(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11) 特許番号

特許第6168582号

(P6168582)

(45) 発行日 平成29年7月26日 (2017.7.26)

- (24) 登録日 平成29年7月7日 (2017.7.7)
- (51) Int.Cl. F I **G21C 17/06 (2006.01)** G21C 17/06 F G21C 17/06 E

請求項の数 8 (全 14 頁)

(21) 出願番号 (22) 出願日 (65) 公開番号 (42) 公開日	特願2012-189610 (P2012-189610) 平成24年8月30日 (2012.8.30) 特開2014-48089 (P2014-48089A) 平成26年3月17日 (2014.2.17)	(73)特許権者 (73)特許権者	★ 507250427 日立GEニュークリア・エナジー株式会社 茨城県日立市幸町三丁目1番1号 ★ 505274782
(43)公用口 審査請求日	平成27年3月4日(2015.3.4)	(/3)1 √ ₽ ⊤ /1⊞1≘	 303374783 国立研究開発法人日本原子力研究開発機構 茨城県那珂郡東海村大字舟石川765番地
		(74)代理人	110000350
			ポレール特許業務法人
		(72)発明者	清川省吾
			茨城県日立市幸町三丁目1番1号 日立G
			Eニュークリア・エナジー株式会社内
		(72)発明者	丸山 博見
			茨城県日立市幸町三丁目1番1号 日立G
			Eニュークリア・エナジー株式会社内
			最終頁に続く

(54) 【発明の名称】核燃料物質の臨界監視方法

- (57)【特許請求の範囲】
- 【請求項1】

原子力プラントの系統内に蓄積された核燃料物質から放出される 線を検出し、 前記 線の検出により得られた 線計数率を用いて 線スペクトル情報を作成し、 前記蓄積された核燃料物質の<u>重量を表す</u>第1<u>情報</u>を、前記 線スペクトル情報に含まれ

る Eu - 1 5 4 の <u>ピークの</u> 線計数<u>率に</u>基づいて求め、 前記核燃料物質から放出される中性子を検出し、

前記中性子の検出により得られた中性子計数率を用い、データ処理装置で、中性子逆増 倍法により、中性子実効増倍率の逆数を求め、

<u>前記核燃料物質が前記系統内に蓄積されるに伴って、前記重量を表す第1情報及びこの</u> 重量を表す第1情報に対応する前記中性子実効増倍率の逆数が複数組求められ、

10

前記データ処理装置により、求められた<u>前記複数組の重量を表す</u>第1<u>情報及び前記中性</u> 子実効増倍率の逆数に基づいて、前記重量を表す第1情報と前記中性子実効増倍率の逆数 との関係を表す逆増倍曲線を求め、

<u>前記逆増倍曲線を用いて、</u>臨界点で蓄積される前記核燃料物質の<u>重量を表す</u>第2<u>情報</u>を <u>求め</u>ることを特徴とする核燃料物質の臨界監視方法。

【請求項2】

前記蓄積された核燃料物質の重量を表す第1情報が前記蓄積された核燃料物質の第1重 量であり、

前記臨界点で蓄積される前記核燃料物質の重量を表す第2情報が、前記臨界点で蓄積さ 20

れる前記核燃料物質の第2重量である請求項1に記載の核燃料物質の臨界監視方法。

【請求項3】

前記第1重量は、前記 線スペクトル情報に含まれるEu-154の<u>ピークの</u> 線計数 率に基づいてEu-154の重量を求め、求めた前記Eu-154の重量を前記核燃料物 質に含まれるEu-154の割合で割ることによって求められる請求項<u>2</u>に記載の核燃料 物質の臨界監視方法。

【請求項4】

或る測定時点で求められた前記核燃料物質の前記第1<u>重</u>量が、前記核燃料物質の<u>前記</u>第 2<u>重</u>量よりも少ない前記核燃料物質の設定<u>重</u>量よりも少ないかを判定する請求項2または 3に記載の核燃料物質の臨界監視方法。

【請求項5】

前記第1<u>重</u>量が前記設定<u>重</u>量以上になったとき、警報情報が発生する請求項<u>4</u>に記載の 核燃料物質の臨界監視方法。

【請求項6】

前記第1<u>重</u>量が前記設定<u>重</u>量以上になったとき、前記核燃料物質が蓄積されている前記 系統内に中性子吸収材を含む溶液を注入する請求項<u>4</u>に記載の核燃料物質の臨界監視方法

【請求項7】

前記蓄積された核燃料物質は、原子炉圧力容器内に装荷された燃料棒から前記原子炉圧 力容器内の冷却水中に漏えいした核燃料物質である請求項1<u>ないし6のいずれか1項</u>に記 ²⁰ 載の核燃料物質の臨界監視方法。

【請求項8】

前記中性子計数率が設定中性子計数率以下であるときに前記中性子計数率を平均化する 第1統計時間を、前記中性子計数率が前記設定中性子計数率よりも大きいときに前記中性 子計数率を平均化する第2統計時間よりも長くする請求項1ないし<u>7</u>のいずれか1項に記 載の核燃料物質の臨界監視方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、核燃料物質の臨界監視方法に係り、特に、原子力プラントに適用するのに好 30 適な核燃料物質の臨界監視方法に関する。

【背景技術】

[0002]

