(12) 公 開 特 許 公 報(A) (11) 特許出願公開番号

(19)日本国特許庁(JP)

口特計出現公用番号
特閧2024-90630
(P2024-90630A)
今和6年7月4日(2024.7.4)

				(43)公開日	令和6年7月4日(2024.7.4)
(51)Int.Cl.		ΓI			テーマコード (参考)
B01D 67/00	(2006.01)	B01D	67/00		4 D 0 0 6
B01D 69/10	(2006.01)	B01D	69/10		
B01D 69/12	(2006.01)	B01D	69/12		
B01D 71/02	(2006.01)	B01D	71/02	500	

審査請求 未請求	請求項の数 5	OL	(全8頁)
----------	---------	----	-------

(21)出 願番号 (22)出願日	特顧2022-206638(P2022-206638) 令和4年12月23日(2022.12.23)	(71)出願人	712003270 大日機械工業株式会社 神奈川県横浜市西区北幸1-11-15
		(71)出願人	505374783
			国立研究開発法人日本原子力研究開発機構
			茨城県那珂郡東海村大字舟石川765番地
			1
		(74)代理人	110001922
			弁理士法人日峯国際特許事務所
		(72)発明者	ミャグマラジャブ オドツェツェグ
			茨城県東茨城郡大洗町成田町4002番地 国立研究開発法人日本原子力研究開発機 構 大洗研究開発センター内
			最終頁に続く

(54) 【発明の名称】水素分離膜構造体の中間層の製膜方法及び水素分離膜構造体

(57)【要約】

【課題】水素分離膜構造体の製造において、製膜時の液 だれ等によりコーティングのムラ、膜厚の厚い部分の剥 離、クラック等の発生を防止する。

【解決手段】水素分離膜構造体の基材である多孔質支持 体層を回転させながら、ゾルゲル溶液に多孔質支持体層 の表面部分のみを浸漬させ、多孔質支持体層の表面にゾ ルゲル溶液を塗布する。

【選択図】図 7

【特許請求の範囲】

【請求項1】

水平方向に配置された円筒型多孔質支持体層を回転させながら、該円筒型多孔質支持体層 の表面部分をゾルゲル溶液に浸漬し、該ゾルゲル溶液を前記円筒型多孔質支持体層の表面 に均等に塗布することを特徴とする水素分離膜構造体の中間層の製膜方法。

【請求項2】

請求項1において、前記円筒型多孔質支持体層が アルミナ、前記中間層がシリカ又は アルミナで構成されていることを特徴とする水素分離膜構造体の中間層の製膜方法。

【請求項3】

請求項1または2において、前記円筒型多孔質支持体層を50rpmから200rpm の範囲で回転させることを特徴とする水素分離膜構造体の中間層の製膜方法。

【請求項4】

円筒型多孔質支持体層と、該円筒型多孔質支持体層の外表面に回転製膜法によって製膜 された中間層と、該中間層の外表面に製膜された水素分離膜層とから構成された水素分離 膜構造体。

【請求項5】

アルミナから成る円筒型多孔質支持体層と、該円筒型多孔質支持体層の外表面に回転 製膜法によって製膜されたシリカ層又は アルミナ層から成る中間層と、該中間層の外表 面に製膜されたシリカ層から成る水素分離膜層とから構成された水素分離膜構造体。

【発明の詳細な説明】

20

30

10

【技術分野】

【0001】

本発明は、水素分離膜構造体の中間層の製膜方法及びそれを用いて製造した水素分離膜 構造体に関する。

【背景技術】

[0002]

例えば、水素製造に使用される熱化学法 IS プロセス(特許文献 1 を参照)におけるヨウ 化水素(HI)分解反応においては、HIの平衡分解率が20%程度と低いという問題が あった。そこで、このHI分解率を向上させるために水素分離膜の研究開発が、これまで 行われてきた。

[0003]

現在、一般的な水素分離膜構造体としては、例えば、基材である多孔質支持体層の上に ポアサイズの小さい多孔質の中間層を配し、その上に水素分離膜を設けた三層構造のもの が知られている(特許文献2を参照)。HI分解用水素分離膜としては、耐熱耐食性の観 点から、多孔質アルミナから成る多孔質支持体層上に対向拡散CVD法により緻密なシリ カ膜を形成した水素分離膜構造体が採用されている。対向拡散CVD法とは、2種類の原 料を多孔質支持体層の両側から供給することにより、多孔質体内部に薄いシリカ層を蒸着 させる方法である。このCVD法による緻密なシリカ膜の形成には、多孔質アルミナから 成る多孔質支持体層上に形成する中間層(アルミナ及びシリカ)の構造が重要である。 【先行技術文献】

