(加速器)の略ではあるが、本明細書で言う「小型AMSシステム」には、一般通念上 の加速器や加速装置といった構成は含まれていない。ただし、本明細書に係る「小型AM Sシステム」の負イオン源510の引き出し電極部(不図示)には、イオンを加速する構 成は含まれる。また、本明細書に係る「小型AMSシステム」は、ビームライン機器に包 含される概念である。以上から、本明細書で言う「小型AMSシステム」は、負イオン源 510から取り出された後のイオンが、加速器や加速装置で加速されることなく、質量分 析を行うことが可能な機器である、とも定義することができる。「小型AMSシステム」 の「小型」は、上記のように加速器や加速装置が不要で、機器構成を小型化することが可 能であることに由来している。

【0092】

本発明に係る小型AMSシステムは、タンデム加速器を取り除いたイオンエネルギー5 0 k e V程度のものである。加速器において、50 k e V程度のイオンエネルギーに対す る荷電変換用および妨害分子(分析に不要な不要分子)の除去の機能は、ガスストリッパ ーが検討されてきている。しかし、イオンエネルギーが低くなると、イオンから電子を剥 ぎ取る確率を高める必要性から、ガスストリッパーの機能を保持するためのガス量は多く なる。そうすると、ビームラインのガス圧が高まり、イオンの散乱頻度が高まるため、測 定限界が悪化する。つまり、例えば、タンデム型加速器において用いられているようなガ スストリッパーを小型AMSシステムでも用いることは、妨害分子除去維持と測定限界維 持を両立させることが困難であった。

【0093】

そこで、本発明に係る小型AMSシステム500においては、ガスを用いず固体を用い る妨害分子(不要分子)の除去手段として機能するフィルター機器600を用いる構成を 採用する。ここで、フィルター機器600は、ガスストリッパーと同様に、妨害分子(不 要分子)の電子を剥ぎ取り分子の解離を促すものとして機能するものである。図11は本 発明に係る小型AMSシステム500の概要構成を説明する図であり、小型AMSシステ ム500を鳥瞰的に見た図である。

[0094]

本発明に係る小型AMSシステム500は、イオンビームが進行する順で見て、主として、負イオン源510、入射電磁石520、フィルター機器600、分析電磁石560、 安定核種検出器565、エネルギー分析器570、測定目的核種検出器580から構成されている。また、各構成は真空容器の配管によって接続されている。

[0095]

従来のタンデム型加速器においては、図11におけるフィルター機器600の位置にガ 50

10

スストリッパーが置かれていた(例えば、米国特許公報8791410号参照)。これに 対して、本発明に係る小型AMSシステム500では、ガスストリッパーの代わりにフィ ルター機器600が配置され、測定目的核種とほぼ同じ質量の妨害分子を、フィルター機 器600によって解離し除去の準備を行う。

(17)

【0096】

フィルター機器600は、概略、マルチ薄膜システム610(或いは、シングル薄膜シ ステム)とファラデーカップ645と、これらを収めた真空容器604とから構成される 。また、薄膜システムで用いる結晶がイオンビームに対して脆弱であり、交換頻度が高く 見積もられる場合には、薄膜システムとして、マルチ薄膜システム610を用いることが 好ましい。また、薄膜システムで用いる結晶としては、単結晶、多結晶などの結晶薄膜、 或いは、結晶薄膜又は非晶質の薄膜に空洞が形成されたポーラス物質からなる薄膜(本明 細書ではこのような薄膜を「ポーラス薄膜」と言う。)を用いることができる。 【0097】

本発明に係るイオンビーム機能性透過膜に用い得る物質は、チャネル(ビームラインを 構成するイオンの通路)を有する物質であるということができる。チャネルを有する物質 におけるイオンの通路を「チャネル」と称することもできる。このようなチャネルを有す る物質としては、単結晶、多結晶などの結晶、或いは、結晶薄膜又は非晶質の薄膜に空洞 が形成されたポーラス物質である。

【0098】

チャネルを有する物質が結晶の場合では、結晶における結晶面と平行な軸、又は結晶の 結晶軸と平行な軸をチャネル軸ということができる。また、チャネルを有する物質がポー ラス物質の場合では、ポーラス物質に形成された空洞の形状を略円柱状と捉えるとすると 、当該円柱の円柱軸と平行な軸ということができる。

[0099]

なお、結晶質のポーラス物質においては、前記空洞の内空表面の粗さをnmスケール未満にし、イオンの入射角をチャネリングの臨界角未満にした場合、表面チャネリングが顕著に現れ、表面での散乱は鏡面反射が主となる。したがって、この場合、非晶質の薄膜に空洞が形成されたポーラス物質に比べて、イオンの大角散乱が抑えられビーム透過率が高まりやすい。ただし、後者のポーラス物質では表面粗さの制限が緩まるため、後者のポーラス物質には製造上のハードルが低い、というメリットがある。

【0100】

本発明に係るイオンビーム機能性透過膜を用いたビームライン機器、フィルター機器等 においては、イオンビーム機能性透過膜が有するチャネルを、一方向に進行するビームラ インが通過するように調整されてなることが特徴点となっている。

【 0 1 0 1 】

以下、小型AMSシステム500に用いる本発明に係るフィルター機器600について より詳細に説明する。図12は本発明の実施形態に係るフィルター機器600を構成する マルチ薄膜システム610の構成を説明する図であり、イオンビームの進行方向でマルチ 薄膜システム610を見た図である。また、図13は本発明の実施形態に係るフィルター 機器600及びこれを制御するフィルター機器制御装置650を示す図である。図13に おいて、フィルター機器600の構成は、概略、図11におけるA-A断面を示すもの である。

