(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

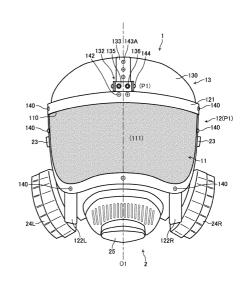
特開2021-31816 (P2021-31816A)

(43) 公開日 令和3年3月1日(2021.3.1)

(51) Int.Cl.			F 1			テーマコード (参考)
A41D	13/11	(2006.01)	A 4 1 D	13/11	L	2E185
A62B	18/08	(2006.01)	A 6 2 B	18/08	В	
B23K	9/32	(2006.01)	B 2 3 K	9/32	В	

審査請求 未請求 請求項の数 6 〇L (全 15 頁)

		番貨請氷	未請求 請求頃の数 6 O L (全 15 貝)
(21) 出願番号 (22) 出願日	特願2019-156319 (P2019-156319) 令和1年8月29日 (2019.8.29)	(71) 出願人	505374783 国立研究開発法人日本原子力研究開発機構 茨城県那珂郡東海村大字舟石川765番地 1
		(71) 出願人	301074388 株式会社 サンルックス 福井県鯖江市丸山町3丁目5番25号
		(74)代理人	100214260 弁理士 相羽 昌孝
		(74)代理人	100139114 弁理士 田中 貞嗣
		(74)代理人	100139103 弁理士 小山 卓志
		(74) 代理人	100119220 弁理士 片寄 武彦
			最終頁に続く


(54) 【発明の名称】 遮光具

(57)【要約】

【課題】全面マスクを着用した着用者の作業性を低下させることなく、着用者の眼を適切に保護することができる遮光具を提供する。

【解決手段】遮光具1は、着用者の両眼を覆うアイピース21を有する全面マスク2に対して着脱自在に取り付けられる。遮光具1は、所定の波長の光を遮光する遮光レンズ11の周縁110を保持するフレーム部12と、アイピース21の周縁211に対して着脱自在に取り付けられるとともに、遮光レンズ11がアイピース21の前面211を覆うように配置される遮光位置P1と、遮光レンズ11がアイピース21の前面211を覆わないように配置される非遮光位置P2との間で移動可能にフレーム部12を支持する支持部13と、を備える。

【選択図】図2

【特許請求の範囲】

【請求項1】

少なくとも着用者の両眼を覆うアイピースを有する全面マスクに対して着脱自在に取り付けられる遮光具であって、

所定の波長の光を遮光する遮光レンズと、

前記遮光レンズの周縁を保持するフレーム部と、

前記アイピースの周縁に対して着脱自在に取り付けられるとともに、前記遮光レンズが前記アイピースの前面を覆うように配置される遮光位置と、前記遮光レンズが前記アイピースの前面を覆わないように配置される非遮光位置との間で移動可能に前記フレーム部を支持する支持部と、を備える、

ことを特徴とする遮光具。

【請求項2】

前記支持部は、

前記アイピースの前面及び周縁に沿うようにして、前記アイピースの上部に配置される支持ベース部と、

前記支持ベース部の上側及び左右両側に設けられ、前記アイピースの周縁に着脱自在に取り付けられる複数のマスク取付部と、

前記支持ベース部の左右の中心線上に設けられ、前記支持ベース部の左右方向に平行な回転軸に対して回動可能に前記フレーム部を支持するフレーム支持機構部と、を備える

ことを特徴とする請求項1に記載の遮光具。

【請求項3】

前記フレーム支持機構部は、

前記回転軸に沿って軸方向が配置されるように、前記支持ベース部に固定される正多角柱状部材と、

前記回転軸に対して回動可能な状態で前記正多角柱状部材に取り付けられるとともに、前記フレーム部に固定される回動部材と、

前記正多角柱状部材の側面を押圧するように、前記回動部材に取り付けられる押圧部材とを備え、

前記回動部材は、

前記回動部材を前記回転軸に対して回動させる方向の力であって、前記押圧部材の押圧力よりも大きな外力が作用したとき、前記正多角柱状部材において隣接する前記側面間を跨ぐようにして回動する、

ことを特徴とする請求項2に記載の遮光具。

【請求項4】

前記フレーム部は、

前記遮光レンズの周縁に沿って、前記遮光レンズの前面側及び後面側のうち一方側に 配置されるフレームベース部と、

前記一方側とは反対側である他方側に配置されて、前記フレームベース部との間で前記遮光レンズの周縁を挟持することにより前記遮光レンズを交換可能に保持するレンズ押さえ部とを備える、

