公開資料

ATR 「Fugen」 Data Base Design/R&D/ Plant Performance [Nuclear]

		技	術	資	料		•	
開示区分		レオ	፥ — ኑ	No.		受	領	目
	J	1409	97	- 02	0	9.	6,	19.
		資料は には技		-			•	
	動力が	・核燃料	開発事業	団 技術協	为部	支術管理	里室	

March, 1997

PESCO Co., Ltd.

Inquiries about copyright and reproduction should be addressed to: Technical Evaluation and Patent Office. Technology Management Division. Power Reactor and Nuclear Fuel Development Corporation 9-13, 1-chome, Akasaka, Minato-ku, Tokyo 107, Japan

(C) Power Reactor and Nuclear Fuel Development Corporation 1997

ATR 「Fugen」 Data Base Design/R&D/Plant Performance [Nuclear]

Hiroshi Takeda* Sadamu Sawai* Hitoshi Ishigami*

Abstract

- Reflecton of R&D Results, Design and Operation Experiences
 All knowledge obtained in the project, such as R&D results, design,
 operation experiences and so on, are to be reflected to following items.
 - (1) Improvement of safety and reliability in plant operation
 - ② Design modification of the plant
 - 3 Design of the next plant
- Basic Standpoint for Data Base Composition
 "Design/R&D/Plant Performance Data Base" will be composed as shown in
 the following, so that the Data Base could be utilized for reflecting them to
 the above items and for improving the above items, effectively and efficiently.
 - (1) United Data Bases of Design and R&D

 "Design/R&D/Plant Performance Data Base" will be composed by uniting design data base and R&D data base, considering that the R&D of the project is mainly made in order to establish the design engineering and technical basis, such as design policy, design criteria, design conditions, alloable design limits, design verification, etc.
 - (2) Addition of Initial Plant Performance Data

 Design is made with safety factors, however, plants performwith its own characteristics, namely without safety factors.

 Therefore, plant performance data, especially initial plant performance data, are to be added in "Design/R&D/Plant Performance Data Base", so as to make following engineering works, effectively, and efficiently.

Work performed by PESCO Co., Ltd. under contract with Power Reactor and Nuclear Fuel Development Corporation PNC Liaison: Senior Engineer of ATR R&D Group, Reacter Development Project, Kazuteru Naruo *: PESCO Co., Ltd.

- Setting-up of appropriate safety factors, by comparing and evaluating the design and actual plant performance
- ② Ageing evaluation of components and equipment, coupled with annual inspection data
- ③ Clarification of reactor characteristics change according to fuel burnup and fuel composition change
- Upgrading technologies and design, based on the actual plant performance data
- 3 Compositon of "Design/R&D/Plant Performance Data Base"
 Based on the above consideration, "Design/R&D/Plant Performance
 Data Base" is composed of following items.
 - ① Design Basic Items (Table-1)
 - 2 Engineering data on design (Design technology basis) (Table-2)
 - ③ Plant Performance (Table-3)

Contents

Table 1	Design Basic Items · · · · · · · · · · · · · · · · · · ·	
	1. Design policy / basis / guideline · · · · · · 1-1	
	2. Design condition · · · · · 1-2	
	3. Design (specifications), safety margin · · · · · · 1-4	:
Table 2	Engineering Data on Nuclear Design · · · · · 2-1	
	1. Selection of optimum lattice · · · · · · 2-1	
	2. Nuclear characteristics · · · · · · · 2-2	1
	3. Nuclear design analysis code system (omitted)····· 2-4	:
	4. Technical information related to nuclear design (others) · · · · · · · 2-4	:
Table 3		
	1. Fuel loading · · · · · · · · · 3-1	
	2. Initial criticality · · · · · · · · · · · · · · 3-1	,
	3. Control rod reactivity worth · · · · · · 3-2	•
	4. Reactivity worth of liquid poison · · · · · · 3-3	}
	5. Shutdown margin····· 3-3	;
	6. Shutdown by heavy water dump · · · · · · 3-4	Ļ
	7. Coolant temp. coefficient of reactivity · · · · · 3-5	<u>,</u>
	8. Power coefficient of reactivity · · · · · 3-6	;
	9. Neutron flux distribution in core · · · · · · 3-6	;
	10. Power distribution in core · · · · · · 3-7	•
	11. Thermal-hydraulic Characteristics in core	;
	12. Characteristics of recirculation flow change)
	13. Response characteristics of recirculation pump trip	0.
	14. Response characteristics of power set point change 3-1	
	15. Response characteristics of main steam pressure set point change 3-1	
	16. Response characteristics of steam drum level set point change · · · · · 3-1	
	17. Response of disturbance in automatic control system · · · · · 3-1	4
	18. Power response characteristics of feeding poison · · · · · 3-1	5
	19. Control rod drop time · · · · · 3-1	.5
Roforon	R.	1

Table 1 ATR 「Fugen」 Data Base Design/R&D/Plant Performance [Nuclear]