【0102】

フィルター機器600を構成するマルチ薄膜システム610においては、結晶等の薄膜 やポーラス物質の薄膜などの結晶を支持する円盤状のマルチ薄膜ホルダ614を真空中に おいて、不図示の駆動力により動かすことができるようにする。マルチ薄膜システム61 0は、結晶を予備として複数備えており、真空容器604を空けることなく、ビームライ ンが通過する結晶を交換できる機能を有し、好ましい。

[0103]

〇を中心として回転するリボルバー型のマルチ薄膜ホルダ614には、複数の薄膜アセ 50

ンブリ613(結晶612と、この結晶612を保持する枠体であるフレーム611とか らなる)を装着した状態で真空容器604内に組み込む。マルチ薄膜システム610にお いては、マルチ薄膜ホルダ614の複数の結晶612のうちの1つにはイオンビームが透 過される形で運用され、長時間のビーム透過により結晶612が劣化した際、Oを通り紙 面に対して垂直な軸を回転軸としてマルチ薄膜ホルダ614を順次回転させ、次に未使用 の結晶を使用するというものである。

[0104]

フィルター機器600を制御するフィルター機器制御装置650における演算部660 は、演算を実行するCPUや、このCPUのワークエリアとなる書き換え可能な記憶手段 であるRAMや、基本的なプログラムが書き込まれている不揮発性の記憶手段であるRO Mや、書き換え可能で不揮発性のフラッシュメモリーや、インターフェイス手段である入 出力部などを有するマイクロコンピューターで構成することができる。 【0105】

ホルダ回転制御部673は、上記のような演算部660と通信可能に構成されており、 演算部660からの指令に基づいて、マルチ薄膜システム610におけるマルチ薄膜ホル ダ614の回転の制御を行うようになっている。

[0106]

マルチ薄膜用位置決めステージ615は基台部630と、この基台部630が挿通され る第1軸631とを有している。第1軸631は、不図示の駆動機構により基台部630 に対して、1点鎖線を中心として 方向に回転可能とされている。また、第1軸631に は枠体635が取り付けられており、基台部630に対して第1軸631がま 方向に回 転することにより、枠体635もま 方向に回転することができるようになっている。第 1軸回転制御部671は、演算部660と通信可能に構成されており、演算部660から の指令に基づいて、第1軸631の回転の制御を行うようになっている。

また、枠体635には、第2軸632が枠体635に対して、2点鎖線を中心として 方向に回転可能に配されている。第2軸632は、不図示の駆動機構により回転されるようになっている。第2軸632にはマルチ薄膜ホルダ61445± 方向に回転することが 軸632の± 方向の回転に伴い、マルチ薄膜ホルダ61445± 方向に回転することが できるようになっている。第2軸回転制御部672は、演算部660と通信可能に構成さ れており、演算部660からの指令に基づいて、第2軸632の回転の制御を行うように なっている。

【0108】

なお、図12において、1点鎖線と2点鎖線の交点が、ビームラインを通過するポイントであることが想定されている。

[0109]

また、上記のような第1軸631は、基台部630に対して、×y調整機構(不図示) によって、×方向及びy方向に変位可能とされている。×y調整機構制御部670は、演 算部660と通信可能に構成されており、演算部660からの指令に基づいて、当該×y 調整機構の変位の制御を行うようになっている。

なお、マルチ薄膜用位置決めステージ615には、フレーム611中の結晶612を位 置決めするための×y調整機構(不図示)、第1軸631、第2軸632、マルチ薄膜ホ ルダ614などの全ての構成が含まれる。

[0111]

マルチ薄膜用位置決めステージ615の下流側には、イオンビームを補足するファラデ ーカップ645が配されている。なお、本明細書においては、イオンビームの発生源側を 上流側として定義する。ファラデーカップ645で補足されるイオンの数量・荷数に応じ て電流が流れるようになっており、この電流は電流計測部655で計測される。電流計測 部655で計測された電流データは、演算部660に対して送信され、演算部660で電 10

流データに対する演算処理が行われるようになっている。

【0112】

真空容器604の一部には基台部640が設けられており、この基台部640にはファ ラデーカップ支持部材646が設けられている。ファラデーカップ645は、このファラ デーカップ支持部材646の端部に取り付けられており、不図示の変位機構により変位す るように構成されている。ファラデーカップ645の変位機構(不図示)を制御する変位 機構制御部680は、演算部660と通信可能に構成されており、演算部660からの指 令に基づいて、ファラデーカップ645の変位の制御を行うようになっている。変位機構 制御部680からの制御によりファラデーカップ645を変位させることで、ファラデー カップ645をビームライン中に配しイオンビームを補足するようなレイアウトとしたり 、ファラデーカップ645をビームラインから外しイオンビームを補足しないレイアウト としたりすることができるようになっている。 【0113】

(19)

次に、本発明に係るフィルター機器600のマルチ薄膜システム610に搭載する結晶 について説明する。これまで説明したように、マルチ薄膜システム610に搭載する結晶 としては、単結晶、多結晶などの結晶薄膜、或いは、結晶薄膜又は非晶質の薄膜に空洞が 形成されたポーラスからなる薄膜(「ポーラス薄膜」)を用いることができる。

(0 1 1 4 **)**

本発明に係る小型AMSシステム500における分析で、通常の結晶薄膜を採用するか 、又は、空洞が形成されたポーラス薄膜を採用するかを選択するにあたっては、コストや イオンビームによる電流値(熱負荷)との兼ね合いを検討する。