原子炉で使用された使用済の燃料集合体、すなわち、照射燃料集合体を燃料貯蔵ラック 、燃料輸送貯蔵容器に収納する過程において臨界安全性を確保するための照射燃料集合体 装荷未臨界体系の実効増倍率測定方法の一例が、特開平5-2888888号公報に記載さ れている。この実効増倍率測定方法では、その未臨界体系の未臨界度が評価される。すな わち、中性子発生率、照射燃料集合体装荷未臨界体系の形状寸法及び群定数を与えて行う 中性子輸送・拡散計算の固定源モード計算において、燃料領域の核分裂断面積を零とした 計算を追加し、2つの中性子束計算値を用いて、中性子検出器の測定位置で実際に中性子 束計数率を測定評価している場所に対応した実効増倍率を測定評価している。 【0003】

40

50

10

特開平5-288888号公報に記載された未臨界度測定方法は、既知の核燃料物質に 対するものである。これに対し、核燃料再処理施設の溶解層及び配管内に存在する処理液 に含まれる核燃料物質の未臨界度の測定が、特開昭58-45599号公報、特開昭62 -277595号公報及び特開昭62-2944998号公報に記載されている。 【0004】

特開昭58-45599号公報は、核燃料再処理施設の処理液が流れる配管に、中性子 増倍率が小さくなるようにした流路を並列または直列に設け、この流路における中性子計 数率を用いて、配管の中性子計数率から配管内を流れる処理液中の自発中性子放出核種の 濃度変化の効果を除去する未臨界度監視方法を記載している。

[0005]

特開昭62-277595号公報に記載された核燃料物質存在領域の未臨界度監視方法 では、処理液が流れる配管に中性子実効増倍率評価部及び中性子束計測部を形成し、中性 子束計測部を取り囲んで測定用中性子反射体を配置し、中性子束計測部と測定用中性子反 射体の間に熱中性子吸収体を配置した部分で測定用中性子反射体の外側に第1中性子検出 器を配置し、中性子束計測部と測定用中性子反射体の間に熱中性子吸収体を配置していな い部分で測定用中性子反射体の外側に第2中性子検出器を配置した中性子束測定部構造を 用いている。そして、第1中性子検出器で計測された中性子束と第2中性子検出器で計測 された中性子束の比を求め、この比を用いて求めた中性子束計測部の実効増倍率に基づい て、中性子実効増倍率評価部における未臨界度を監視する。

[0006]

特開昭62-2944998号公報に記載された未臨界度の測定方法では、核分裂性物 質及び自発中性子を放出する核種を有する核燃料物質を含む処理液が存在する、核燃料再 処理施設の溶解槽及び配管等の形状が異なる複数の部位で中性子を計測し、これらの部位 で計測された中性子計数率の比に基づいて中性子実効増倍率を算出している。

【先行技術文献】

【特許文献】

[0007]

【特許文献3】特開昭62-277595号公報

【特許文献4】特開昭62-2944998号公報

【発明の概要】

【発明が解決しようとする課題】

[0008]

例えば、原子力プラントにおいて事故が発生し、原子炉内からの循環水に核燃料物質が 混入している場合を想定する。このような循環水を浄化するためには、核燃料物質の流入 を防止するストレーナ部の設置、または核燃料物質に含まれる放射性核種を取り除く吸着 材層の設置が必要である。また、配管の曲り部等に核燃料物質が多量に蓄積する可能性が ある。核燃料物質を含む水が流れる上記したストレーナ部、吸着材層または曲り部等にお いて局部的に核燃料物質が多量に蓄積された状態では、核燃料物質の再臨界の可能性があ るため、蓄積された核燃料物質の量を検出する必要がある。

【 0 0 0 9 】

このような蓄積された核燃料物質の未臨界度の測定に、特開昭58-45599号公報 、特開昭62-277595号公報または特開昭62-2944998号公報に記載され た未臨界度の測定方法を適用することが考えられる。これらの未臨界度の測定方法は、中 性子計数率を測定してこの測定された中性子計数率に基づいて蓄積された核燃料物質の未 臨界度を測定している。しかしながら、中性子計数率に基づいて、原子力プラント内の或 る箇所に蓄積された核燃料物質の臨界を精度良く監視することができない。

【 0 0 1 0 】

本発明の目的は、核燃料物質を含む液体が流れる系統内で蓄積された核燃料物質の未臨 界状態をより精度良く監視することができる核燃料物質の臨界監視方法を提供することに ある。

【課題を解決するための手段】

【0011】

上記した目的を達成する本発明の特徴は、原子力プラントの系統内で蓄積された核燃料 物質の第1量を求め、その核燃料物質から放出される中性子を検出し、この中性子の検出 により得られた中性子計数率を用い、データ処理装置で、中性子逆増倍法により、中性子 実効増倍率の逆数を求め、そのデータ処理装置により、求められた第1量及び中性子実効 10

増倍率の逆数に基づいて臨界点で蓄積される核燃料物質の第2量を算出することにある。 【0012】

求められた核燃料物質の第1量及び中性子実効増倍率の逆数に基づいて臨界点で蓄積される核燃料物質の第2量を算出するので、核燃料物質の第2量を精度良く算出することができる。このため、核燃料物質を含む液体が流れる系統内で蓄積された核燃料物質の未臨 界状態をより精度良く監視することができる。