Design Basic Items

	1	
Item	Design Policy, Design Condition, Design, etc	(T) (R) etc.
1. Design policy /	1. Design policy / basis / guideline	
basis / guideline		
(1) Reactivities	(1) Reactivities	
(i) Power coefficient	(i) Power coefficient	
	Always negative	
(ii) Coolant system	(ii) Coolant system void reactivity	
void reactivity	worth/layout 0 or negative	
(2) Power	(2) Power distribution	
distribution	Refueling and control rod programs shall be set	
	to obtain power distribution with satisfying	
	following heat removal limit.	
(i) Max. linear heat	(i) Max. linear heat rate:	
generation rate	17.5 kW/ft	
Z**\ 7k#* - 1, 1		
(ii) Min. critical	(ii) Min. critical heat flux ratio ≤ 1.9	
heat flux ratio	Corresponding to "Minimum critical heat	
	flux ratio ≤ 1.5 " at design power (120%)	
	of rated power)	
(2) Baseton alout dame.	(2) Decetor doubless :	
(3) Reactor shutdown margin	(3) Reactor shutdown margin	
margin	(i) 0.02 or more	
	(1) 0.02 of more	
	(ii) Shutdown margin shall be assured by control	
	rod in equilibrium core.	
	Tou in equinorium core.	
	(iii) Shutdown margin shall be assured by control	
	rod and liquid poison during transition period	
	Land of the state	

	from initial care to a milibuity	<u> </u>
	from initial core to equilibrium core.	
(4) Control rod	(4) Control rod reactivity worth/layout Reactivity worth and layout of control rod shall be determined so that core is kept subcritical with sufficient margin even in status where one control rod with maximum reactivity worth is completely withdrawn.	
(5) Heavy water dump level	(5) Heavy water dump level Subcriticality shall be assured even in initial core without poison at heavy water dump level or less.	
(6) Reactivity control method	(6) Reactivity control method Following methods are adopted. Solid control rod Liquid poison Heavy water dump	
2. Design condition	2. Design condition	
(1) Reactor thermal	(1) Reactor thermal power	
(i) Electric power	(i) Electric power 165 MWe	(R) HB (R) PD
(ii) Thermal power transmitted to coolant	(ii) Thermal power transferred to coolant 518.7 MWt	(R) PD
(2) Core	(2) Core	
(i) Coolant void distribution (density distribution)	(i) Coolant void distribution (density distribution) (mean value)	(R) THD

(ii) Coolant	(ii) Coolant temperature at core entrance: 277℃	(R) THD
temperature at		
(iii) Coolant temperature at core exit	(iii) Coolant temperature at core exit: 285℃	(R) THD
(iv) Fuel temperature distribution	(iv) Fuel temperature distribution (mean value)	(R) FD
(v) Heavy water	(v) Heavy water temperature	
temperature	(reactor entrance) : 70℃	(R) PD
	(reactor exit) : 51℃	(R) HB
(vi) Heavy water concentration	(vi) Heavy water concentration: 99.65%	(R) PD
(3) Primary coolant system	(3) Primary coolant system	
(i) Steam drum pressure	(i) Steam drum pressure: 68 kg/cm ² G	(R) PD
(4) Fuel assembly	(4) Fuel assembly	
(i) Fuel assembly dimension specifications	(i) Fuel assembly dimension specifications Refer fuel design	(R) FD
(ii) Fuel dimension	(ii) Fuel dimension (nominal value)	(R) OD
(nominal value)	Clad inner diameter: 14.70 mm	(R) FD
	Clad outer diameter: 16.46 mm	
	Pellet outer diameter: 14.40 mm	
	Pellet density: 95%	
(iii) Material	(iii) Material	(R) FD
(m) material	Clad: Zry-2	(T) TD
	Spacer tie rod: Zry-2	
L	pacet die rou. 213-2	l

	7.00	T
	Spacer: Inconel-718	
	Tie plate (upper and lower): SUS 13 (SUS 304)	
	Rod spring: Inconel-X	
(5) Pressure tube assembly	(5) Pressure tube assembly	
(i) Pressure tube assembly dimension specifications	(i) Pressure tube assembly dimension specifications Pressure tube assembly design shall be referred to.	(R) PTAD
(ii) Pressure tube dimension (nominal value)	(i i) Pressure tube dimension (nominal value) 117.8 mm	(R) OD
(iii) Material	(iii) Material	(R) PTAD
	Pressure tube: Zr-2.5wt%Nb	(,
	Pressure tube extension: SUS 50 Mod.	
	Pressure tube rolled joint ring: SUS 50 Mod.	
	(lower inner ring)	
	Inconel-718	
	(upper outer ring)	
(6) Calandria tube	(6) Calandria tube	
(i) Calandria tube dimension (nominal value)	(i) Calandria tube dimension (nominal value) Calandria tube inner diameter: 156.4 mm Calandria tube wall thickness: 1.9 mm	(R) SD
(ii) Material	(ii) Material	(R) SD
	Zry-2	
3. Design	3. Design (specifications), safety margin	
(specifications),		
safety margin		
(1) Core	(1) Core specifications	
specifications		
(i) Core layout,	(i) Core layout, control rod layout	(T) SD
control rod	Lattice pitch: 240 mm	(T) THD