【0115】

マルチ薄膜システム610に搭載される結晶に入射するイオンビームの時間平均電流が 1 n A ~ 1 0 n A を大きく超える場合、ポーラス薄膜を選択することが好ましい。イオン エネルギーが50 k e V程度のイオンに適する膜厚20~30 n m の結晶薄膜(例えば、 結晶シリコンの場合)では、炭素測定でよく使用される時間平均電流1µ A の熱負荷は耐 えられない。ポーラス薄膜は、そのような熱負荷に対処することが可能である。 【0116】

次に、結晶薄膜とポーラス薄膜との相違について説明する。

(結晶薄膜について)

薄膜システムに配する結晶薄膜は、例えば結晶シリコンで30nm厚程度まで薄くする 必要がある。結晶薄膜の角度調整機構の駆動範囲を狭くできる観点から、結晶薄膜の面法 線は主要な結晶軸方向に一致することが望ましい。例えば、シリコン結晶を用いる場合、 面の法線は<100>、<110>等であることが好ましい。これにより、チャネリング を発現させるための調整角度範囲は、ビーム入射軸と面法線のなす角が0度付近に絞られ る。結晶薄膜は、マルチ薄膜ホルダ614に装着し、これをさらにマルチ薄膜システム6 10本体に装着する。マルチ薄膜システム610はフィルター機器600の一部として、 図に示したように真空容器604に配される。

(ポーラス薄膜について)

ポーラス薄膜は、イオンビームに対する耐久性を備えており、本発明に係るフィルター機器600に用いる薄膜として好ましい。図14はポーラス薄膜の構造を説明する模式 図である。

【0117】

ポーラス薄膜は数ミクロンの孔が並んだ膜である。これらの孔がイオンの通路であるチャネルを形成する。図14(A)中では、孔形状を矩形にしたものを示しており、白抜き部がこれに相当する。ポーラス薄膜の膜面を見ると、図14(A)に示すようにチェッカーフラッグ様となる。この図のB-B で切ったときの断面図を図14(B)に示す。 【0118】

膜断面の形状は、入射面部と出射面部において角度 でくさび状になっている。イオン が図面左側から入ると飛行と壁面での散乱を繰り返して図面右側から出る。このような状 10

20

(20)

況は、結晶のイオンチャネリングと類似し、疑似チャネリング効果と呼ばれている(Ha jnal、 et al., Nucl. Inst. and Meth. B 11 8 (1996) 617.)。

【0119】

特に、図14に示すように断面をくさび状にし、イオンP、Qを互いにほぼ平行で紙面 左側からくさび角度 と同じ角度で入射する状況を作ると、それらのイオンは、上面、下 面で同じ回数だけ散乱を繰り返し紙面右側から同じ角度で出射する。

【0120】

このような状況設定により、ポーラス薄膜の実効的な開口率(porosity)が1 00%近くに高まる。また、孔壁面(ポーラス薄膜に形成された空洞の内空表面)の表面 粗さが原子レベルでみて平坦(具体的には表面粗さが原子サイズのスケール(数nm程度 未満)でみて平坦)であれば、入射角度をチャネリングの臨界角未満にすることで、壁面 での散乱は、表面チャネリングによる鏡面散乱となる。

【0121】

これは、ポーラス薄膜での透過率を高める役割を果たす。実際、ポーラス薄膜の透過率 に表面チャネリングが寄与することが知られている(前記のHajnalの論文)。この ような斜め入射はイオンビームを受ける面積の増大につながるため、熱流束を低減できる 。サイズの一例は次のとおりである。50keVのイオンに対する臨界角は約3°であり 、インビームの発散角を考慮し、くさび角を2°と設定する。ポーラス薄膜の孔ピッチa を5μmとすると、くさび長 は143μm、散乱回数を上面と下面の2回とすると膜厚 は430μm程度となる。

【0122】

2回の散乱回数は、本発明に係るフィルター機器600の機能の保持に十分であると考 えられる。このポーラス薄膜は、ビーム負荷に耐えうるものであるため、マルチ薄膜シス テムの必要性は下がり、先に説明したシングル薄膜システム320の使用が可能となる。 このようなポーラス薄膜はシングル薄膜ホルダ321に装着される。さらにシングル薄膜 システム320の本体に装着する。シングル薄膜システム320は本発明に係るフィルタ ー機器600の一部としても、真空容器604と共に用いることができる。

(結晶薄膜を採用した場合の調整方法)

次に、本発明に係るフィルター機器600に、結晶薄膜を採用しマルチ薄膜システム6 10を用いた場合におけるフィルター機器600の調整方法を説明する。

【0123】

まず、第1ステップとして、マルチ薄膜システム610のマルチ薄膜ホルダ614においては、結晶が装着されていないフレーム611を少なくとも1フレーム設けておき、真空容器604に収容する。また、変位機構制御部680によって、ファラデーカップ64 5の配置をイオンビームが通過する予定のビームライン上としておく。

【0124】

続いて、ホルダ回転制御部673によってマルチ薄膜ホルダ614を回転させて、イオンビームが通過するビームライン上に、先の結晶が装着されていないフレーム611が配されるように調整する。このときイオンビームの発生は停止させている。