ことを特徴とする請求項1乃至請求項3のいずれか一項に記載の遮光具。

【請求項5】

前記フレーム部は、

前記フレーム部の下部に対して前記フレーム部の左右方向に所定の間隔をあけて配置され、前記フレーム部から下方に延びるように延設された把持部を備える、

ことを特徴とする請求項1乃至請求項4のいずれか一項に記載の遮光具。

【請求項6】

前記遮光レンズは、

透光性の熱硬化性樹脂に対して、分散剤を用いてイカ墨、赤外線カット剤及び紫外線

10

20

_

30

40

カット剤が分散された樹脂組成物からなり、

前記樹脂組成物は、前記熱硬化性樹脂のモノマー100質量部に対して、

前記イカ墨の含有量は、1.34質量部以上であり、

前記赤外線カット剤の含有量は、1.12~3.36質量部の範囲内であり、

前記紫外線カット剤の含有量は、0.28~3.36質量部の範囲内であり、

前記分散剤の含有量は、5.6~11.2質量部の範囲内である、

ことを特徴とする請求項1乃至請求項5のいずれか一項に記載の遮光具。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、少なくとも着用者の両眼を覆うアイピースを有する全面マスクに対して着脱自在に取り付けられる遮光具に関する。

【背景技術】

[0002]

従来、作業者が、人体に悪影響を与える濃度又はレベルの放射性粒子状物質、粉塵、ミスト、有毒ガス等が含まれる作業環境で作業を行う場合、作業者の呼吸保護具として、全面マスクが使用されている(例えば、特許文献 1 参照)。

[0003]

また、作業者が、溶接作業、溶断作業等の火気作業、アーク灯、水銀灯、赤外線灯等を用いた作業、原子力発電施設、高炉や加熱炉等での作業を行う場合、当該作業において発生する赤外線、紫外線及び強烈な可視光線等から作業者の眼を保護するため、遮光レンズを備えた保護面が使用されている(例えば、特許文献2参照)。

【先行技術文献】

【特許文献】

[0004]

【特許文献1】特開2002-119607号公報

【特許文献2】特開2015-223597号公報

【発明の概要】

【発明が解決しようとする課題】

[00005]

しかし、作業者が、特許文献1に開示された全面マスクを着用し、赤外線、紫外線及び強烈な可視光線等に曝露されるような上記作業を行う場合、特許文献2に開示された保護面を片手に持ちながら作業を行うことになるため、作業性が低下するという問題点があった。また、例えば、解体作業のように、狭隘な場所で上記作業を行う場合には、特許文献2に開示された保護面では、作業者の動作(移動や作業)が制限されるため、作業性が低下するという問題点があった。

[0006]

本発明は、このような事情に鑑みてなされたものであって、全面マスクを着用した着用者の作業性を低下させることなく、着用者の眼を適切に保護することができる遮光具を提供することを目的とする。

【課題を解決するための手段】

[0007]

本発明の一実施形態に係る遮光具は、

少なくとも着用者の両眼を覆うアイピースを有する全面マスクに対して着脱自在に取り付けられる遮光具であって、

所定の波長の光を遮光する遮光レンズと、

前記遮光レンズの周縁を保持するフレーム部と、

前記アイピースの周縁に対して着脱自在に取り付けられるとともに、前記遮光レンズが前記アイピースの前面を覆うように配置される遮光位置と、前記遮光レンズが前記アイピースの前面を覆わないように配置される非遮光位置との間で移動可能に前記フレーム部を

10

20

30

40

支持する支持部と、を備える。

【発明の効果】

[00008]

本発明の一実施形態に係る遮光具によれば、支持部が、アイピースの周縁に対して着脱自在に取り付けられるとともに、遮光レンズがアイピースの前面を覆うように配置される 遮光位置と、遮光レンズがアイピースの前面を覆わないように配置される非遮光位置との 間で移動可能にフレーム部を支持する。

[0009]

したがって、遮光具は、全面マスクに対して取り付けられた状態で、遮光位置と、非遮 光位置との間で移動させることができるので、全面マスクを着用した着用者の作業性を低 下させることなく、着用者の眼を適切に保護することができる。

【図面の簡単な説明】

[0010]

【図1】本発明の実施形態に係る遮光具1及び全面マスク2の一例を示し、(a)は遮光 具1が全面マスク2に装着されていない状態の斜視図、(b)は遮光具1が全面マスク2 に装着された状態の斜視図である。

【図2】本発明の実施形態に係る遮光具1の一例を示し、遮光位置P1における遮光具1の正面図である。

【図3】本発明の実施形態に係る遮光具1の一例を示し、遮光位置P1における遮光具1の側面図である。

【図4】本発明の実施形態に係る遮光具1の一例を示し、非遮光位置 P 2 における遮光具 1の正面図である。

【図5】本発明の実施形態に係る遮光具1の一例を示し、非遮光位置P2における遮光具1の側面図である。

【図6】本発明の実施形態に係る遮光レンズ11及びフレーム部12の一例を示し、(a)は遮光レンズ11の正面図、(b)はフレームベース部120の正面図、(c)はレンズ押さえ部121の正面図である。