layout	Control rod pitch: 480 mm	(T) DPA
	Number of fuel assemblies:	(T) SA
	124 (UO2 standard fuel)	
	96 (MOX standard fuel)	
	4 (special fuel)	
	Number of control rods : 4 (adjustment rod)	
	45 (safety rod)	
	License application for construction	
	modification of prototype ATR,	
	Attached document (complete book)	
	Attached document 8 Fig. 3.2-1, p. 8	
(ii) Core	(ii) Core specifications	(T) SA
specifications	Effective core height: Approx. 3,700 mm	
	Core equivalent diameter: Approx. 4,050 mm	
	Reflector thickness	
	(Radial direction): 400 mm	
	(Height direction): 400 mm	
	Moderator/fuel volume ratio: 8.24	
	Coolant/fuel volume ratio: 1.1	
	Fuel assembly: 28-rod cluster	
	Fuel enrichment	
	U enrichment: 1.5%	
	Puf enrichment: 0.55% + (natural U)	
	(Outer layer)	
·	0.80% + (natural U)	
	(Inter mediate layer) (Inner layer)	
	Mean burnup	
	Initial core: 10,000 MWD/t	
	Equilibrium core: 12,000 MWD/t	
(2) Control specifications	(2) Control specifications	
(i) Control rod	(i) Control rod	(T) SD
	Boron carbide	
	Two-layer cluster	

(ii) Liquid poison	(ii) Liquid poison	(T) SD
	Poison: D ₃ BO ₃	
	¹⁰ B concentration in heavy water:	
	11 ppm (initial core)	
(iii) Heavy water	(iii) Heavy water dump	(T) SD
dump	Heavy water dump level: 1,200 mm	
(3) Refueling	(3) Refueling program	
program	On-power refueling (1 fuel rod/2 to 4 days)	!
	On-power refueling shall be kept pending until	
	measures against fuel densification and BWR fuel	
	failure are made clear (after installation	
	modification licence was received).	
(4) Power	(4) Power distribution	:
distribution	• •	
(i) Design channel	(i) Design channel power distribution	(T) THD
power	Licence application for construction	(T) FD
distribution	modification of prototype ATR,	(T) DPA
	Attached document (complete book)	(T) SA
	Attached document 8 Fig. 15.2-1, p. 62	
(ii) Design power	(ii) Design power peaking facter	(T) SA
peaking facter	Channel power peaking facter: 1.58	
	Axial power peaking facter: 1.35	
	Local power peaking facter: 1.22	
	Engineering are taken into account	
	in these values.	
(5) Reactivity balance	(5) Reactivity balance	
(i) Shutdown	(i) Shutdown margin	(T) DPA
margin		(T) SA
		. ,

(ii) Reactivities	(ii) R	Ceactivities (\triangle)	K/K)		(T) SA
		I)	nitial core) (E	quilibrium core)	
	В	urnup	0.15		
	F	rom low to	0.03	0.03	
	1	high temperati	ure		
	A	ccumulation	0.04	0.04	
	of	f Xe and Sm			
	A	rea power conf	trol _\		
	P	ower leveling	0.03	0.02	
	<u>B</u>	urnup margin	<u> </u>		
		Total	0.25	0.09	
(iii) Control capacity	(iii) C	ontrol capacity	r (ΔK/K)		(T) SA
		(I:	nitial core) (E	quilibrium core)	
	C	ontrol rod	0.12	0.12	
<u> </u>	_ <u>L</u>	iquid poison	0.16	••••	
		Total	0.28	0.12	
(iv) Control rod worth having maximum		(△K/K)	·	simum reactivity	(T) SA
reactivity		(11	0.01	0.01	
1000014189			0.01	0.01	
(v) Other reactivity	Company of the compan	ther reactivity colant void rea icense applicat codification of p ttached docum loderator temp icense applicat codification of p ttached docum ttached docum ttached docum	ictivity ion for construction for construction for complete ent 8 Fig, 15.1 erature reacti ion for construction for construction for construction for complete	book) 1-1, p. 60 vity action , book)	(T) SA
(6) Reactivity coefficients	(6) Reac	ctivity coefficies	nts (rated pow	ver)	

	 		· · · · · · · · · · · · · · · · · · ·
(i) Power coefficient	(i)	(Initial core) / (Equilibrium core) Power coefficient -8.1×10^{-3} Δ k/k/ Δ p/p / -8.6×10^{-3} Δ k/k Δ p/p	(T) DPA
(ii) Fuel temperature	(ii)	Fuel temperature -1.6×10^{-5} \triangle k/k/C coefficient $/-1.6 \times 10^{-5}$ \triangle k/k/C	(T) SA
(iii) Coolant void coefficient	(iii)	Coolant void -2.0×10^{-4} Δ k/k/%void coefficient $/-1.4 \times 10^{-4}$ Δ k/k/%void	(T) SA
(iv) Coolant temperature	(iv)	Coolant -4.0×10^{-5} \triangle k/k/ $^{\circ}$ temperature coefficient $/-1.1 \times 10^{-5}$ \triangle k/k/ $^{\circ}$	(T) SA
coefficient (v) Moderator temperature coefficient	(v)	Moderator -1.1 \times 10 ⁻⁴ Δ k/k/ $^{\circ}$ C temperature coefficient /-4.2 \times 10 ⁻⁴ Δ k/k/ $^{\circ}$ C	(T) SA
(7) Heating of heavy water, etc. by γ		eating of heavy water, etc. by γ ray, neutron, tc.	
ray, neutron, etc. (i) Reactor thermal power	(i)		(T) SA (T) HB
(ii) Thermal power transmitted to	(i i)	Thermal power transferred to coolant:	(T) PD (T) THD
coolant (iii) Heat generated in heavy water	(iii)		(T) SD (T) DPA
(iv) Heat generated in shield	(iv)	Heat generated in shield: 3.2 MWt	(T) SD