【0125】

続いて、イオンビームを発生させて、結晶が装着されていないフレーム611中の空洞 部に、イオンビームが通過するようにする。次に、×y調整機構制御部670で第1軸6 31の×y位置を調整しながら、ファラデーカップ645によってイオンビームを補足し 、電流計測部655で電流データを取得して、これを演算部660に送信して記憶してい く。そして、電流計測部655で計測される電流データが最大となる位置で、第1軸63 1の位置を固定する。第1軸631の位置が固定されると、イオンビームの発生を一旦停 止する。

[0126]

第2ステップとして、ホルダ回転制御部673によって、マルチ薄膜ホルダ614を回 50

転させて、イオンビームが通過するビームライン上に、結晶 6 1 2 が装着されているフレ ーム 6 1 1 が配されるように調整する。

(21)

【0127】

続いて、イオンビームを発生させて、結晶612が装着されているフレーム611中の 結晶612に、イオンビームが通過するようにする。次に、第1軸回転制御部671によ って第1軸631でを回転させ、また、第2軸回転制御部672によって第2軸632 で回転させながら、ファラデーカップ645によってイオンビームを補足し、電流計測 部655で電流データを取得して、これを演算部660に送信して記憶していく。そして 、電流計測部655で計測される電流データが最大となる位置で、第1軸631の回転位 置、及び、第2軸632の回転位置を固定する。各軸の回転位置が固定されると、イオン ビームの発生を一旦停止し、本発明に係る小型AMSシステム500におけるフィルター 機器600の調整が完了する。

【0128】

なお、本実施形態では、第1ステップで結晶が装着されていないフレーム611の×y 位置を、第1軸631の×y移動で調整するようにしたが、もともと第1軸631の×y 位置がビーム通過位置と一致しているとみなせる場合、例えば前回の調整から間もない状 況などの場合、このような調整を省略することも可能である。

(ポーラス薄膜を用いた場合の調整方法)

本発明に係るフィルター機器600に、ポーラス薄膜を採用しマルチ薄膜システム61 0を用いた場合におけるフィルター機器600の調整方法を説明する。この調整方法は、 結晶薄膜を採用した場合とある程度は同じである。異なるところは、シングル薄膜システ ムの使用が可能になること、また第2ステップである。

【0129】

ポーラス薄膜を用いた場合、フィルター機器600においては、マルチ薄膜システム6 10に代えて、先に説明したシングル薄膜システム320を用いることもできる。このと き、シングル薄膜システム320のシングル薄膜用位置決めステージ322にも、第1軸 331の×y調整機構及びその制御部、第1軸331の回転角の回転調整機構及びその 制御部、第2軸332の回転角回転調整機構及びその制御部を設けて、マルチ薄膜シス テム610と同様の調整をすることが好ましい。マルチ薄膜システム使用時の第1ステッ プで用いられる膜の取り付けられていない孔は、シングル薄膜システムでは、例えば、真 空フランジ12の中心から+y方向に位置するボルト孔を流用すればよい。そのボルト孔 は、図8の説明で述べたように、シングル薄膜システム320と電離箱等を接続する際に ボルトを通して用いられるものであり、フィルター機器600での使用では、ボルトは通 されておらず空洞になっている。このボルト孔を使用しない場合は、駆動調整に支障のな い箇所に、ポーラス薄膜用の孔と同程度の径を持つ孔を設けておくことが望ましい。 【0130】

次に第2ステップでは、第1ステップで使用した、例えば、ボルト孔の孔位置と真空フ ランジ12の中心の距離、すなわち孔位置半径だけ第1軸331をy方向に押し込む。こ れにより、ビームライン上に、フランジ12の中心に装着されたポーラス薄膜が配される ことになる。そしてイオンビームを発生させて、ポーラス薄膜に、イオンビームが通過す るようにする。

【0131】

以下の調整方法の説明では、ポーラス薄膜を図14の方位のまま、図13のようにイオ ンビームが左から入射する系に配置した場合を想定する。すなわち、図14のチャネル壁 断面のくさびの角度、すなわちテーパ状開口の角度の回転軸と、図13の角度の回転 軸は平行であるものとする。

【0132】

次に、第1軸回転制御部671によって第1軸631で 回転させ、ファラデーカップ 645によってイオンビームを補足し、電流計測部655で電流データを取得して、これ を演算部660に送信して記憶していく。そして、電流計測部655で計測される電流デ 10

ータが最大となる位置で、第1軸631の 回転位置を固定する。 【0133】

回転と似たように、第2軸回転制御部672によって第2軸632で、図 回転も、 13の 回転方向に沿って回転させながら、電流計測部655で電流データを取得してい く。ただし、 回転の場合、主要な電流ピークが二つ現れる。すなわち、ある角度 でピ ークが現れた後、ある角度を経るともう一つのピークが現れる。これは、図14で示した ポーラス薄膜断面のイオン入出側に設けている「チャネル壁断面のテーパ状開口部」の幾 何学的な効果による。この効果により、図14で図示しているように、このテーパ面に平 行に入射したイオンが壁面で反射し出射するという疑似チャネリングが生じるとともに、 実質的な開口率が高まるため、通過するイオンが増加し、上記の一つのピークを形成する 。もう一つのピークは、ポーラス薄膜内部の幅aの平行チャネルのチャネル軸と平行にイ オンが入射し、壁面にほとんど接すること無しでポーラス膜を透過する寄与である。両者 のピークをもたらす角度の差は、チャネル壁断面のくさびの角度、すなわちテーパ状開口 の角度 に一致する。上記で想定した、ポーラス薄膜の配位では、一つ目に出てくる電流 ピークを与える角度が、目的とする疑似チャネリングをもたらす角度であり、ここで固定 する。このピーク電流の大きさは、チャネル壁面での散乱が表面チャネリングによる鏡面 反射が起きる場合、もう一つのピークの大きさを超え、最大となり得る。かくして、ポー ラス薄膜を用いた場合の、本発明に係る小型AMSシステム500におけるフィルター機 器600の調整が完了する。