【特許文献】

【特許文献1】特開2018-177614号公報

【特許文献 2 】特開 2 0 2 2 - 1 5 1 2 6 8 号公報

【特許文献 3 】特開 2 0 1 5 - 1 7 1 6 9 1 号公報

【発明の概要】

【発明が解決しようとする課題】

[0005]

前述したように、対向拡散CVD法による水素分離膜では、緻密なシリカ膜をCVDによ り形成するが、本シリカ膜を緻密に形成するためには、多孔質支持体層上に均一な中間層

を形成することが重要である。従来、この水素分離膜構造体の中間層の形成には、ゾルゲ ル溶液を用いたディップコーティング法が用いられていた。しかし、このような従来の方 法では、液だれ等により均一な膜の形成が困難であった。特に粘性が高いゾルゲル溶液を 使用する場合には、この液だれ等によりコーティングに顕著なムラが生じ、膜厚の厚い部 分に剥離、クラックが生じていた。

[0006]

従って、本発明の目的は、水素分離膜構造体の表面に形成される水素分離膜にクラック や剥離を生じさせない、水素分離膜構造体の中間層の製膜方法を提供することにある。 【0007】

本発明の他の目的は、上述の中間層の製膜方法を用いて作製した中間層を備えた、優れ た特性を備えた水素分離膜構造体を提供することにある。

【課題を解決するための手段】

[0008]

本発明においは、水素分離膜構造体の中間層を均一に形成するために、多孔質支持体層 を回転させながら、ゾルゲル溶液に浸漬する新たな製膜方法を採用している。本発明に係 る製膜方法(回転製膜法とも言う)では、水平方向に配置された多孔質支持体層を回転さ せながらゾルゲル溶液に多孔質支持体層の表面部分のみを浸すことで多孔質支持体の表面 にゾルゲル溶液を塗布し、ゾルゲル溶液の重力落下による液だれを抑え、均一な中間層を 形成する。

【 0 0 0 9 】

本発明の一つの観点に係る水素分離膜構造体の中間層の製膜方法は、水平方向に配置さ れた円筒型多孔質支持体層を回転させながら、該円筒型多孔質支持体層の表面部分をゾル ゲル溶液に浸漬し、該ゾルゲル溶液を前記円筒型多孔質支持体層の表面に均等に製膜する ことを特徴としている。

 $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$

本方法によれば、従来のいわゆるどぶ付けによる製膜方法とは異なり、水素分離膜にクラックや剥離を生じさせない均一の厚さの中間層を製造することができる。また、多孔質支持体層の表面部のみをゾルゲル溶液に浸漬させることができるので、使用するゾルゲル溶液量を低減させることができる。例えば、後述の実施例に係る製膜の場合、従来方法のディップコーティングでは408mlのコーティング液を必要としたのに対して、はるかに優れた性能の膜を186mlのコーティング液で製膜できた。

[0011]

本発明の別の観点に係る水素分離膜構造体は、円筒型多孔質支持体層と、該円筒型多孔 質支持体層の外表面に回転製膜法によって塗膜された中間層と、該中間層の外表面に塗膜 された水素分離膜層とから構成される。このような水素分離膜構造体は、水素分離膜にク ラックや剥離が生じないため耐久性に優れていると共に、ゾルゲル溶液の使用量が少なく て済むため安価に製造することができる。

【発明の効果】

本発明は、被製膜物を回転させながら製膜するという、画期的な製膜方法(回転製膜法)を採用しているため、液だれを起こすことがなく、クラックや剥離を生じさせない均一 な膜厚の製膜が可能となる。

[0013]

本発明は、特に上述の水素分離膜構造体の中間層の形成において有用である。すなわち、 中間層が極めて均一な膜となるため、対向拡散 C V D 法によって最上層の水素分離膜(シ リカ膜)を形成する際にクラック等の欠陥のない緻密な膜とすることができる。 【0014】

また、従来のディップコーティング法では基材(多孔質支持体層)をすべて浸漬するために大量の溶液が必要になるが(例えば特許文献3を参照)、本発明に係る製膜方法では 多孔質支持体層の表面部分のみを溶液に浸すだけであるため、ゾルゲル溶液の使用量を顕 20

10

著に低減させることができる。

【図面の簡単な説明】

【0015】

【図1】水素分離膜構造体の全体構成と動作を示す概略説明図。

【図2】図1のA部分の拡大図。

【図3】回転製膜装置の一例を示す概略構成図。

【図4】従来のディップコーティング法の製膜結果を示す図。

【図5】従来のディップコーティング法の製膜結果を示す顕微鏡写真。

【図6】本発明の回転製膜法の製膜結果を示す図。

【図7】本発明の回転製膜法の製膜結果を示す顕微鏡写真。

【図8】回転速度と膜の透過度との関係を示す図。

【発明を実施するための形態】

[0016]