Table 2 ATR 「Fugen」 Data Base Design/R&D/Plant Performance [Nuclear]

Engineering Data on Nuclear Design

	Design Francoins and Wash size leading of	(II) (II) -+-
Item	Design Engineering and Technical basis, etc.	(T) (R) etc.
1. Selection of	1. Selection of optimum lattice	
optimum lattice		
(1) Optimum	(1) Optimum calculation technique	
calculation		
technique		
(i) Optimum	(i) Optimum calculation flow sheet	
calculation flow	Committee 105, Reference paper	
sheet	Fig. 8.1-6, p. 8-12	
(ii) Price of major	(i i) Price of major structures, etc.	
structures, etc.	Based on USAEC Report DP-1007	
structures, etc.	Dased on CBARC Report D1 -1007	
(2) Optimum	(2) Optimum calculation condition	
calculation		
condition		
(i) Plant condition	(i) Plant condition	
	Thermal power: 1590 MWt	
	Electric power: 500 MWt	
	Core pressure: 72.5 kg/cm ² G	
	Fuel: Pu enriched natural U	
	Initial core shall be started from U core.	
	Pressure tube material: Zr-2.5wt%Nb	
	Calandria tube material: Zry-2	
(ii) Major	(i i) Major parameters	
parameters	Fuel rod diameter	
paramount	Lattice pitch	
	Number of cluster fuel rods	
	Transer of cluster rue; rous	
(iii) Major control	(iii) Major control condition	
condition	Minimum gap between fuel rods: 2.0 mm	

***************************************		1
	Minimum pitch between lattices: 240 mm	
	Coolant void reactivity (entire core)	
	Number of loops β	
(3) Optimum calculation result	(3) Optimum calculation result Committee 105, Reference paper Fig. 8.1-7, p. 8-13 In case of 28-rod cluster (selected)	
(4) Modification from selected lattice	(4) Modification from selected lattice Minimum gap between fuel rods: 2.0 mm → 2.1 mm Gap between fuel and pressure tube: 2.285 mm →3.1 mm Calandria tube inner diameter: 149.8 mm → 156.4 mm	
2. Nuclear characteristics (1) Initial core characteristics	Nuclear characteristics (1) Initial core characteristics	
(i) Coolant void reactivity	(i) Coolant void reactivity Committee 82, Reference paper Fig. 6.2-1, p 78 Fig. 6.3-1, p 81 Fig. 6.3-1, p. 81	(T) DPA (T) SA
(ii) Moderator temperature reactivity	(ii) Moderator temperature reactivity (Committee 82, Reference paper Fig. 6.2-2, p 79	(T) SA
(iii) Power distribution	(iii) Power distribution Written with burnup core characteristics in (2.(2)(iii))	

(iv) Change in	(iv) Reactivity change when light water mixes into	(T) DPA
reactivity when	heavy water	(T) SA
light water mixes	Committee 63, Reference paper	(I) OA
into heavy water	Fig. 7.5-1, p 123	
mto neavy water	Fig. 1.5-1, p 125	}
(v) Change in	(v) Reactivity change when heavy water level is	(T) SA
reactivity when	fluctuated	
heavy water level	Committee 63, Reference paper	
is fluctuated	Fig. 7.10-1, p. 148	
	Table 7.10-2, p. 148	
(2) Burnup core	(2) Burnup core characteristics	
characteristics		
(i) Coolant void	(i) Coolant void reactivity (equilibrium core)	
reactivity	Written with initial core characteristics	
	in (2.(1)(i))	
(ii) Moderator	(ii) Moderator temperature reactivity	
temperature	(equilibrium core)	
reactivity	Written with initial core characteristics	
	in (2.(1)(i))	
(iii) Change in manne	(iii) Ohan an in manna diataibatian	(III) (IIII)
(iii) Change in power	(iii) Change in power distribution	(T) THD
	Change in axial power distribution in axial	(T) FD
	direction	(T) DPA
	Committee 82, Reference paper	(T) SD
	Fig. 6.6-1, p 90	
	Fig. 6.6-2, p. 91	
	Change in channel power distribution	
	Committee 82, Reference paper	
	Fig. 6.6-3, p 92	
	Fig. 6.6-4, p 93	
	Fig. 6.6-5, p. 94	
(iv) Reactivity	(iv) Reactivity change (initial core)	(T) DPA
change	Committee 63, Reference paper	(T) SA
	Fig. 7.2-1, p 117	,-,
	C CD* 1 *** ** * * * * * * * * * * * * * *	