【発明の効果】

【0013】

本発明によれば、核燃料物質を含む液体が流れる系統内で蓄積された核燃料物質の未臨 界状態をより精度良く監視することができる。

10

【図面の簡単な説明】

【0014】

【図1】本発明の好適な一実施例である実施例1の核燃料物質の臨界監視方法に用いられ る臨界監視装置の構成図である。

【図2】核燃料物質の 線スペクトル分布の一例を示す説明図である。

【図3】核燃料物質の重量に対する中性子計数率の関係を示す特性図である。

【図4】実施例1に適用される中性子逆増倍率法の概念を示す説明図である。

【図5】本発明の他の実施例である実施例2の核燃料物質の臨界監視方法に用いられる臨 界監視装置の構成図である。

【図6】本発明の他の実施例である実施例3の核燃料物質の臨界監視方法に用いられる臨 ²⁰ 界監視装置の構成図である。

【発明を実施するための形態】

[0015]

本発明の実施例を以下に説明する。

【実施例1】

[0016]

本発明の好適な一実施例である実施例1の核燃料物質の臨界監視方法を、図1を用いて 説明する。

【0017】

本実施例の核燃料物質の臨界監視方法に用いられる臨界監視装置1は、He-3比例計³⁰ 数管(中性子検出装置)2、LaBr₃(Ce)検出器(線検出装置)3、データ処理 装置4及び表示装置5を有する。He-3比例計数管2及びLaBr₃(Ce)検出器3 はデータ処理装置4に接続される。表示装置5はデータ処理装置4に接続される。線検 出装置として、LaBr₃(Ce)検出器の替りに、CdTe半導体検出器、Ge(Li)半導体検出器等の半導体放射線検出器、またはNaI(T1)検出器等のシンチレータ を用いても良い。

[0018]

原子力プラントにおいて、原子炉に接続された配管10内を流れる冷却水12に核燃料 物質が流出する事故が発生する場合を想定して、その配管10内には、ストレーナ11が 設置される。上記の事故が発生した場合において、このストレーナ11により配管10内 を流れる冷却水12に含まれる核燃料物質13が除去される。除去された核燃料物質13 はストレーナ11内に蓄積される。ストレーナ11の替りに核燃料物質に含まれる放射性 核種を吸着する吸着材層を配管10に設けてもよい。

【0019】

臨界監視装置1はストレーナ11で除去されてストレーナ11内に蓄積された核燃料物 質13の臨界を監視する装置であり、He-3比例計数管2及びLaBr₃(Ce)検出 器3がストレーナ11の設置位置で配管10の外側に配置される。配管10内を流れる冷 却水12に核燃料物質が流出する事故が発生したとき、臨界監視装置1に接続される電源 のスイッチがONされ、He-3比例計数管2、LaBr₃(Ce)検出器3、データ処 理装置4及び表示装置5に電流が供給される。このため、He-3比例計数管2、LaB

50

r₃(Ce)検出器3、データ処理装置4及び表示装置5が起動される。

【 0 0 2 0 】

ストレーナ11内に蓄積された核燃料物質の重量が増大すると、ストレーナ11内の核 燃料物質が局部的に再臨界になる可能性がある。このため、ストレーナ11内での臨界近 接を予測する必要があり、ストレーナ11に蓄積された核燃料物質の臨界が、臨界監視装 置1により監視される。臨界監視装置1を用いた未臨界度の測定を以下に詳細に説明する

(5)

[0021]

ストレーナ11内に蓄積された核燃料物質13から放出された 線は、LaBr₃(C e)検出器3によって検出される。LaBr₃(Ce)検出器3は、 線を検出すること によって 線検出信号を出力する。この 線検出信号は、データ処理装置4に入力される 。データ処理装置4は、入力した 線検出信号の計数率(線計数率)を求め、得られた 線計数率を用いて 線スペクトル分布を求める。この 線スペクトル分布の一例を図2 に示す。 線スペクトル分布は、ストレーナ11内に蓄積された核燃料物質の成分物質、 例えば、Cs-137,Cs-134及びEu-154に対応するピーク毎の 線計数率 を含んでいる。この 線スペクトル分布は、さらに、パルサ信号20を含んでいる。 【0022】

データ処理装置4は、 線スペクトル分布に基づいて、後述する中性子計数率と共に臨 界近接の予測に用いる指標である蓄積された核燃料物質の重量を算出する。この核燃料物 質の重量の算出は、 線スペクトル分布における或る一つのピークの 線計数率(例えば 、Cs-137)に基づいて求められる。Cs-137のピークの 線計数率に基づいて ストレーナ11内に蓄積された核燃料物質13の重量を求める場合には、Cs-1370 ピークの 線計数率に基づいて求めた重量を、この核燃料物質13に含まれるCs-13 7の比率で割ればよい。

【0023】

ストレーナ11内に蓄積された核燃料物質から放出される中性子は、He-3比例計数 管2により検出される。この中性子は、主に、核燃料物質に含まれるキュリウム(Cm) の自発核分裂により発生する。He-3比例計数管2は、中性子を検出することによって 中性子検出信号を出力する。データ処理装置4は、入力した中性子検出信号に基づいて中 性子計数率を求める。この中性子計数率は、ストレーナ11内に核燃料物質が蓄積される 初期段階では、値が小さく、ストレーナ11内に蓄積された核燃料物質の重量に比例して 増加する(図3参照)。時間が経過してストレーナ11内に蓄積された核燃料物質の重量 が或る量(図3に示す矢印22の位置での核燃料物質の重量)まで増加したとき、中性子 計数率は、増倍の効果が加わって、図3に示すように急激に増加する。 【0024】