(22)

【0134】

以上のような知見を踏まえ、本発明の範疇には、イオンビーム機能性透過膜(例えば、 ポーラス薄膜)のチャネル軸が、イオンビームの進行方向と実質的に平行となるように調 整される場合も含まれるものと定義する。

(同重体分別の実証結果)

次に、シングル薄膜システム320を用いたフィルター機器600を、測定目的核種検 出器580に適用した本発明の実証結果について説明する。図15は測定目的核種検出器 580の詳細構成を説明する図である。図16は静電偏向器への電圧 V₀に対する規格化 計数の変化を示す図である。

【0135】

加速器質量分析では分析目的核種と等しい質量をもつ安定した同重体等の核種が存在す る場合、例えば、¹⁰ B e に対する¹⁰ B、³¹ C 1 に対する³⁵ S、⁵³ M n に対する⁵³ C r 等、 これらは目的核種の測定を妨害する核種(妨害核種)となり、妨害核種分別(以下、同重 体分別)が主要な技術課題となっている。

[0136]

この技術の一つとしてディグレーダー膜を用いた方法がある。通常、ディグレーダー膜 は分析電磁石と静電偏向器の間に設置され、阻止能の原子番号依存性より目的核種と同重 体の間にエネルギーの差を作り、両者を分別する。この方法は、低エネルギーのためアブ ソーバーが使用できない場合や、同重体入射率が電離箱の限界(5 k H z 程度超)などの 場合に効果的であるとされている。

【0137】

従来は、ディグレーダー膜として非晶質材料(代表的には窒化ケイ素)が用いられてき た。本発明に係るフィルター機器600では単結晶薄膜によるイオンチャネリングを利用 する技術である。イオンチャネリングの利点は二つあり、一つは、ビーム発散の抑制、も う一つは十分な阻止能である。これらを活かすことで、従来用いることができなかった、 目的核種と妨害核種のエネルギー差を比較的大きくできる1µm程度の膜を用いてもチャ ネリングによる大角散乱の低減により、膜から目的核種検出器までの透過率を飛躍的に高 めることができる。以下、¹⁰Beと¹⁰Bの分別に本発明に係るフィルター機器600を適 用した場合である。

[0138]

フィルター機器600に入射するBeO-電流は1~2 µAであった。加速器のター 50

ミナル電圧は1.0 M V とした。この場合、S i 単結晶薄膜への¹⁰ B e²⁺と¹⁰ B²⁺のエネ ルギーE₀は2.44 MeVとなる。S i 単結晶薄膜の膜の面は(100)面であり、 同結晶薄膜のサイズは4.8×4.8mm、厚みは2µmのものを用いた。角度調節は2 軸回転のゴニオメーターで行った。角度の定義としては、[100]軸チャネリングが起 きるようなビーム軸と薄膜のなす角が直角になる時を = =0°とした。S i 単結晶薄 膜の非チャネリング状態は、 =8。5°、 =5°とした。表2に結晶薄膜をチャネリ ング状態とした本発明の場合の結果と、結晶薄膜をチャネリング状態としない比較例の場 合の結果とを示す。

(23)

【表2】

[0139]

10

	チャネリング状態 (本発明)	非チャネリング状態 (比較例)
使用結晶薄膜種別	Si単結晶薄膜2µ m厚	
¹⁰ Be/ ¹⁰ B比	$(3\pm 1) \times 10^{-3}$	$(4\pm 4) \times 10^{-4}$
結晶薄膜−電離箱の透過率	26%	1%
エネルギー分離比[(E _{Be} -E _B)/E ₀]	12%	16%
同位体分別性能	320	16

[0140]

イオンビームの発散角は、内径1mmのピンホールで0.06°(1mrad)未満に 制限される。この角度は、2.44MeVでの¹⁰Be²⁺と¹⁰B²⁺の臨界角0.5°よりも 小さいため、イオンのほとんどがチャネリング可能となる。電離箱の位置は中心軸から偏 向方向に30mmずらした。電離箱入射窓は、厚さ50nmのSi₃N₄膜とした。Si膜 への¹⁰Beと¹⁰Bの入射比¹⁰Be / ¹⁰Bは7×10-⁵であった。

【0141】

静電偏向器への電圧 V₀に対する規格化計数の変化を図15に示す。(a)のチャネリ ング状態では、荷電分布の構造が出現しており、特に V₀=2.5 k Vで、¹⁰ Bの抑制、¹ ⁰ B e の増加が見られる。(b)の非チャネリング状態では、荷電分布の構造ははっきり しない。(c)は¹⁰ B e / ¹⁰ B 比の V₀依存性である。チャネリング状態では V₀=2.5 k V で最大3×10³に達する。この値は、非チャネリング状態の一桁程度高い。これら は、チャネリング条件では、前に述べた所期の二つの効果による。

【0142】

同重体分別性能の比較が表2に示されている。単結晶薄膜から電離箱への透過率は、チャネリング状態において非チャネリング状態よりも一桁以上高い。エネルギー分離比は、両者の差は小さい。その透過率とエネルギー分離比の積を同重体分別性能と置くと、その値はチャネリング状態において非チャネリング状態よりも格段に高い。以上、チャネリングを利用した本発明に係るフィルター機器600の優位性が実証された。