【図7】本発明の実施形態に係る支持部13の一例を示し、(a)は支持部13の正面図、(b)は支持部13の平面図、(c)は支持部13の側面図である。

【図8】本発明の実施形態に係るフレーム支持機構部132の一例を示し、(a)はフレーム支持機構部132の斜視図、(b)はフレーム支持機構部132の断面図である。

【図9】本発明の実施形態に係る遮光レンズ11を形成する樹脂組成物の調合比率を示す図である。

【発明を実施するための形態】

[0011]

以下、本発明の一実施形態に係る遮光具1について、添付図面を参照しながら説明する

[0012]

図1は、本発明の実施形態に係る遮光具1及び全面マスク2の一例を示し、(a)は遮光具1が全面マスク2に装着されていない状態の斜視図、(b)は遮光具1が全面マスク2に装着された状態の斜視図である。図2は、遮光位置P1における遮光具1の正面図、図3は、遮光位置P1における遮光具1の側面図、図4は、非遮光位置P2における遮光具1の正面図、図5は、非遮光位置P2における遮光具1の側面図である。

[0013]

図6(a)は、遮光レンズ11の正面図、図6(b)は、フレームベース部120の正面図、図6(c)は、レンズ押さえ部121の正面図である。図7(a)は、支持部13の正面図、図7(b)は、支持部13の平面図、図7(c)は、支持部13の側面図である。図8(a)は、フレーム支持機構部132の斜視図、図8(b)は、フレーム支持機構部132の断面図である。

[0014]

10

20

30

40

20

30

40

50

遮光具1は、図1に示すように、少なくとも着用者の両眼を覆うアイピース21を有する全面マスク2に対して着脱自在に取り付けられる。遮光具1は、例えば、溶接作業、溶断作業等の火気作業、アーク灯、水銀灯、赤外線灯等を用いた作業、原子力発電施設、高炉や加熱炉等での作業を行う場合に、当該作業において発生する赤外線、紫外線及び強烈な可視光線等から作業者の眼を保護するために使用される。

[0015]

全面マスク2は、所謂、フルフェイス型と呼ばれるマスクである。全面マスク2は、上記各種の作業が行われる作業雰囲気に、人体に悪影響を与える濃度又はレベルの放射性粒子状物質、粉塵、ミスト、有毒ガス等が含まれる場合に、呼吸保護具として使用される。なお、全面マスク2は、例えば、送気マスクや自動式呼吸器等として使用されものでよい

[0016]

全面マスク2は、その具体的な構成として、アイピース21の他に、可撓性材料で形成され、アイピース21の周縁210に沿って取り付けられた面体22と、面体22と一体的に形成され、全面マスク2を着用者の頭部に固定する着用バンド23と、着用者の吸気を供給する左右一対の吸気装置24L、24Rと、着用者の呼気を排気する排気装置25とを備える。

[0017]

アイピース21は、透明で硬質な合成樹脂により、着用者の視界を確保する広さを有するとともに、顔面の形状に合わせて曲面状に形成されている。なお、本実施形態では、アイピース21は、1眼式であるが、2眼式でもよい。

[0018]

面体22は、アイピース21の周縁210を覆い、アイピース21を気密状態に固定する枠状の目枠220を備える。吸気装置24L、24Rは、有毒なガスや粉塵等を除去するフィルタ(不図示)等を備える。排気装置25は、外部の空気が全面マスク2の内部に流入することを防止する逆止弁(不図示)等を備える。

[0019]

遮光具1は、所定の波長の光を遮光する遮光レンズ11と、遮光レンズ11の周縁110を保持するフレーム部12と、アイピース21の周縁210に対して着脱自在に取り付けられるとともに、遮光レンズ11がアイピース21の前面211を覆うように配置される遮光位置P1(図2、図3参照)と、遮光レンズ11がアイピース21の前面211を覆わないように配置される非遮光位置P2(図4、図5参照)との間で移動可能にフレーム部12を支持する支持部13とを備える。

[0020]

遮光位置 P 1 は、図 2 、図 3 に示すように、フレーム部 1 2 が、アイピース 2 1 の前方に配置される位置であり、着用者は、遮光レンズ 1 1 を介して周囲の状況を視認する。一方、非遮光位置 P 2 は、図 4 、図 5 に示すように、フレーム部 1 2 が、アイピース 2 1 の上方に跳ね上げられるように配置される位置であり、着用者は、遮光レンズ 1 1 を介さずに、周囲の状況を視認する。

[0021]

遮光レンズ11は、所定の波長の光として、例えば、赤外線、紫外線、可視光線を遮光する特性を有する合成樹脂により形成されている。なお、遮光レンズ11の詳細は後述する。

[0022]

遮光レンズ11は、アイピース21と同程度の幅を有し、フレーム部12が遮光位置P1に配置されたとき、アイピース21の下側2/3程度を覆うとともに、アイピース21の前面211に沿うように、アイピース21の曲率と同程度の曲率を有する曲面状に形成されている。

[0023]

フレーム部12は、例えば、ステンレスやアルミニウム等の金属材料を用いて、板状に

形成されるとともに、全面マスク2の外形に沿うように湾曲されている。

[0024]