上記の事故が発生してHe-3比例計数管2が起動された直後、すなわち、上記した初 期段階では、上記したように、中性子計数率が小さい状態が継続される。ストレーナ11 内に蓄積された核燃料物質が矢印22で示される核燃料物質の重量まで増加して臨界近接 の状態になったときに、He-3比例計数管2から出力された中性子検出信号に基づいて 求められた中性子計数率は大きくなる。このため、データ処理装置4は、矢印22で示さ れる核燃料物質の重量に対応する中性子計数率(以下、設定中性子計数率という)以下の 低い中性子計数率のときには、中性子計数率を平均化する統計時間を長くとり、設定中性 子計数率を超える高い中性子計数率のときには、その統計時間を短くする。これにより、 データ処理装置4で求める中性子計数率の平均値の統計誤差を同程度にし、かつ、高計数 率での速応答性を確保することができる。なお、設定中性子計数率は、核燃料物質の重量 の増加に伴って中性子計数率の増加度合いが変化する時点での中性子計数率の値である。 【0025】

データ処理装置4は、求められた中性子計数率を用いて、中性子逆増倍法によりストレーナ11に蓄積された核燃料物質13の臨界点を求める。

[0026]

10

20

30

一般的な中性子逆増倍法は、中性子測定装置から出力された中性子検出信号に基づいて 求められた中性子計数率を用いて計算される中性子実効増倍率の逆数(1 / M)を、例え ば、炉心に装荷された核燃料物質の重量を指標として、図4に示すように、測定ステップ (ステップ1及びステップ2等)ごとにプロットして曲線(以下、逆増倍曲線という)を 求め、得られた逆増倍曲線を外挿することによって臨界になる(1 / M = 0)ために必要 な核燃料物質の重量(予測臨界量)を推定する方法である(図4参照)。中性子逆増倍法 を用いることによって、臨界超過に達する前において臨界点(1 / M = 0)までの余裕を 定量的に計算・予測できるため、予期せぬ臨界超過の危険性を未然に回避することができ る。従来、中性子実効増倍率の逆数の指標として、核燃料物質の重量及び濃度、減速材及 び反射体の量、制御棒の位置、及びホウ酸濃度などの明確な測定値データが用いられてい る。

[0027]

本実施例では、ストレーナ11内に蓄積された核燃料物質13の重量を表す情報、例え ば、LaBr₃(Ce)検出器3から出力された 線検出信号を用いて求められた 線ス ペクトル分布に含まれた或るピークの 線計数率(例えば、Cs-137のピークの 線 計数率)を用いている。また、本実施例では、外部中性子源を用いずに、蓄積された核燃 料物質13に含まれる自発核分裂性物質であるキュリウムを中性子源としているので、中 性子源の強度が変動する。

【0028】

本実施例で用いられる中性子逆増倍法について説明する。配管10内を流れる冷却水1 20 2に含まれる核燃料物質13がストレーナ11に捕捉されると、ストレーナ11内に蓄積 される核燃料物質13の重量が増加し、これに伴って、ストレーナ11内の核燃料物質1 3に含まれるキュリウム(中性子源)の重量も増加する。このため、ストレーナ11内の 核燃料物質13に含まれる中性子源(キュリウム)の強度が変化するため、本実施例で用 いられる中性子逆増倍法は、前述した一般的な中性子逆増倍法とは原理が同じであるが計 算式が異なっている。本実施例で用いる中性子逆増倍法の計算式を以下に説明する。

【0029】

中性子計数率 C と中性子実効増倍率 k _{e f f} の間には、式(1)に示す関係がある。 【0030】

【数1】

$$C = \varepsilon \cdot (S + k_{eff}S + k_{eff}^2S + \dots) = \frac{\varepsilon S}{1 - k_{eff}} \dots (1)$$

... (2)

30

10

【0031】

ここで、 S は或る測定時点 t における、蓄積された核燃料物質に含まれる中性子源の強度 、及び は中性子検出効率である。

【 0 0 3 2 】

起点となる時点 t₀ (例えば、中性子の測定開始時点)で中性子計数率 C₀が得られた とし、このときの中性子増倍率を k₀とすると、中性子計数率 C₀は式 (2)で表される

40

50

[0033] [数2] $C_0 = \frac{\epsilon S_0}{(1-k_0)}$

【0034】

ここで、 S₀は起点となる時点 t₀ (例えば、中性子の測定開始時点)における、蓄積された核燃料物質に含まれる中性子源の強度である。中性子検出効率 は、中性子検出装置の測定条件を変更しないと仮定し、一定とする。式(2)を変形すると、式(3)が得られる。

(6)

【0035】
【数3】
$$k_{eff} = 1 - \frac{C_0}{C} \frac{S}{S_0} (1 - k_0) = 1 - \frac{1}{M}$$
 … (3)
【0036】
1 / Mは、式(3)を変形することによって式(4)のように表される。
【0037】
【数4】
 $\frac{1}{M} = \frac{C_0}{C} \frac{S}{S_0} (1 - k_0) = 1 - k_{eff}$ … (4)