· · · · · · · · · · · · · · · · · · ·		
(v) Reactivity worth of new fuel	(v) Reactivity worth of new fuel Committee 63, reference paper Fig. 7.4-1, p 121 (During on-power operation)	(T) SA
(vi) Change in power peaking coefficient distribution	(vi) Change in power peaking coefficient Committee 105, reference paper Fig. 8.1-5 (1), p 8-7 Fig. 8.1-5 (2), p 8-8 (During on-power operation)	(T) SA
3. Nuclear design analysis code system (omitted)	3. Nuclear design analysis code system (omitted) Following shall be written from design analysis code system.	
	(1) List-up of nuclear design analysis codes for each nuclear design item and analysis flow	
	(2) Accuracy of nuclear design analysis code	
4. Technical information related to nuclear design (others) (1) Core material	4. Technical information related to nuclear design (others) (1) Core material	
(i) Fuel pellet impurity	(i) Fuel pellet impurity Application for approval of initial load fuel design Attached document [I] Table III-2, p. 11	(R) FD
(ii) Zry-2 composition	(ii) Zry-2 composition Application for approval of initial load fuel design p. 2, ditto, Attached document [I] Table III-3, p. 12	(R) FD

-		
(iii) SUS 304	(iii) SUS 304 (SUS-13) composition	(R) FD
composition	(Application for approval of initial load fuel	Ì
	design, p. 3)	
(i-) In and 710	(:v) T 1.710	
(iv) Inconel-718	(iv) Inconel-718 composition	(R) FD
composition	(Application for approval of initial load fuel	
	design, pp. 4 and 5)	
(v) Inconel-X	(v) Inconel-X composition	(R) FD
composition	(Application for approval of initial load fuel	
	design, p. 4)	
(vi) SUS 630	(vi) SUS 630 composition	(R) FD
composition	(Application for approval of initial load fuel	(A) FD
Composition	design, p. 6)	
ļ	ucsign, p. 0/	
(vii) SUS 50Mod.	(vii) SUS 50Mod. composition	(R) PSD
composition	("Fugen" development	
	Table 2.3-11, p. 79	
(vii) Zr-2.5wt%Nb	(viii) Zr-2.5wt%Nb composition	(R) PSD
composition	Application for approval of special design	
	facility	
1	Table 1, p. 2-2-(3)	
(2) Control rod	(2) Control rod	
(i) General drawing	(i) General drawing	(R) SA
(,,	Licence application for installation	(II) DA
	modification of prototype ATR,	
	Attached document (complete book)	
	Attached document 8 Fig. 3.5-1, p. 15	
(ii) Specifications	(ii) Specifications	(R) SA
	Poison: B ₄ C	
	Poison tube	
	Material: SUS 304	

	Outer diameter: 4.8 mm	
	Inner diameter: 3.5 mm	
	Layout: 81 rods, two-layer cluster	
	Effective poison length: 3,700 mm	
	Poison charging degree: 1.75 g/cm ³	
	(vibration charging)	
(3) Comparison of nuclear calculation with experiments and	(3) Comparison of nuclear calculation with experiments and actual results Refer to nuclear design analysis code system	
actual results		
- -		
	·	·

Table 3 ATR 「Fugen」 Date Base Design/R&D/Plant Performance

[Nuclear]

Engineering Data on Plant Characteristics

Item	Plant Park	ъ.,
	Plant Performance	Remarks
1 Fuel loading	1 Fuel loading	
(1) Fuels loaded	(1) Fuels loaded	
(1) Fuels loaded		
	Standard U fuels :124 Assemblies	
	Standard MOX fuels : 96 Assemblies	
	Special fuels : 4 Assemblies	
(2) Fuel	(2) Fuel specifications	
specifications	Table-1.1 : Fuel specificarions	:
_	[Commissioning test report, P-17, & 18]	
·	, , , , , , , , , , , , , , , , , , , ,	
(3) Fuel	(3) Fuel arrangement	
arrangement	Fig.1.3: Fuel arrangement	
	[Commissioning test report, P-20]	
2 Initial criticality	2 Initial criticality	
(1) Summary of	(1) Summary of Criticality tests	
criticality		
test	Table-2.1: Reactor core configuration for critical tests	
lest	[Commissioning tets report, P-25]	
(2) Min. criticality	(2) Min. criticality	
	(i) Min. No. of fuels for criticality	
	22 assemblies	
	(i i) Core Configuration for min. criticality	
	Fig.2.2: Fuel arragement for min. criticality	
	[Commissioning test report, P-28]	

	(iii) Inverse mulitiplication factor
	Fig.2.3 : Inverse multiplication factor
	[Commissioning test report, P-29]
(3) Core with 100	(3) Core with 100 assemblies for criticality test
assemblies for criticality	(Adjusted with boron concentration)
test	
	(i) Core configuration with 100 fuel assemblies
	Fig.2.4: Fuel arrangement for criticality test
	[Commissioning test report, P-29]
	(ii) Inverse multiplication factor
	Fig.2.5 : Inverse multiplication factor
	[Commissioning test report, P-30]
(4) Full core fuel	(4) Full core fuel loading for criticality test
loading for	(Adjusted with boron concentration)
criticality test	(,
	(i) Arrangement of full core fuel loading
	[Commissioning test report, P-30]
	(ii) Inverse multiplication factor
	Fig.2.7: Inverse multiplication factor
	[Commissioning test report, P-30]
3 Control rod	3 Control rod reactivity worth
reactivity worth	
(1) Test method	(1) Test method
	(i) Fuel loading
	Full core
	(i i) Measurement method of control rod reactivity worth
	Reactor period method