フレーム部12は、その具体的な構成として、遮光レンズ11の周縁110に沿って、遮光レンズ11の前面111側及び後面112側のうち一方側に配置されるフレームベース部120と、一方側とは反対側である他方側に配置されて、フレームベース部120との間で遮光レンズ11の周縁110を挟持することにより遮光レンズ11を交換可能に保持するレンズ押さえ部121と、フレーム部12の下部に対してフレーム部12の左右方向に所定の間隔をあけて配置され、フレーム部12から下方に延びるように延設された左右一対の把持部1221に、122Rとを備える。

[0025]

本実施形態では、フレームベース部 1 2 0 は、後面 1 1 2 側に配置され、レンズ押さえ部 1 2 1 は、前面 1 1 1 側に配置され、把持部 1 2 2 L 、 1 2 2 R は、フレームベース部 1 2 0 に一体的に形成されている。

[0026]

フレームベース部120は、図6(b)に示すように、遮光レンズ11の周縁110よりも一回り小さく形成された開口部120aと、複数のネジ孔120bとを有する。レンズ押さえ部121は、図6(c)に示すように、遮光レンズ11の周縁110よりも一回り小さく形成された開口部121aと、複数のネジ孔121bとを有する。

[0027]

フレームベース部120と、レンズ押さえ部121とは、それぞれの開口部120a及び開口部121aを塞ぐように、遮光レンズ11を挟持し、ネジ孔120b及びネジ孔121bにレンズ固定ネジ140を挿通し、締め付け固定することにより、フレーム部12に遮光レンズ11が装着される。したがって、遮光レンズ11が、破損したり汚れたりした場合には、レンズ固定ネジ140を取り外すことで、遮光レンズ11の交換が可能となる。

[0028]

把持部122 L、122 Rは、着用者が、例えば、作業用の手袋をした状態で把持可能に構成される。フレーム部12が遮光位置 P1に配置されたとき、左側の把持部122 Lは、左側の吸気装置24 Lと排気装置25 との間に配置され、右側の把持部122 Rは、右側の吸気装置24 Rと排気装置25 との間に配置される。

[0029]

支持部13は、例えば、ステンレスやアルミニウム等の金属材料を用いて、板状に形成されるとともに、全面マスク2の外形に沿うように湾曲されている。

[0030]

支持部13は、その具体的な構成として、図7、図8に示すように、アイピース21の前面211及び周縁210に沿うようにして、アイピース21の上部に配置される支持ベース部130と、支持ベース部130の上側及び左右両側に設けられ、アイピース21の周縁210に着脱自在に取り付けられる複数のマスク取付部131と、支持ベース部130の左右の中心線01上に設けられ、支持ベース部130の左右方向に平行な回転軸02に対して回動可能にフレーム部12を支持するフレーム支持機構部132とを備える。なお、本実施形態では、支持部13は、上側に1つと、左右両側に1つずつの計3つのマスク取付部131を備える。

[0031]

支持ベース部130は、アイピース21と同程度の幅を有し、フレーム部12が遮光位置 P 1 に配置されたとき、着用者の視界を遮らないように、アイピース21の上側1/3程度を覆うとともに、アイピース21の前面211に沿うように、アイピース21の曲率と同程度の曲率を有する曲面状に形成されている。

[0032]

マスク取付部131は、目枠220の形状に合わせて、例えば、折り曲げ加工等によりフック状に形成されるとともに、ネジ孔131aを有する。マスク取付部131は、目枠

10

20

30

40

20

30

40

50

2 2 0 に引っ掛けられた状態で、ネジ孔 1 3 1 a に遮光具固定ネジ 1 4 1 を挿通し、締め付け固定することにより、全面マスク 2 の目枠 2 2 0 にマスク取付部 1 3 1 が取り付けられる。したがって、遮光具 1 及び全面マスク 2 のいずれかを交換する場合には、遮光具固定ネジ 1 4 1 を取り外すことで、交換が可能となる。

[0033]

フレーム支持機構部 1 3 2 は、回転軸 O 2 に沿って軸方向が配置されるように、支持ベース部 1 3 0 にブラケット 1 3 3 を介して固定される正多角柱状部材 1 3 4 と、回転軸 O 2 に対して回動可能な状態で正多角柱状部材 1 3 4 に取り付けられるとともに、フレーム部 1 2 に固定される回動部材 1 3 5 と、正多角柱状部材 1 3 4 の側面 1 3 4 a を押圧するように、回動部材 1 3 5 の押圧部材取付孔 1 3 5 a に取り付けられる押圧部材 1 3 6 とを備える。

[0034]

ブラケット133は、く字状に折り曲げられて、上側に設けられたマスク取付部131と一体的に形成されている。ブラケット133のネジ孔133aは、ブラケット固定ネジ143Aにより支持ベース部130に固定される。

[0035]