【 0 0 3 8 】

He-3比例計数管2から出力された中性子検出信号に基づいてデータ処理装置4にお いて求められた中性子計数率を用いた中性子実効増倍率の逆数1/Mの算出について説明 する。式(4)の中性子計数率Cには起点となる時点t₀から時間が経過した或る測定時 点tでHe-3比例計数管2から出力された中性子検出信号に基づいてデータ処理装置4 により求められた中性子計数率を代入し、式(4)の中性子計数率C₀には起点となる時 点t₀でHe-3比例計数管2から出力された中性子検出信号に基づいてデータ処理装置 4により求められた中性子計数率を代入する。従来の方法では、固定線源を用いるために 、式(4)に示された、起点となる時点t₀から時間が経過した或る測定時点tにおける 中性子源強度Sに、固定値を代入していた。しかしながら、本実施例では、ストレーナ1 1に蓄積される濃縮度が未定の核燃料物質13に含まれる自発核分裂性物質を中性子源と するために、中性子源強度Sが以下に述べる二つの方法のいずれかにより算出される。 【0039】

中性子源強度Sを求める第一の方法は、起点となる時点t。における、蓄積された核燃料物質に含まれる中性子源の強度S。に対する、起点となる時点t。から時間が経過した 或る測定時点tにおける、蓄積された核燃料物質に含まれる中性子源の強度Sの比(S/ S。)を一定(S/S。=1)と近似する方法である。すなわち、第一の方法は、蓄積さ れた核燃料物質13内の中性子源の強度が測定開始時点(起点となる時点t。)とこの開 始時点以降の或る測定時点tで一定であると仮定して、式(4)において未知の中性子源 強度S。及び中性子源強度Sを消去する方法である。

30

50

20

10

【0040】 【数5】

$$C = \frac{\varepsilon S}{1 - k_{eff}} \qquad \cdots \qquad (5)$$

[0041]

式(5)に示すように、中性子源強度Sは、蓄積された核燃料物質13の重量に対して 比例関係にあるが、臨界付近(図3の矢印22の位置)において急激に増加するため、中 40 性子源強度Sの変化は中性子計数率Cの変化に比べて無視することができる。 【0042】

中性子源強度Sを求める第二の方法は、中性子源強度Sが蓄積された核燃料物質13に 含まれる或る放射性核種(例えば、Cs-137)の 線のピーク値と比例すると近似す る方法である。冷却水12が流れる配管10内に設けられたストレーナ11内に、冷却水 12に含まれた核燃料物質13が蓄積されるに伴って、得られた 線スペクトル分布にお ける、蓄積された核燃料物質13に含まれる放射線核種から放出される 線の計数率のピ ークが増加していく。また、中性子源強度Sも同様に増加する。そこで、或る測定時点t での 線計数率のピーク値を max、及び比例係数を として、S = maxの関係 があると仮定する。この場合、式(4)におけるS/S。は、S/S。 = max/ _{0 m a x} = m _{a x} / _{0 m a x}と求められる。すなわち、S / S ₀は 線のピーク値 から算出される。

【0043】

中性子強度Sは、中性子計測装置の出力である中性子検出信号に基づいて求められる中 性子計数率Cに基づいて単純に見積もることができない。この理由を以下に述べる。中性 子強度Sは、冷却水12に含まれる核燃料物質の蓄積量に比例して増加するが、その蓄積 により中性子実効増倍率k_{eff}も増加する。中性子実効増倍率k_{eff}が増加して1に 近づくと、式(5)の1/(1-k_{eff})項は、1000倍、10000倍…となるた め、中性子計数率Cは中性子実効増倍率k_{eff}の値に大きく影響を受ける。したがって 、中性子計数率Cと中性子強度Sを単純に関連付けることはできない。

【0044】

複数の或る測定時点tにおけるそれぞれの中性子実効増倍率の逆数1/Mを、式(4) を用いて算出する。例えば、中性子の測定開始時点である基点となる時点t。から経過時 間が異なる測定時点t₁、t₂及びt₃におけるそれぞれの逆数1/Mを求めることを想 定する。測定時点t₁における逆数1/M₁は、式(4)のC₀に時点t₀での中性子計 数率C₀の値を、式(4)のk₀に時点t₀での中性子増倍率k₀の値を、及び式(4) のCに測定時点t₁での中性子計数率C₁の値をそれぞれ代入する。なお、中性子増倍率 k₀は、測定開始時点(時点t₀)における中性子増倍率であり、k₀=0と仮定する。 本実施例では、S/S₀を第二の方法で求めるので、時点t₀での例えばCs-137の 線計数率のピーク値 _{0 m a ×}及び測定時点t₁でのCs-137の 線計数率のピー ク値 _{1 m a ×}を用いて _{1 m a ×}/ _{0 m a ×}を算出する。この算出はデータ処理装置 4で行われる。 _{1 m a ×}/ _{0 m a ×}の値を式(4)のS/S₀に代入する。データ処 理装置4は、これらの値を代入した式(4)により、測定時点t₁における中性子実効増 倍率の逆数1/M₁を算出する。