(2) Control rod	(2) Control rod reactivity worth	
reactivity	Fig.3.1: Control rod reactivity worth measurement	
worth	[Commissioning test result, P-35]	Î
(3) Integrated	(3) Integrated resetivity of sentual and	
	(3) Integrated reactivity of control rod	ļ
reactivity of	Fig. 3.1: Integrated reactivity of contorl rod	
control rod	[Commissioning test report, P-36]	
4 Reactivity worth	4 Reactivity worth of liquid poison	
of liquid poison		
(1) Test method	(1) Test method	
	(i) Full core fuel loading	
	(ii) All control rods, except one, are withdrawn,	
	and criticality is achieved with adjusting poison	
	concentration.	
	(iii) Poison reactivity worth is evaluated	
	with comparing poison concentration	
	change and control rod movement.	
	change and control for movement.	
(2) Reactivity	(2) Reactivity worth of liquid poison	
worth of liquid	Table-4.1: Reactivity worth measurement of liquid	
poison	poison	
	[Commissioning test report, P-38]	
5 Shutdown	5 Shutdown margin	
margin	_	
(1) Test method	(1) Test method	
	(i) Shutdown margin varidation test-1	
	Make full core fuel loading with all	
	control rods inserted into the core.	
	Adjust boron concentration to the	
	value at the commencement of nuclear heating.	

	
	Confirm sub-criticality with withdrawing the control
	rod of max. reactivity worth.
	(ii) Shutdown margin varidation test-2
	Make full core fuel loading with all
	control rods inserted into the core.
	Adjust boron concentration to the
	value at the commencement of nuclear heating.
	Confirm sub-criticality with with- drawing 4 control
	rods.
	(iii) Min. boron concentration varidation test for shutdown
	Make full core fuel loading with the
	max. controd rod withdrawn.
	Confirm the min. boron concentration to keep
	1%/ Δ k/k of shutdown margin in the cold shutdown.
(2) Shutdown	(2) Shutdown margin
margin	
	(i) Shutdown margin
	Table-5.1 : Shutdown margin Measurement
	[Commissioning test report, P-40]
	(i i) Inverse multiplication factor in shutdown margin
	measurement for min. boron concentration
	Fig.5.1 : Inverse multiplication factor curve
	[Commissioning test report, P-40]
6 Shutdown by	6 Shutdown by heavy water dump
heavy water	
dump	
(1) Test method	(1) Test method
	(i) Make full core fuel loading.
	Adjust boron concentration to the value
	at the commencement of nuclear heating.
	

	(ii) Confirm sub-criticality with making heavy water	
	dump.	
(2) Shutdown by	(2) Shutdown by heavy water dump	
heavy water		
dump	(i) Shutdown by heavy water dump	
	Table-6.1: Shutdown confirmation by	
	lowering heavy water level	
	[Commissioning test report, P-42]	
	(i i) Inverse multiplication factor in	
	lowering heavy water level	
	Fig.6.2: Inverse multiplication factor	
	in lowering heavy water level	
	[Commissioning test report, P-43]	
5 6 1 44		-
7 Coolant temp.	7 Coolant temp. coefficient of reactivity	
reactivity		
(1) Test method	(1) Test method	
	(i) Set coolant temperature at 40 °C,	
	120℃,160℃,220℃, respectively.	İ
	(ii) At each coolant temperature, give	
	10℃ of temperature change, and	
	evaluate the reactivity change.	
(2) Coolant temp.	(2) Coolant temp. reactivity coefficient	
coefficient of	Table-10.1 : Coolant temp, reactivity	
reactivity	coefficient measurement	
	[Commissioning test report, P-64]	
	Fig.10.1: Coolant temp. reactivity	
	coefficient measurement	
	[Commissioning test report, P-64]	

8 Power coefficient	8 Power coefficient of reactivity	. .
of reactivity		
(1) Test method	(1) Test method	
	(i) Keep power at the set point.	
1	(ii) Change the power by inserting the	
	control rod whose reactivity worth is known.	
	Evaluate power coefficient of reactivity.	
(2) Power	(2) Power coefficient of reactivity	
of reactivity	(i) Electric power: 25%, 50%, 75%, 100%	:
	(ii) Power coefficient of reactivity	
<u> </u>	Table-18.1 : Power coefficient of	
	reacivity measurement	
	[Commissioning test report, P-122]	
ļ	Fig.18.1: Relationship between thermal power	
	and powercoefficient of reactivity	
	[Commissioning test report, P-123]	
9 Neutron flux		
9 Neutron flux distribution	9 Neutron flux distribution in core	
in core		
(1) Test method	(1) Test method	
(1) 1000 11000	Measure neutorn flux distribution with	
	movable neutron flux monitors	
(2) Arrangement of	(2) Arrangement of neutorn flux monitors	
neutron flux		ļ
monitors		
	(i) Arrangement of PCM (Power Callibration Monitor)	
	Fig.15.1: Arrangement of PCM	
	[Commissioning test report, P-105]	
·		