正多角柱状部材134は、その底面及び断面の形状が正多角形である。なお、本実施形態では、正多角柱状部材134は、正六角柱状の部材であるが、例えば、正八角柱状の部材のように、任意の正多角柱状の部材を用いてもよい。

[0036]

正多角柱状部材134は、矩形状の6つの側面134aを有するとともに、左右両側の底面に対して軸方向に沿って形成されたネジ孔134bを有する。正多角柱状部材134は、ブラケット固定ネジ143Bによりブラケット133に固定される。

[0037]

回動部材135は、左右両側がL字状に折り曲げられた部分に貫通孔135bを有し、 貫通孔135bに回動部材固定ネジ144を挿通し、正多角柱状部材134のネジ孔13 4bに固定することで、回転軸O2に対して回動可能な状態で正多角柱状部材134に取り付けられる。回動部材135のネジ孔135cは、フレーム固定ネジ142によりフレーム部12(フレームベース部120のネジ孔120c及びレンズ押さえ部121のネジ孔121c)に固定される。

[0038]

押圧部材136は、例えば、左右方向に並べて配置された2つのプランジャで構成され、内部にボール部材136aと、ボール部材136aを押圧するコイルばね136bとを備える。押圧部材136は、正多角柱状部材134の径方向内側に向かって、正多角柱状部材134の側面134aを押圧する。

[0039]

回動部材135を回転軸O2に対して回動させる方向の力であって、押圧部材136の押圧力よりも大きな外力Fが作用したとき、押圧部材136は、側面134a間に存在する角部134cを通過し、隣接する側面134aに移動することにより、回動部材135は、正多角柱状部材134において隣接する側面134a間を跨ぐようにして回動する。

[0040]

本実施形態では、正多角柱状部材134は、正六角柱状であるため、押圧部材136は、60度ずつ回動するものであり、遮光位置P1と、非遮光位置P2との間は、120度の角度差が生じるように構成される。

[0041]

(遮光レンズ 1 1)

遮光レンズ11は、基材としての透光性の熱硬化性樹脂に、分散剤を用いて、イカ墨、赤外線カット剤及び紫外線カット剤が分散された樹脂組成物により形成されている。

[0042]

熱硬化性樹脂は、それ自体が透明又は半透明であって、透光性を有する。熱硬化性樹脂

20

30

40

50

(8)

は、例えば、CR39(アリルジグリコールカーボネート)、エポキシ樹脂、ポリウレタン系樹脂等である。

[0043]

イカ墨は、イカから得られた黒褐色系の色素粒子を含む単分散顔料である。イカ墨は、可視領域における光を良好に遮蔽する(透過率の低い状態とする)。イカ墨は、アカイカ類や甲イカ類等から得た原料墨汁を精製することにより、平均粒径が約300nmで、粒径範囲が約100~500nmの単分散球形子として、色素含有量10~20wt%(重量パーセント)程度の濃縮液として得られたものである。なお、イカ墨は、濃縮されていなくてもよい。また、イカ墨は、最終的な遮光レンズにおいて、その濃度が10ppm以上となるようにするのが好ましい。

[0044]

赤外線カット剤は、赤外領域(780nm~2mm)の波長の光を遮蔽する材料として、例えば、スズ酸化インジウム(ITO)系材料、アンチモン酸化スズ(ATO)系材料、シアニン系材料、ジイモニウム系材料等が用いられる。赤外線カット剤は、粉末状の材料を用いてもよいし、液体状の材料を用いてもよい。

[0045]

紫外線カット剤は、紫外領域(100nm~400nm)の波長の光を遮蔽する材料として、例えば、ベンゾトリアゾール系材料、ベンゾフェノン系材料、トリアジン系材料等が用いられる。紫外線カット剤は、粉末状の材料を用いてもよいし、液体状の材料を用いてもよい。

[0046]

イカ墨は、難水溶性(不溶性)であり、色素の粒径が微小であることから、熱硬化性樹脂のモノマーに対して分散し難い特性を有する。また、赤外線カット剤及び紫外線カット剤として、液体状の材料を用いる場合には、イカ墨と同様に、熱硬化性樹脂のモノマーに対して分散 し難い特性を有する。そのため、熱硬化性樹脂のモノマーに対して分散剤を混合した状態で、イカ墨や、液体状の赤外線カット剤及び紫外線カット剤を投入することが好ましい。

[0047]

分散剤としては、高分子系顔料分散剤(例えば、味の素ファインテクノ株式会社製アジスパー)や、これを溶剤(例えば、メチルエチルケトン(MEK))に溶解したもの等が用いられる。分散剤を用いることで、遮光レンズの透明基材中で、イカ墨の色素が凝集したり沈殿したりすることを抑制し、均一な黒色で、一定の透過率を有する遮光レンズを製造することできる。また、分散剤を用いることで、熱硬化性樹脂のモノマーに対して液体状の赤外線カット剤及び紫外線カット剤を均一に分散させることができる。

[0048]

重合開始剤は、例えば、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート系の過酸化物である。

[0049]