【0045】

測定時点 t_2 における中性子実効増倍率の逆数 1 / M_2 は、逆数 1 / M_1 を算出すると 同様に式(4)に中性子計数率 C₀及び中性子増倍率 k_0 を代入し、式(4)の Cに測定 時点 t_2 での中性子計数率 C₂の値をそれぞれ代入し、S / S₀に $2 m a \times / 0 m a$ xの値を代入する。 $2 m a \times$ は測定時点 t_2 における C s - 1 3 7 の 線計数率のピー ク値である。測定時点 t_3 における中性子実効増倍率の逆数 1 / M_3 も、同様に、式(4) に測定時点 t_3 での中性子計数率 C₃の値及び $3 m a \times / 0 m a \times 0$ 値等を代入す ることにより算出される。 $3 m a \times$ は測定時点 t_2 における C s - 1 3 7 の 線計数率 のピーク値である。

【0046】

逆数 1 / M₁ はステップ 1 (図 4 参照) での中性子実効増倍率の逆数の値であり、同様 に、逆数 1 / M₂ はステップ 2 での中性子実効増倍率の逆数の値、及び 1 / M₃ はステッ プ 3 での中性子実効増倍率の逆数の値となる。測定時点 t₃ 以降の測定時点 t₄ 及び t₅ 等におけるそれぞれの中性子実効増倍率の逆数 1 / Mの値を算出しても良い。

【0047】

さらに、データ処理装置4は、測定開始時点t₀及び測定時点t₁、t₂のそれぞれの ⁴⁰ 時点における、ストレーナ11内に蓄積された核燃料物質13の重量W₀,W₁及びW₂ を、前述したように、それぞれの時点でのCs-137のピークの 線計数率に基づいて 算出する。

【0048】

データ処理装置4は、例えば、中性子実効増倍率の逆数1/M₀,1/M₁及び1/M₂のそれぞれの値、及び核燃料物質13の重量W₀,W₁及びW₂のそれぞれの値を用いて、最小二乗法により核燃料物質13の重量と中性子実効増倍率の逆数の関係を示す逆増倍曲線(図4において実線で示された曲線)の式を求める。得られた逆増倍曲線の式を用いて、データ処理装置4は、中性子実効増倍率の逆数1/M=0になるときの、ストレーナ11内に蓄積された核燃料物質13の重量を算出する。中性子実効増倍率の逆数1/M

10

= 0 になるときの核燃料物質13の重量が、臨界点での核燃料物質13の重量 W _c である 。

【 0 0 4 9 】

データ処理装置4で求められた核燃料物質13の重量W_c、さらに、臨界点前の測定時 点t1及びt2でのストレーナ11内に蓄積された核燃料物質の重量W₁及びW₂のそれ ぞれの情報が、データ処理装置4から表示装置5に出力され、表示装置5に表示される。 オペレータは、表示された各核燃料物質の重量を見ることによって、ストレーナ11内に 蓄積された核燃料物質13の未臨界の状態を確認することができる。データ処理装置4は 、ストレーナ11内に蓄積された核燃料物質13の重量が、臨界点の核燃料物質の重量W cに対して余裕を持って設定された核燃料物質の設定重量(核燃料物質の重量W_cよりも 小さい値)まで増加したとき、警報情報を発生し、この警報情報を表示装置5に表示させ る。警報情報は、音声情報とし、スピーカに出力されても良い。

10

また、データ処理装置4から出力された警報情報が制御装置(図示せず)に入力され、 この制御装置は、ボロン溶液を貯蔵したタンクに接続されたボロン溶液注入管に設けられ た弁を開いてボロン溶液注入管に設けられた注入ポンプを駆動する。これらの操作により 、タンク内のボロン溶液が配管10内に注入され、ボロン溶液に含まれるボロン10がス トレーナ11内に蓄積された核燃料物質13から放出される中性子を吸収する。このため 、ストレーナ11に蓄積された核燃料物質13が臨界状態になることを回避することがで きる。また、出力された上記の警報情報に基づいて上記の制御装置が、配管10に設けら れたポンプ(図示せず)の運転を停止して、ストレーナ11への冷却水の供給を停止させ る。また、警報情報発生時に、配管10に設けられた弁(図示せず)を全閉状態にしても 良い。

【0051】

本実施例では、冷却水12に核燃料物質13が流出する事故が万が一発生した場合にお いても、原子力プラントの、冷却水12に含まれる核燃料物質13が蓄積される箇所(例 えば、配管10内に設けられたストレーナ11)に蓄積された核燃料物質13から放出さ れる 線をLaBr₃(Ce)検出器3で検出し、LaBr₃(Ce)検出器3から出力 された 線検出信号に基づいて求められた 線計数率を用いて 線スペクトル分布の情報 を作成し、 線スペクトル分布の情報に含まれる或る放射性核種(例えば、Cs-137)の<u>ビークの</u> 線計数<u>率を</u>用いてストレーナ11内に蓄積された核燃料物質13の重量を 求めている。さらに、本実施例では、ストレーナ11内に蓄積された核燃料物質13から 放出される、自発核分裂性物質の自発核分裂により発生する中性子がHe-3比例計数管 2で検出され、He-3比例計数管2から出力された中性子検出信号に基づいて中性子計 数率が求められる。

【0052】

さらに、各測定時点に対応して得られた中性子計数率等の値を、前述したように、式(4)に代入して、すなわち、中性子逆増倍法により、各測定時点における中性子実効増倍 率の逆数1/Mを算出する。算出された各中性子実効増倍率の逆数1/Mの値、及び各測 定時点における、算出された核燃料物質の重量に基づいて、中性子実効増倍率の逆数1/ Mが0になる時点(臨界点)で蓄積される核燃料物質の重量W_cが求められる。