【0143】

以上、本発明に係るイオンビーム機能性透過膜、イオンビーム機能性透過膜を用いたビ ームライン機器、イオンビーム機能性透過膜を用いたフィルター機器、フィルター機器の 調整方法は、イオンビーム機能性透過膜におけるチャネル軸がイオンビームの進行方向と 実質的に平行となるように調整されており、イオンビームの透過率を高めることが可能と なり、エミッタンスの改善を図ることができる。 【産業上の利用性】 30

(24)

 $\begin{bmatrix} 0 & 1 & 4 & 4 \end{bmatrix}$

従来、ビームライン機器等においては、イオンビームの透過率が高いイオンビーム機能 性透過膜が求められていたが、そのようなイオンビーム機能性透過膜が開発されておらず 、機器の小型化の阻害要因等になり問題であった。これに対して、本発明に係るイオンビ ーム機能性透過膜は、一方向に進行するイオンビームが通過するビームライン機器に用い られ、チャネルを有するイオンビーム機能性透過膜であって、チャネル軸が、前記イオン ビームの進行方向と実質的に平行であるので、イオンビームの透過率を高めることが可能 となると共に、エミッタンスの改善を図ることができるため、産業上の利用性が非常に大 きい。

- 【符号の説明】
- 【0145】
- 3 ・・・ビーム収束レンズ 4 ・・・真空容器
- 5 ・・・ターミナル
- 10・・・タンデム型加速器
- 11・・・荷電ストリッパー
- 12・・・真空フランジ
- 30・・・ポストストリッパー
- 50・・・ディグレーダー
- 7 0 ・・・電離箱
- 71・・・ディグレーダーウィンドウ
- 210・・・マルチ薄膜システム
- 2 1 1 ・・・フレーム
- 212・・・薄膜
- 213・・・薄膜アセンブリ
- 214・・・マルチ薄膜ホルダ
- 215・・・マルチ薄膜用位置決めステージ
- 230・・・基台部
- 231・・・第1軸
- 232・・・第2軸
- 2 3 5 ・・・枠体
- 320・・・シングル薄膜システム
- 321・・・シングル薄膜ホルダ
- 3 2 2 ・・・シングル薄膜用位置決めステージ 3 3 0 ・・・基台部 3 3 1 ・・・第 1 軸
- 3 3 2 ・・・第 2 軸
- 335・・・枠体
- 500 · · · 小型 A M S システム
- 510・・・負イオン源
- 520・・・入射電磁石
- 560・・・分析電磁石
- 565・・・安定核種検出器
- 570・・・エネルギー分析器
- 580・・・測定目的核種検出器
- 600・・・フィルター機器
- 6 0 4 ・・・真空容器
- 610・・・マルチ薄膜システム
- 611・・・フレーム
- 612・・・薄膜

10

20

10

613・・・薄膜アセンブリ 614・・・マルチ薄膜ホルダ 615・・・マルチ薄膜用位置決めステージ 630・・・基台部 631・・・第1軸 632・・・第2軸 635・・・枠体 640・・・基台部 645・・・ファラデーカップ 646・・・ファラデーカップ支持部材 650 ・・・フィルター機器制御装置 655···電流計測部 660・・・演算部 670 · · · × y 調整機構制御部 671 · · · 第1軸回転制御部 672 · · · 第2軸回転制御部 673・・・ホルダ回転制御部 680···变位機構制御部

【図1】

【図8】

【図6】

【図9】

【図10】

(27)

【図13】

【図14】

【図15】

【図16】

静電偏向器への電圧V_bに対する規格化計数の変化. ¹⁰Beの計数は5000倍拡大.(c)のプロットの中塗りはチャネリング状態,白抜きは非チャネリング状態を示す.

【手続補正書】 【提出日】平成30年9月27日(2018.9.27) 【手続補正1】 【補正対象書類名】特許請求の範囲 【補正対象項目名】全文 【補正方法】変更 【補正の内容】 【特許請求の範囲】 【請求項1】 一方向に進行するイオンビームが通過するビームライン機器に用いられ、チャネルを有し 、入射イオンの荷電分布が平衡状態を保つことができる厚みを有するイオンビーム機能性 透過膜であって、 チャネル軸が、前記イオンビームの進行方向と実質的に平行であることを特徴とするイオ ンビーム機能性透過膜。 【請求項2】 前記イオンビーム機能性透過膜が結晶であることを特徴とする請求項1に記載のイオンビ - ム機能性透過膜。 【請求項3】 前記イオンビーム機能性透過膜が、空洞が形成されたポーラス物質であることを特徴とす る請求項1に記載のイオンビーム機能性透過膜。 【請求項4】 イオンビームが内部を通過する真空容器と、 チャネルを有し、入射イオンの荷電分布が平衡状態を保つことができる厚みを有する前記 真空容器内に配されるイオンビーム機能性透過膜と、

前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を

30

(29)

調整する位置決めステージと、を有し、

前記位置決めステージによって、イオンビームのビームライン中に前記イオンビーム機能 性透過膜が配されように、かつ、前記イオンビーム機能性透過膜のチャネル軸が、前記イ オンビームの進行方向と実質的に平行となるように調整されることを特徴とするビームラ イン機器。

【請求項5】

前記イオンビーム機能性透過膜が結晶であり、前記位置決めステージによって、前記結晶 における結晶軸が前記イオンビームの進行方向と実質的に平行となるように調整すること で、チャネル軸を前記イオンビームの進行方向と実質的に平行とすることを特徴とする請 求項4に記載のビームライン機器。