樹脂組成物は、熱硬化性樹脂のモノマーに対して、イカ墨、赤外線カット剤、紫外線カット剤、分散剤及び重合開始剤等を調合することにより生成される。そして、樹脂組成物が、型枠となるモールドに注入され、熱硬化させることにより、遮光レンズ11が製造される。モールドの内部形状が、遮光レンズ11の最終形状に一致する場合には、モールドから離脱させることにより遮光レンズ11が完成し、そうでない場合には、さらに曲げ加工、切削加工、研磨加工等が付加的に行われることにより遮光レンズ11が完成する。

[0050]

図9は、本発明の実施形態に係る遮光レンズ11を形成する樹脂組成物の調合比率を示す図である。なお、以下では、熱硬化性樹脂の一例として、CR39を用いる場合について説明する。

[0051]

樹脂組成物の調合比率は、CR39モノマー、イカ墨、赤外線カット剤、紫外線カット

20

30

40

50

剤及び分散剤の合計含有量を100%(質量%)としたとき、各材料の調合比率は、図1に示すように、CR39モノマー89.2%、イカ墨1.3%、赤外線カット剤1.0%、紫外線カット剤0.5%、分散剤8.0%であることが好ましい。

[0052]

樹脂組成物の質量が合計 1 5 0 g になるように、上記の調合比率により調合したとき、各材料の含有量は、CR39モノマー133.8g、イカ墨1.95g、赤外線カット剤1.5g、紫外線カット剤0.75g、分散剤12gである。なお、重合開始剤は、18.9gである。各材料の含有量の好ましい範囲としては、例えば、イカ墨は1.8g以上、赤外線カット剤は1.5~4.5gの範囲内、紫外線カット剤は0.375~4.5gの範囲内、分散剤7.5~15gの範囲内である。

[0053]

また、 CR39EJマー100g(質量部)に対して、各材料の含有量は、イカ墨1.45g、赤外線カット剤1.12g、紫外線カット剤0.56g、分散剤8.9gである。なお、重合開始剤は、14.1gである。また、各材料の含有量の好ましい範囲としては、例えば、<math>CR39EJマー100g(質量部)に対して、イカ墨は1.34g以上、赤外線カット剤は1.12~3.36gの範囲内、紫外線カット剤は0.28~3.36gの範囲内、分散剤は5.6~11.2gの範囲内であることが好ましい。

[0054]

上記構成を有する遮光具1は、図1(a)に示す全面マスク2に装着されて使用される。具体的には、遮光具1の支持ベース部130が、図1(b)に示すように、全面マスク2のアイピース21の上側1/3程度を覆うように配置された状態で、複数のマスク取付部131(本実施形態では、3つ(図7参照))を、アイピース21の周縁210を覆う目枠220に引っ掛けるようして、遮光具固定ネジ141で締め付け固定することにより、遮光具1は、全面マスク2に装着される。

[0055]

その際、フレーム部12が、遮光位置 P 1 (図2、図3参照)にある場合には、フレーム部12により保持された遮光レンズ1 1 が、アイピース2 1 の前面2 1 1 を覆うように配置される。したがって、全面マスク2 を着用した着用者が、赤外線、紫外線及び強烈な可視光線等に曝露されるような作業環境であっても、赤外線、紫外線及び強烈な可視光線が、全面マスク2 を着用した着用者の眼に到達しないように、遮光レンズ1 1 により遮光される。また、遮光具 1 は、全面マスク2 に取り付けられて、全面マスク2 の曲面に沿うような外形を有するため、狭隘な環境でも着用者の動作(移動や作業)が妨げられることがなく、着用者の作業性を低下させることがない。

[0056]

また、赤外線、紫外線及び強烈な可視光線等に曝露されないような状況では、着用者は、左手又は右手により、把持部122L、122Rのいずかを持ち上げるような操作を行う。その結果、フレーム支持機構部132の回動部材135が、回転軸〇2に対して回動し、押圧部材136の押圧力よりも大きな外力Fが作用することにより、回動部材135が、図8(b)に示すように、正多角柱状部材134において隣接する側面134a間を2回跨ぐようにして回動する。これにより、回動部材135が、120度回動し、フレーム部12が、遮光位置P1から非遮光位置P2(図4、図5参照)に移動されて、押圧部材136が側面134aを押圧することで、フレーム部12は、非遮光位置P2に保持される。そして、フレーム部12が、非遮光位置P2にある場合には、遮光レンズ11がアイピース21の前面211を覆わないように、跳ね上げられた状態で配置されるので、作業者は、アイピース21を介して周囲の状況を視認する。

[0057]

以上のように、本発明の実施形態に係る遮光具1によれば、支持部13が、アイピース21の周縁210に対して着脱自在に取り付けられるとともに、遮光レンズ11がアイピース21の前面211を覆うように配置される遮光位置P1と、遮光レンズ11がアイピース21の前面211を覆わないように配置される非遮光位置P2との間で移動可能にフ