【 0 0 5 3 】

このように、本実施例によれば、中性子計数率を用いて求めた、ストレーナ11内に蓄 積された核燃料物質13の重量、及び中性子実効増倍率の逆数1/Mに基づいて、臨界点 において蓄積される核燃料物質の重量W_cをより精度良く求めることができる。このため 、冷却水12に核燃料物質13が流出する事故が万が一発生した場合においても、本実施 例は、原子力プラントの系統内の、冷却水12に含まれる核燃料物質13が蓄積される箇 所に蓄積された核燃料物質13の未臨界状態をより精度良く監視することができる。 【0054】

本実施例では、配管10内に設けられたストレーナ11に蓄積された核燃料物質13か 50

40

ら放出される 線をLaBr₃(Ce)検出器3で検出し、LaBr₃(Ce)検出器3 から出力された 線検出信号に基づいて求められた 線計数率を用いて 線スペクトル分 布の情報を作成し、 線スペクトル分布の情報に含まれる或る放射性核種(例えば、Cs - 1 3 7)のピークの 線計数率を用いてストレーナ11内に蓄積された核燃料物質13 の重量を求めているので、時間の経過と共に蓄積量が変化してその蓄積量が分からないス トレーナ11内の核燃料物質13の重量をより精度良く把握することができる。 【0055】

従来の一般的な中性子逆増倍法を適用し、逆増倍曲線の外挿により核燃料物質の予測臨 界量を推定する場合には、中性子計数率の測定値のみを用いており、もし、中性子の増倍 があった場合においても、中性子計数率の急激な上昇に基づいて臨界になることを予測す るしかなかった。このため、従来例では、原子力プラントの或る箇所に蓄積された核燃料 物質の臨界を精度良く監視することができなかった。

【0056】

本実施例では、蓄積された核燃料物質から放出された中性子の検出により測定された中 性子計数率、及び蓄積された核燃料物質の重量(本実施例では 線検出器であるLaBr ₃(Ce)検出器3から出力された 線検出信号に基づいて算出された、核燃料物質の重 量)を用いて蓄積された核燃料物質の臨界を精度よく予測することができるので、蓄積さ れた核燃料物質の未臨界状態をより精度良く監視することができる。

【 0 0 5 7 】

後述の実施例2及び3では、核燃料物質の重量と共に核燃料物質に含まれる混合物の重 20 量も併せて求めてしまう。蓄積された核燃料物質から放出される 線に基づいて核燃料物 質の重量を求めている本実施例は、蓄積された核燃料物質の重量を後述の実施例2及び3 よりも精度良く求めることができる。このため、本実施例は、実施例2及び3よりも、蓄 積された核燃料物質の未臨界状態を精度良く監視することができる。

【実施例2】

【0058】

本発明の他の実施例である実施例2の核燃料物質の臨界監視方法を、図5を用いて説明 する。

【0059】

本実施例の核燃料物質の臨界監視方法に用いられる臨界監視装置1Aは、実施例1で使 30 用される臨界監視装置1においてLaBr₃(Ce)検出器3をロードセル(荷重計測装 置)6に替えた構成を有する。ロードセル6はデータ処理装置4に接続される。臨界監視 装置1Aの他の構成は臨界監視装置1と同じである。

[0060]

ロードセル6は容器であるキャニスタ14内に設置され、核燃料物質を移送する吸引ホ ース15がキャニスタ14に接続される。

【0061】

原子カプラントにおいて、原子炉圧力容器内の炉心に装荷されている燃料棒から冷却水 中に核燃料物質が流出する事故が万が一発生し、原子カプラント内の冷却水が流れる有る 箇所に、その核燃料物質16が蓄積された場合を想定する。その箇所に蓄積された核燃料 物質16は、吸引ホース15を通して冷却水と共にキャニスタ14内に移送される。キャ ニスタ14内にはストレーナ(図示せず)が設置されており、このストレーナにより冷却 水が分離される。この結果、核燃料物質16はロードセル6の上に溜まる。ロードセル6 は、溜まったその核燃料物質13の重量を計測する。ロードセル6で測定された核燃料物 質13の重量の情報がデータ処理装置4に入力される。

【0062】

ロードセル6によって核燃料物質16の重量が測定されているとき、He-3比例計数 管2が、キャニスタ14内の核燃料物質13に含まれる自発核分裂性物質(例えば、キュ リウム)から放出される中性子を検出し、中性子検出信号を出力する。この中性子検出信 号は、データ処理装置4に入力される。データ処理装置4は、中性子検出信号に基づいて

中性子計数率を求め、実施例1と同様に、この中性子計数率等を式(4)に代入して用いて中性子実効増倍率の逆数1/Mを求める。さらに、データ処理装置4は、各核燃料物質13の重量及び各中性子実効増倍率の逆数1/Mに基づいて逆増倍曲線の式を求め、この逆増倍曲線の式を用いて中性子実効増倍率の逆数1/Mが0になる臨界点における核燃料物質の重量Wcを算出する。算出された核燃料物質の重量Wc及び各測定時点での核燃料物質の重量の情報が表示装置5に表示される。