【請求項6】

前記結晶が単結晶であることを特徴とする請求項5に記載のビームライン機器。

【請求項7】

前記イオンビーム機能性透過膜が、空洞が形成されたポーラス物質からなる薄膜であることを特徴とする請求項4に記載のビームライン機器。

【請求項8】

ビームライン機器が加速器であることを特徴とする請求項4乃至請求項7のいずれか1項 に記載のビームライン機器。

【請求項9】

ビームライン機器がストリッパーであることを特徴とする請求項 4 乃至請求項 7 のいずれ か 1 項に記載のビームライン機器。

【請求項10】

ビームライン機器がディグレーダーであることを特徴とする請求項4乃至請求項7のいず れか1項に記載のビームライン機器。

【請求項11】

ビームライン機器が電離箱であることを特徴とする請求項4乃至請求項7のいずれか1項 に記載のビームライン機器。

【請求項12】

- 真空容器内で進行するイオンビームに含まれる不要分子を除去するフィルター機器であって、
- チャネルを有し、入射イオンの荷電分布が平衡状態を保つことができる厚みを有する前記 真空容器内に配されるイオンビーム機能性透過膜と、
- 前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を 調整する位置決めステージと、を有し、
- 前記位置決めステージによって、イオンビームのビームライン中に前記イオンビーム機能 性透過膜が配されように、かつ、前記イオンビーム機能性透過膜のチャネル軸が、前記イ オンビームの進行方向と実質的に平行となるように調整されることを特徴とするフィルタ ー機器。

【請求項13】

前記イオンビーム機能性透過膜が結晶であり、前記位置決めステージによって、前記結晶 における結晶軸が前記イオンビームの進行方向と実質的に平行となるように調整すること で、チャネル軸を前記イオンビームの進行方向と実質的に平行とすることを特徴とする請 求項12に記載のフィルター機器。

【請求項14】

前記結晶が単結晶であることを特徴とする請求項13に記載のフィルター機器。

【請求項15】

前記イオンビーム機能性透過膜が、空洞が形成されたポーラス物質からなる薄膜であることを特徴とする請求項12に記載のフィルター機器。

【請求項16】

イオンビームが内部を通過する真空容器と、

50

10

20

30

チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、

前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を 調整する位置決めステージと、

前記位置決めステージの下流側に配され、イオンビームを補足するファラデーカップと、 前記ファラデーカップで補足されたイオンビームに基づく電流を計測する電流計測部と、 を有するフィルター機器の調整方法であって、

前記位置決めステージによってビームライン中に前記イオンビーム機能性透過膜が配され ようにし、前記電流計測部で計測される電流が最大となるように前記位置決めステージの 姿勢を調整するステップと、を有することを特徴とするフィルター機器の調整方法。 【請求項17】

イオンビームが内部を通過する真空容器と、

チャネルを有し、前記真空容器内に配されるイオンビーム機能性透過膜と、

前記イオンビーム機能性透過膜が取り付けられ、前記イオンビーム機能性透過膜の姿勢を 調整する位置決めステージと、

前記位置決めステージの下流側に配され、イオンビームを補足するファラデーカップと、 前記ファラデーカップで補足されたイオンビームに基づく電流を計測する電流計測部と、 を有するフィルター機器の調整方法であって、

前記位置決めステージにおける前記イオンビーム機能性透過膜が配されていない位置に、 イオンビームが通過するように配し、前記電流計測部で計測される電流が最大となるよう に前記位置決めステージの姿勢を調整する第1ステップと、

20

10

前記第1ステップの後、前記位置決めステージによってビームライン中に前記イオンビーム機能性透過膜が配されようにし、前記電流計測部で計測される電流が最大となるように前記位置決めステージの姿勢を調整する第2ステップと、を有することを特徴とするフィルター機器の調整方法。

【請求項18】

前記第2ステップの後、前記ファラデーカップをビームラインから外す第3ステップを有 することを特徴とする請求項13に記載のフィルター機器の調整方法。

【国際調査報告】

	INTERNATIONAL SEARCH REPORT		International appli	ication No.			
		PCT/JP2018/009288					
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl. G21K1/14(2006.01)i, G01T1/185(2006.01)i, G21K1/00(2006.01)i, H01J37/18(2006.01)i, H05H5/06(2006.01)i							
According to Int	ernational Patent Classification (IPC) or to both nationa	l classification and	IPC				
B. FIELDS SE	ARCHED						
Minimum docum Int.Cl. G	nentation searched (classification system followed by cl 21K1/14, G01T1/185, G21K1/00, H	assification symbol 101J37/18,	s) H05H5/06				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched published examined utility model applications of Japan 1922-1Published unexamined utility model applications of Japan 1971-2Registered utility model specifications of Japan 1996-2Published registered utility model applications of Japan 1994-2							
JSTPlus	s(JDreamIII), JPoss						
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT			1			
Category*	Citation of document, with indication, where ap	propriate, of the re	levant passages	Relevant to claim No.			
X A	JP 6086587 B1 (JAPAN ATOMIC ENERGY AGENCY) 01 1-2, 4-6, 8-14 March 2017, paragraphs [0027]-[0060], fig. 1-6 3, 7, 15-18 (Family: none) 3, 7, 15-18						
A	JP 55-39694 A (HUGHES AIRCRAFT COMPANY) 19 March 1-18 1980, all drawings, all drawings & US 4158141 A & EP 6701 A1						
Further do	cuments are listed in the continuation of Box C.	See patent	family annex.				
* Special cate "A" document d to be of part "E" earlier appli- filing date	gories of cited documents: efining the general state of the art which is not considered icular relevance cation or patent but published on or after the international	"T" later documer date and not the principle "X" document of considered r	nt published after the int n conflict with the applic or theory underlying the is particular relevance; the ovel or cannot be consi	ernational filing date or priority ation but cited to understand invention claimed invention cannot be dered to involve an inventive			
"L" document w cited to esta special rease "O" document re "P" document p	which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other on (as specified) ferring to an oral disclosure, use, exhibition or other means ablished prior to the international filing date but later than	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
the priority date claimed "&" document member of the same patent family							
Date of the actual 11.05.2	l completion of the international search 2018	Date of mailing of 22.05.	of the international sea 2018	rch report			
Name and mailin Japan 1 3-4-3, Tokyo	g address of the ISA/ Patent Office Kasumigaseki, Chiyoda-ku, 100-8915, Japan	Authorized office Telephone No.	P				
	A (accord shoot) (Iconvery 2015)	1					