20

30

40

50

レーム部12を支持する。

[0058]

したがって、遮光具1が、全面マスク2に対して取り付けられた状態で、全面マスク2を着用した着用者は、遮光位置P1と、非遮光位置P2との間でフレーム部12を移動させることができるので、全面マスク2を着用した着用者の作業性を低下させることなく、着用者の眼を適切に保護することができる。

[0059]

また、支持ベース部130は、支持ベース部130の上側及び左右両側に設けられた複数のマスク取付部131により全面マスク2に取り付けられるとともに、支持ベース部130の左右の中心線上に設けられたフレーム支持機構部132により左右方向に平行な回転軸〇2に対して回動可能にフレーム部12を支持する。したがって、複数のマスク取付部131の重心と、フレーム支持機構部132とが、左右の中心線〇1上に位置するため、支持ベース部130が全面マスク2に取り付けられたときの安定感、及び、フレーム部12が支持ベース部130に対して回動されたときの安定感を向上させることができる。

[0060]

また、フレーム支持機構部132は、回転軸〇2に沿って軸方向が配置されるように、支持ベース部130に固定される正多角柱状部材134と、回転軸〇2に対して回動可能な状態で正多角柱状部材134に取り付けられるとともに、フレーム部12に固定される回動部材135と、正多角柱状部材134の側面134aを押圧するように、回動部材135に取り付けられる押圧部材136とを備え、回動部材135は、回動部材135を回転軸〇2に対して回動させる方向の力であって、押圧部材136の押圧力よりも大きな外力下が作用したとき、正多角柱状部材134において隣接する側面134a間を2回跨ぐようにして回動する。したがって、フレーム部12が、支持部13に対して跳ね上げられて、跳ね上げられた状態を適切に保持する構造を、簡単な構成で実現することができる。

[0061]

また、フレーム部12は、フレームベース部120とレンズ押さえ部121との間で遮 光レンズ11の周縁110を挟持することにより遮光レンズ11を交換可能に保持する。 したがって、遮光レンズ11が、破損したり汚れたりした場合には、遮光レンズ11を簡 単に交換することができる。

[0062]

また、フレーム部12は、フレーム部12の下部に対してフレーム部12の左右方向に 所定の間隔をあけて配置され、フレーム部12から下方に延びるように延設された把持部 122L、122Rを備える。したがって、着用者が、例えば、作業用の手袋をした状態 でも、把持部122L、122Rを操作することにより、遮光位置P1と、非遮光位置P 2との間でフレーム部12を簡単に移動させることができる。

[0063]

また、遮光レンズ11は、遮光性の熱硬化性樹脂に対して、分散剤を用いてイカ墨、赤外線カット剤及び紫外線カット剤が分散された樹脂組成物からなり、樹脂組成物は、熱硬化性樹脂のモノマー100質量部に対して、記イカ墨の含有量は、1.34質量部以上であり、赤外線カット剤の含有量は、1.12~3.36質量部の範囲内であり、紫外線カット剤の含有量は、0.28~3.36質量部の範囲内であり、分散剤の含有量は、5.6~11.2質量部の範囲内である。したがって、遮光レンズ11は、環境に優しい材料を用いて、赤外線、紫外線及び強烈な可視光線を適切に遮光することができる。

[0064]

(他の実施形態)

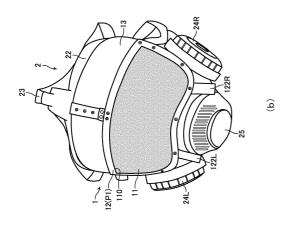
本発明の一実施形態として、上記実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更可能である

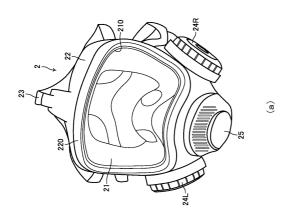
[0065]

例えば、上記実施形態では、支持部13は、上側に1つと、左右両側に1つずつの計3

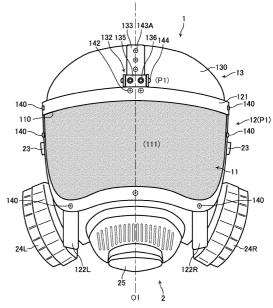
つのマスク取付部131を備えるものとして説明したが、上側に複数備えるようにしてもよいし、左右両側に複数備えるようにしてもよい。また、マスク取付部131は、支持ベース部130とは別の部品として、支持ベース部130に着脱自在に取り付けられるように構成することにより、サイズや形状が異なる全面マスク2に遮光具1を取り付けるときに、その全面マスク2のサイズや形状に合わせて、マスク取付部131を支持ベース部130に取り付けるようにしてもよい。

【符号の説明】

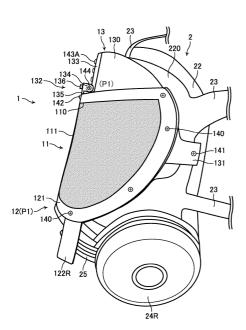

[0066]