	(ii) Arrangement of LPM (Local Power Monitor)	
	, , ,	
	Fig.19.1: Arrangement of neutron flux monitors	
	[Commissioning test report, P-126]	
(3) Neutron flux distribution	(3) Neutron flux distribution	
	(i) Electric power: 25%, 50%, 75%, 100%	
	(ii) Axial neutron flux distribution	
	Fig.15.1: Axial neutron flux distribution	
	(Location: 18-72)	
	[Commissioning test report, P-106]	
	(iii) Axial neutron flux distribution	
	Fig.15.2: Axial neutron flux distribution	
	(Location: 26-64)	
	[Commissioning test report, P-106]	
10 Power distribution in core (1) Calculation flow of power	10 Power distribution in core (1) Calculation flow of power distribution Fig.16.1: Calculation flow of power distribution	
distribution	and heat removal limit	
	[Commissioning test report, P-111]	
(2) Power distribution in core	(2) Power distribution in core	
	(i) Electric Power: 50%, 75%, 100%	
	(ii) Radial power distribution	
	Fig.16.7: Radial power distribution	
	[Commissioning test report, P-114]	
	(iii) Aixial power distribution	
	Fig.16.8: Axial power distribution	
	[Commissioning test report, P-114]	

	(iv) Power distribution in core	
	Fig.16.9: Power distibution in core (100% power)	
	[Commissioning test report, P-116]	
	o mysaya aay	
11 Thermal-hydraulic characteristics in core	11 Thermal-hydraulic Characteristics in core	
(1) Test method	(1) Test method	
	(i) Flow distribution in reactor inlet pipes	
	Measure differential pressure between lower header	
	and drain collection pipe. (Refer to Fig.24.2)	
	Measure flow in reactor inlet pipes with channel flow meter installed.	
	Measure flow in reactor inlet pipes	
	with ultrasonic flow meter.	
	(ii) Recirculation flow characteristics	
	Measure recirculation flow with flow	
	meters installed in primary coolant system.	
(2) Thermal-hydraulic characteristics	(2) Thermal-hydraulic characteristics	
	(i) Flow distribution characteristics	
	in reactor inlet pipes	
	Fig.23.5 : Flow distribution in reactor inlet pipes	
	(Room temperature)	
	[Commissioning test report, P-149]	
	(ii) Recirculation flow characteristics	
	(Room temperature)	
<u>;</u>	2394 t/hr: at low recirculation flow	
	4393 t/hr : at high recirculation flow	
	(Relationship between reactor power	
	and recirculation flow)	
	Fig.23.9 : Relationship between reactor power and	

1	
	recirculation flow
	[Commissioning test report, P-152]
;	
	(iii) Natural convection characteristics
	in reactor inlet pipes after scram
	(Recirculation pumps are stopped)
	Fig.23.8: Flow in reactor inlet pipes after
	reactor shutdown (Natural convection)
	[Commissioning test report, P-151]
12 Characteristics	12 Characteristics of recirculation flow change
of recirculation	ļ
flow change	
(1) Low flow==>	(1) Low flow==>High flow
High flow	
	(i) Test conditions
	Electric power : 35%, 40%
	Automatic power control : worked
	Manual feed water control : worked
	Table-39.2: Conditions of recirculation flow change
	[Commissioning test report, P-217]
	(ii) List of plant data affected
	Recirculation flow
	Steam drum water level and pressure
	Steam flow
	Neutron flux
	Generator power
	(iii) Response characteristics in recirculation flow change-1
	Fig.39.2: Response characteristics
	in recirculation flow change
	[Commissioning test report, P-219]
	Commissioning test report, 1 -213
	(iv) Response characteristics in recirculation flow change-2
	Fig.39.3: Response characteristics
	in recirculation flow change

	[Commissioning test report, P-221]
(2) High flow==> Low flow	(2) High flow==> Low flow
	(i) Response characteristics in recirculation flow change-1
	Fig.39.4: Response characteristics
	in recirculation flow change
	[Commissioning test report, P-223]
2	(ii) Response characteristics in recirculation flow change-2
	Fig.39.5: Response characteristics
	in recirculation flow change
	[Commissioning test report, P-225]
13 Response	13 Response characteristics of recirculation pump trip
characteristics	
of recirculation	
pump trip	
(1) Recirculation	(1) Recirculation pump trip conditions
pump trip	Table-40.1: List of recirculation pump trip conditions
conditions	[Commissioning test report, P-230]
(2) Test conditions	(2) Test conditions
	Electric power: 50%, 100%
	Number of pumps tripped: 2
(3) Response characteristics of recirculation pump trip	(3) Response characteristics of recirculation pump trip
	(i) Plant data change
	Table-40.3: Plant data change
	[Commissioning test report, P-230]
	(i i) Response characteristics of recirculation pump trip-1
	Table-40.2: Test result of recirculation pump trip
	[Commissioning test report, P-230]

	(iii) Response characteristics of recirculation pump trip-2 Fig.40.2: Test result of recirculation pump trip [Commissioning test report, P-231]
14 Response characteristics of power set point change	14 Response characteristics of power set point change
(1) Test conditions	(1) Test conditions Electric power: 50%, 75%, 100% Set point change: 5%~10% Input gain : 100 Dead zone : 0.4 sec. ON time : 0.3 sec. OFF time : 0.2 sec. Delay time : 0.6 sec.
(2) Response characteristics of power set point	(2) Response charcteristics of power set point change
change	(i) Response characteristics of power set point change-1 Table-41.1: Test result of power set point change [Commissioning test report, P-238]
	(ii) Response characteristics of power set point change-2 Table-41.2: Test result of power set point change [Commissioning test report, P-239] Table-41.3: Test result of power set point change [Commissioning test report, P-239]
	(iii) Response characteristics of power set point change-3 Fig.41.2: Test result of power set point change [Commissioning test report, P-243] Fig.41.3: Test result of power set point change [Commissioning test report, P-240]