Form PCT/ISA/210 (second sheet) (January 2015)

	INTERNATIONAL SEARCH REPORT	International appli	ication No.	
		PCT/JP20	2018/009288	
C (Continuation).	DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.	
А	JP 8-83741 A (NIKON CORPORATION) 26 March paragraphs [0008]-[0014], fig. 1-3 (Family: none)	n 1996,	1-18	
A	WO 2016/167307 A1 (KANEKA CORPORATION) 20 2016, paragraphs [0040]-[0048], fig. 1-3 (Family: none)) October	1-18	
Α	JP 11-38195 A (RIKEN) 12 February 1999, o text, all drawings (Family: none)	entire	1-18	

	国際調査報告	国際出顧番号 PCT/JP2018/009288					
A. 発明の属する分野の分類(国際特許分類(IPC)) Imt.Cl. G21K1/14(2006,01)i, G01T1/185(2006.01)i, G21K1/00(2006.01)i, H01J37/18(2006.01)i, H05H5/06(2006.01)i							
B. 調査 を行	行った分野						
調査を行った最 Int.Cl. G	調査を行った最小限資料(国際特許分類(IPC)) Imt.Cl. G21K1/14, G01T1/185, G21K1/00, H01J37/18, H05H5/06						
最小限資料以外 日本国実用 日本国公開 日本国公開 日本国実用 日本国登録	最小限資料以外の資料で調査を行った分野に含まれるもの日本国実用新案公報1922-1996年日本国公開実用新案公報1971-2018年日本国実用新案登録公報1996-2018年日本国登録実用新案公報1994-2018年						
国際調査で使用 JSTPlus(J	引した電子データベース(データベースの名称、 DreamIII), JPoss	調査に使用した用語)					
C. 関連する	ると認められる文献						
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求項の番号				
x	JP 6086587 B1 (国立研究開発法人日本原子力研究開発機構)1-2、2017.03.01,第[0027]-[0060] 段落および第1-6図4-6、(ファミリーなし)8-14						
A	JP 55-39694 A (ヒューズ・エアクラフト・カンパニー) 3、7、 15-18 1-18						
	1980.03.19, 全図および全図 & US 4158141 A & EP 6701 A1						
○ C欄の続き ○	きにも文献が列挙されている。	パテントファミリーに関する別	紙を参照。				
 * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す もの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願目前で、かつ優先権の主張の基礎となる出願 の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって、 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献 							
国際調査を完了	国際調査を完了した日 国際調査報告の発送日 11.05.2018 22.05.2018						
国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 2G 4455 日本国特許庁(ISA/JP) 藤本 加代子 郵便番号100-8915 電話番号 03-3581-1101 内線 3226							

様式PCT/ISA/210 (第2ページ) (2015年1月)

	国際調査報告	国際出願番号 PCT/JP20:	18/009288		
C(続き).	関連すると認められる文献				
引用文献の カテゴリー *	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求項の番号		
A	JP 8-83741 A (株式会社ニコン) 1996.03.26, 第[0008]-[001・ (ファミリーなし)	4] 段落および第1 – 3 図	1 - 1 8		
A	WO 2016/167307 A1 (株式会社カネカ) 2016.10.20, 第[OO4O]-[OO4 (ファミリーなし)	8]段落および第1-3図	1-18		
A	JP 11-38195 A(理化学研究所) 1999.02.12, 全文および全図 (ファミリーなし)		1-18		

様式PCT/ISA/210(第2ページの続き)(2015年1月)

フロントページの続き

(51)Int.Cl.			FΙ			テーマコード(参考)
H 0 1 J	37/04	(2006.01)	H 0 1 J	37/04	А	

(81)指定国 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,T
 J,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,R
 O,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,
 BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,G
 T,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX
 ,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,
 TN,TR,TT

(72)発明者 藤田 奈津子

岐阜県土岐市泉町定林寺959番地の31 国立研究開発法人日本原子力研究開発機構 東濃地科 学センター内

(72)発明者 松原 章浩 岐阜県土岐市土岐口南町3-25 株式会社ペスコ内

F ターム(参考) 2G085 AA01 BA14 BA15 BA17 BE04 BE05 DA03 2G188 CC01 CC40

5C030 AA02 AA10 AB05 5C034 AA09 AB09

(注)この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。なおこの公表に 係る日本語特許出願(日本語実用新案登録出願)の国際公開の効果は、特許法第184条の10第1項(実用新案法 第48条の13第2項)により生ずるものであり、本掲載とは関係ありません。