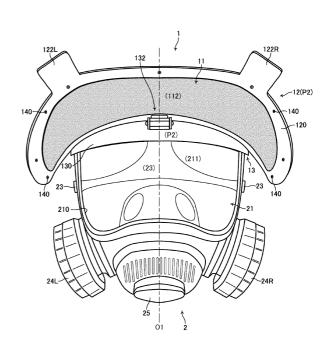

- 1 遮光具、
- 11 遮光レンズ、
 - 110 周縁、111 前面、112 後面、
- 12 フレーム部、
 - 120 フレームベース部、 120a 開口部、120b、120c ネジ孔、
 - 121 レンズ押さえ部、 121a 開口部、121b、121c ネジ孔、
 - 1 2 2 L 、 1 2 2 R 把持部、
- 13 支持部、
 - 130 支持ベース部、
 - 131 マスク取付部、131a ネジ孔、
 - 132 フレーム支持機構部、
 - 133 ブラケット、133a ネジ孔、
 - 134 正多角柱状部材、134a 側面、134b ネジ孔、134c 角部、
 - 135 回動部材、135 a 押圧部材取付孔、135 b 貫通孔、135 c ネジ孔
 - 136 押圧部材、136a ボール部材、136b コイルばね、
 - 140 レンズ固定ネジ、141 遮光具固定ネジ、142 フレーム固定ネジ、
 - 143A、143B ブラケット固定ネジ、144 回動部材固定ネジ、
- 2 全面マスク、
 - 2 1 アイピース、2 1 0 周縁、2 1 1 前面、
 - 22 面体、220 目枠、
- 23 着用バンド、24L 吸気装置、24R 吸気装置、25 排気装置、
- F 外力、O 1 中心線、O 2 回転軸、P 1 遮光位置、P 2 非遮光位置

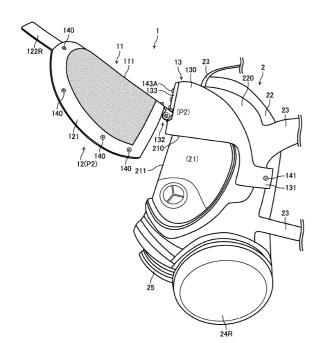
30

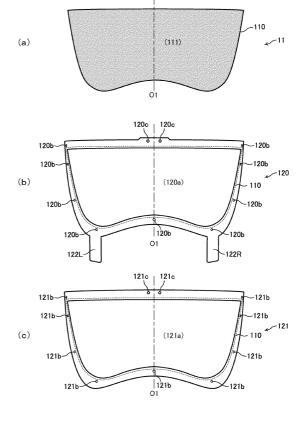

20

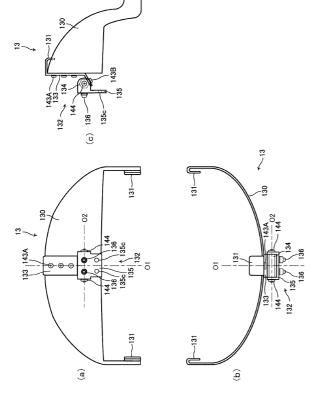
【図1】

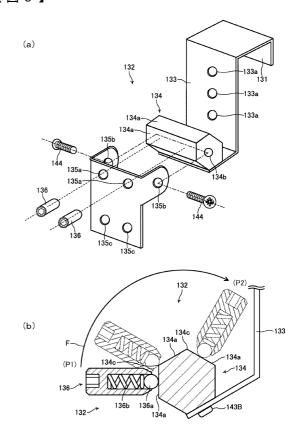



【図2】


【図3】


【図4】


【図5】


【図6】

【図7】

【図8】

【図9】

樹脂組成物	CR39モノマー	重合開始剤	イカ墨	赤外線カット剤	紫外線カット剤	分散剤
調合比率	89.2%	I	1.3%	1.0%	0.5%	8.0%
合計150g調合 (重合開始剤を除く)	133.8g	(18.9g)	1.95g (1.8g∼)	1.5g (1.5~4.5g)	0.75g (0.375~4.5g)	12g (7.5~15g)
モノマー100g調合	100g	(14.1g)	1.45g (1.34g∼)	1.12g (1.12~3.36g)	0.56g (0.28~3.36g)	8.9g (5.6~11.2g)

フロントページの続き

(72)発明者 中島 準作

福井県敦賀市木崎65号20番地 国立研究開発法人日本原子力研究開発機構 敦賀総合研究開発 センター内

(72)発明者 奥澤 和宏

福井県敦賀市明神町 3 番地 国立研究開発法人日本原子力研究開発機構 新型転換炉原型炉ふげん 内

(72)発明者 長谷 仁

福井県鯖江市丸山町三丁目5番25号 株式会社サンルックス内

(72)発明者 来田 文夫

福井県鯖江市丸山町三丁目5番25号 株式会社サンルックス内

F ターム(参考) 2E185 AA06 BA07 CC43