15 Response	15 Response characteristics of main steam	
characteristics	pressure set point change	
of main steam	The form of the fo	
pressuure set	·	
point change		
(1) Test conditions	(1) Test conditions	1
	Electric power: 25%, 50%, 75%, 100%	
	Pressure set point change: -0.5 kg/cm2	}
(2) Response of	(2) Response of main steam pressure set point change	1
main steam	property of the property of th	
pressuure set		
point change		
	(i) Plant data change	
	Fig.44.1: Test result of main steam	
	pressure set point change	
	[Commissioning test report, P-265]	
	Table-44.2 : Plant data change	
	[Commissioning test report, P-265]	
	(ii) Response characteristics of main	
	steam pressure set point change	
	Fig.44.2: Test result of main steam	
	pressure set point change	
İ	[Commissioning test report, P-266]	
(3) Performance of	(3) Performance of back-up pressure controller	!
back-up pressure		
controller	(i) Plant data change	
	Table-44.3: Plant data change	
	[Commissioning test report, P-265]	į
	(ii) Performance of back-up pressure controller	
	Fig.44.3: Test result of back-up pressure controller	
	[Commissioning test report, P-267]	

16 Response
characteristics
of steam drum
level set point
change

16 Response characteristics of steam drum level set point change

(1) Test conditions

(1) Test conditions

Up to 25% power: 1 element control with

low feed water flow control valve

25%~100% Power: 3 element control with

feed water flow control valve

Level change : 20mm (1 element control)

50mm (3 element control)

Low feed water flow control valve

Gain constant:

5

Reset time

: 450 sec.

Feed water flow control valve

Gain constant: 0.

0.45

Reset time

: 450 sec.

- (2) Response characteristics of steam drum level set point change-1
- (2) Response characteristics of steam drum
 level set point change-1
 (1 element control with low feed water flow control valve)
- (i) Plant data change
 Table-47.2: Plant data change
 [Commissioning test report, P-284]
- (ii) Response characteristics of steam
 drum level set point change
 Fig.47.2: Test result of stea drum
 level set point change
 [Commissioning test report, P-285]
- (3) Response characteristics of steam drum level set point change-2
- (3) Response of steam drum level set point change-2(3 element control with feed water flow control valve)

	4.3
	(i) Plant data change
	Table-47.4 : Plant data change
	[Commissioning test report, P-286]
	(ii) Reponse characteristics of steam
	drum level set point change
	Fig.47.3: Response characteristics
	of steam drum level set point change
	[Commissioning test report, P-287]
17 Response	17 Response of disturbance in automatic control system
characteristics	
of disturbance	
in automatic	
control system	
(1) Test conditions	(1) Test conditions
	Thermal Power: 50%
	Partial insertion of control rod (-1.5 ¢)
(2) Response char-	(2) Response characteristics of disturbance
acteristics of	in automatic control system-1
disturbance in	in automatic control system 1
automatic	
control system-1	
	(i) Response characteristics-1
	Fig.41.4: Response characteristics of disturbance
	in automatic control system
	[Commissioning test report, P-241]
	(ii) Response characteristics-2
	Neutron flux : 0.7% is lowered
	Settled within 30 sec
	Steam flow : 10 t/hr is lowered tentatively
	Generator power: 1 MWe is lowered
	·

18 Power response characteristics of feeding feeding poison (1) Test cond itions	18 Power response characteristics of feeding poison (1) Test conditons Electric power: 35% Core status: Xe is saturated	
(2) Power response characteristics	 (2) Power response characteristics (i) Power response characteristics-1 (at removing poison) Fig.13.5: Power response character- 	
	istics at removing poison [Commissioning test report, P-90]	
	(ii) Power response characteristics-2 (at poison feeding) Fig.13.6: Power response characteristics at feeding poison [Commissioning test report, P-90]	
19 Control rod drop time (1) Control rod arrangement	Control rod drop time (1) Control rod arrangement Fig.25.1: Control rods arrangement in core	
(2) Control rod	[Commissioning test report, P-160]	
drop time	(2) Control rod drop time Table-25.2: Test result of control rod drop time [Commissioning test report, P-159]	

References

- (1) Application for caanstruction modification permit of ATR prototype reactor, Attached document 8 (June, 1976)
- (2) Application for caanstruction modification permit of ATR prototype reactor, Committee 63, Reference paper, (November, 1970)
- (3) Application for caanstruction modification permit of ATR prototype reactor, Committee 82, Reference paper, (January, 1972)
- (4) Application for caanstruction modification permit of ATR prototype reactor, Committee 105, Reference paper, (September, 1974)
- (5) Application for fuel assembly design approval for initial core loading of ATR protptype reactor, Tsuruga works, (November, 1974)
- (6) Application for specially designed facility approval based upon nuclea power station engineering standards, (February, 1974)
- (7) "Fugen", reseach and development, PNC, (June, 1991)
- (8) "Fugen" Commissioning Tests, PNC SN 79-11, (September, 1979)