【0063】

本実施例は、実施例1で生じる各効果を得ることができる。

【実施例3】

【0064】

10

20

30

40

本発明の他の実施例である実施例3の核燃料物質の臨界監視方法を、図6を用いて説明する。

【0065】

本実施例の核燃料物質の臨界監視方法に用いられる臨界監視装置1 B は、実施例1で使用される臨界監視装置1 においてL a B r 3 (C e)検出器3を差圧計7に替えた構成を 有する。臨界監視装置1 A の他の構成は臨界監視装置1 と同じである。

【0066】

差圧計7はデータ処理装置4に接続される。配管10内に設けられたストレーナ11よ りも上流で配管10内に開口する圧力管、及び配管10内に設けられたストレーナ11よ りも下流で配管10内に開口する他の圧力管が、圧力計7に接続される。

[0067]

冷却水12に核燃料物質13が流出する事故が万が一発生した場合には、核燃料物質1 3を含む冷却水12が配管10内を流れる。冷却水12がストレーナ11を通過するため 、冷却水12に含まれる核燃料物質13が、実施例1と同様に、ストレーナ11に捕捉さ れ、ストレーナ11内に蓄積される。ストレーナ11内に核燃料物質13が蓄積されると 、核燃料物質13の蓄積量に対応してストレーナ11の上流とストレーナ11の下流で圧 力差が生じる。差圧計7は、ストレーナ11の上流側での配管10内の圧力とストレーナ 11の下流側での配管10内の圧力の差を検出し、検出した差圧の情報をデータ処理装置 4に出力する。差圧計7で計測された差圧は、ストレーナ11内に蓄積された核燃料物質 13の重量と相関関係にある。蓄積された核燃料物質13の重量が増加すると、差圧計7 で計測された差圧も増加する。データ処理装置4は、入力した差圧の計測値に基づいて蓄 積された核燃料物質の重量を算出する。

[0068]

差圧計7によってストレーナ11の上流と下流の圧力差が計測されているとき、He-3比例計数管2が、ストレーナ11内に蓄積された核燃料物質13に含まれる自発核分裂 性物質(例えば、キュリウム)から放出される中性子を検出し、中性子検出信号を出力す る。この中性子検出信号は、データ処理装置4に入力される。データ処理装置4は、中性 子検出信号に基づいて中性子計数率を求め、実施例1と同様に、この中性子計数率等を式 (4)に代入して用いて中性子実効増倍率の逆数1/Mを求める。さらに、データ処理装 置4は、算出した各核燃料物質13の重量及び各中性子実効増倍率の逆数1/Mに基づい て逆増倍曲線の式を求め、この逆増倍曲線の式を用いて中性子実効増倍率の逆数1/Mが 0になる臨界点における核燃料物質の重量Wcを算出する。算出された核燃料物質の重量 Wc及び各測定時点での核燃料物質の重量の情報が表示装置5に表示される。 【0069】

本実施例は、実施例1で生じる各効果を得ることができる。本実施例は、差圧計7で計測した差圧に基づいて核燃料物質の重量を求めているので、実施例1における 線検出器 (例えば、LaBr₃(Ce)検出器)、及び実施例2におけるロードセル6及びキャニ スタ14が不要であり、単純な構成で蓄積された核燃料物質の重量を求めることができる

【符号の説明】

【0070】

1,1A,1B...臨界監視装置、2...He-3比例計数管(中性子検出装置)、3...L aBr₃(Ce)検出器(線検出装置)、4...データ処理装置、6...ロードセル、7... 差圧計、10...配管、11...ストレーナ、12...冷却水、13...核燃料物質、14...キャ ニスタ。

Y線エネルギー

【図5】

【図6】

図 6

フロントページの続き

- (72)発明者 近藤 貴夫 茨城県日立市幸町三丁目1番1号 日立GEニュークリア・エナジー株式会社内
- (72)発明者 伏見 篤
- 茨城県日立市大みか町七丁目1番1号 株式会社日立製作所 日立研究所内
- (72)発明者 上野 克宜 茨城県日立市大みか町七丁目1番1号 株式会社日立製作所 日立研究所内
- (72)発明者 岡嶋 成晃
 茨城県那珂郡東海村白方白根2番地4 独立行政法人日本原子力研究開発機構 東海研究開発セン
 ター 原子力科学研究所内

審查官 西村 直史

(56)参考文献 特開昭 6 2 - 2 9 3 1 9 4 (JP, A) 特開昭 6 2 - 0 9 6 8 9 7 (JP, A) 米国特許出願公開第 2 0 0 4 / 0 1 0 1 0 8 2 (US, A 1) 特開 2 0 1 2 - 1 1 2 8 6 2 (JP, A) 特開 2 0 0 8 - 2 3 2 8 3 4 (JP, A) 特開 平 0 2 - 1 2 8 2 0 0 (JP, A) 特開昭 6 0 - 1 1 5 8 9 9 (JP, A) 特開昭 5 1 - 0 6 8 1 4 8 (JP, A) 特開平 0 4 - 2 6 9 6 9 7 (JP, A) 特開平 0 4 - 2 6 9 6 9 7 (JP, A) 特開平 0 4 - 1 8 4 1 9 7 (JP, A) 特開平 0 4 - 1 8 4 1 9 7 (JP, A)

(58)調査した分野(Int.Cl., DB名)

G21C 17/06