本発明は、端的に言えば、均一な中間層を形成するために、基材である多孔質支持体層を 回転させながらゾルゲル溶液に多孔質支持体層の表面部分のみを浸すことによって多孔質 支持体層表面にゾルゲル溶液を塗布し、ゾルゲル溶液の重力落下による液だれを抑え、均 一な中間層を形成する製膜方法である。

【0017】

以下、図面を参照しながら本発明を具体的に説明する。初めに、本発明が適用される水素 分離膜構造体の全体構成とその動作について、図1と図2を用いて説明する。図1は円筒 型の水素分離膜構造体を金属製の円筒型耐圧容器の中央部に設置し、水素分離膜構造体と 耐圧容器間に触媒を詰めた構造を持つ、ISプロセスで使用するH2ガスとHIガス、I 2ガスの分離器の断面を示す図であり、図2は図1のA部分の構造を示す拡大図である。 【0018】

図1から理解されるように、円筒型の水素分離膜構造体100の外周部から供給された HIガスは触媒によってH2とI2ガスに分解され、H2ガスが水素分離器構造体100 の中央部の空洞から得られるようになっている。図1のA部分の拡大図である図2からわ かるように、円筒型の水素分離膜構造体100は、内側から多孔質支持体層10、多孔質 中間層11、水素分離膜層12が順次積層された構造になっている。図2では、多孔質中 間層11が一層構造になっているが、複数層であればより好ましい。

【0019】

上述した回転製膜法は、図3に示した回転製膜装置を用いて容易に実現できる。ここで、 符号14は速度調整器付電動機で、15は容器に満たされたゾルゲル溶液である。多孔質 支持体層の表面部分のみがこのゾルゲル溶液に浸漬されるように配置される。ゾルゲル溶 液のバブリング防止にため、表面部分の浸漬は、表面から1mm~1.5mm程度が望ま しい。また、電動機4の回転速度は、速度調整器によって0から300rpm程度まで徐 々に上げることができるようになっている。

【実施例】

【 0 0 2 0 】

多孔質アルミナの支持体層(12×400mm)に、ディップコーティング法と回転製 膜法を用いてアルミナ中間層を形成した。形成したアルミナ中間層について、100mm ごとに切断し、その水素、窒素、SF。の透過速度の測定及び表面観察を行った。ここで 、SF。は、分子径がHIガスとほぼ同じためHIガスの模擬流体として使用された。 【0021】

図4と図5に従来方法のディップコーティングの結果を、図6と図7に本発明に係る回転 製膜法による結果を示す。従来方法によるディップコーティングでは、図4に示すように 一部分でSF6、窒素の透過速度が大きくなった。また、表面・断面観察の結果から、従 来方法のディップコーティングでは、膜厚にばらつきが生じ、膜厚が厚い部分ではクラッ クが発生した。このクラックにより、分子径の大きいSF6、窒素が透過しやすくなった ものと考えられる。 10

20

水素分離膜構造体100

[0022]

ー方で、本発明の回転製膜法では、図6に示すように、膜全体で一定の透過度(perm eance)であり、また、表面・断面観察の結果から均一な膜を形成できており、クラ ックも発生していないことが確認できた。従来方法によるディップコーティングでは、欠 陥の発生率が50%程度あったが、本発明による回転製膜法では、欠陥の発生率をほぼ0 %に抑えられた。

【0023】

ここで、電動機の回転速度(rpm)が膜の透過度に与える影響について調べた。その 結果を図8に示す。回転速度が50rpm、200rpm、300rpmでのデータを採 ったところ、回転速度が200rpm程度までは、膜の透過度に影響を与えないことがわ かった。

- 【符号の説明】
- 【 0 0 2 4 】
 - 10・・・多孔質支持体層
 - 11・・・中間層
 - 12・・・水素分離膜層
 - 1 4 ・・・電動機
 - 15・・・ゾルゲル溶液
- 100・・・水素分離膜構造体

【図1】

【図2】

【図5】

【図6】

【図8】

Surface	Ð	Cross section
	No defect	
I Per Milan va	No defect	
The sum of	No defect	
	No defect	

フロントページの続き

- (72)発明者 野口 弘喜茨城県東茨城郡大洗町成田町4002番地 国立研究開発法人日本原子力研究開発機構 大洗研究開発センター内
- (72)発明者 今 肇

神奈川県横浜市西区北幸1-11-15 大日機械工業株式会社内

F ターム(参考) 4D006 GA41 HA28 JA25C KA31 KA33 KB30 KD30 MA02 MA06 MC01 MC03 NA46 NA73 PA01 PB20 PB66 PC69