J A S PER実験解析

一関連ユーティリティ類の整犕一（動力炉•核燃料開発事業団 契約業務報告書）

1995年3月

アイ・ティ・ジェイ (株)

複製又はこの資料の入手については，下記にお問い合わせください。

〒311－13 茨城県東茨城郡大洗町成田町4002

動力炉•核燃料開発事業団
大洗工学センター システム開発推進部•技術管理室

Enquires about copyright and reproduction should be addressed to：Technology Management Section O－arai Engineering Center，Power Reactor and Nuclear Fuel Development Corporation 4002 Narita－cho，O－arai－machi，Higashi－Ibaraki， Ibaraki－ken，311－13，Japan

動力炉•核燃料開発事業団（Power Reactor and Nuclear Fuel Development Corporation）

J A S P ER実験解析

一関連ユーティリティ類の整備一

多田誠一郎＊，中嶋太二＊

要 旨

本報告書は，「J A S P ER実験解析」で使用した一連の中性子輸送計算コード類（ANISN，DOT3．5，DORT等）に関し て，各コードの入出カファイルの内容を調査し，まとめたものである。

「JASPER実験解析」作業では，主にDOT3．5コード・シ ステムを用いた評価計算を行った。この中で，関連ファイルに対する データの追加，書式変換等を行う為の小ユーティリティを作成して使用している。これらのうちのいくつかについて，プログラムの内容，使用方法を揭載する。

本報告書は，アイ・ティ・ジェイ（俆が，動カ炉•核燃料開発事業団との契約により実施し た業務の成果である。

契約番号：06C3262
事業団担当部課室および担当者：基盤技街開発部•炉心技術開発室
庄野 彰
＊：アイ・ティ・ジェイ（新）水戸支社 サイエンス・テクノロジー部

J A S P ER実験解析関連ユーティリテイ類の整備

～目 次～

1．概 要 1
2．断面積ファイルの作成補助 －•• 5
2．1 MOTファイルの内容 ．．． 5
2．2 MOT への媒質追加コーティリティ MOTtoM0T 6
3．ANISN関連 10
3．1 ANISNスカラ・フラックス・ファイルの内容 ．．． 10
3．2 ANISN形式ファフルの作成 convAF ．．．$\quad 11$
4．D OT3． 5 関連 14
4．1•DOT3．5境界中性子源ファイルの内容 ．． 14
4．2 DOT3．5スカラ・フラックス・ファイルの内容 15
5．D ORT関連 16
5． 1 DORT境界中性子源ファイルの内容 ．．． 16
5． 2 DOT3．5用境界中性子源ファイルの変換 BNDRYC ．．． 18
5．3 RTFLUM変換後のスカラ・フラックス・ファイルの内容 22
5．4 RTFLUM スカラ・フラックス・ファイリ のDOT3．5後処理プログラム用形式への変換 DORTDOT 23
6．J ASPER実験解析用ユーティリティ 29
6．1 NE213測定データの変換 NE213SP ．．． 30
6.2 マクロ断面積の縮約 XCOLPI ．．． 35
6.3 ナトリウム放射化量の計算 Na2C03 40

付録 DORT入カデータ・マニュアル
～図 表 目 次～

図． 1 J ASPER実験解析計算コード類の流れ
．．． 3
図2．2 MOTへの媒質追加エーティリティMOTtoMOT リース・リスト
．．． 7
図 3．2．1 AN I S N 形式ファイルの作成コーティ师ィ convAF リース・师ト… 12
図3．2．2 convAF用入カデータ例 $\quad \cdots \quad 13$
図5．2．1 DOT3．5用境界中性子源ファイルの変換エーティリデ BNDRYCリース・リスト 18
図5．2．2 境界線源ファイル変換コーテイリティ BNDRYC 実行プロシジャ $\quad . . .20$
図5．4．1 DORTDOT ソース・リスト \quad ••• 24
図5．4．2 DORTDOT実行プロシジャ・リスト … 28
図6．1 NE213SP ソース・リスト \quad ••• 30
図6．2．1 マクロ断面積縮約エーティリティ XC00LP1 リース・リスト $\quad 1$ ．．． 35
図6．2．2 100 群 ${ }^{23} \mathrm{Na}(\mathrm{n}, ~ \gamma)$ 反応断面積データ $\quad . . .39$
図6．2．3 縮約バラメタANISN100群計算結果クラリクク・データ… 39
図6．3放射化量計算エーティリティ Na2C03リース・リスト $\quad . . .40$

J A S PER実験解析関連エーティリテイ蘱の整備

1．概 要

本報告書は，数年来弊社で行った「J A S P ER実験解析作業」において調査•作成を行った，各種コードの関連ファイル及び解析の補助を行う小エーティ师ィ類に関する説明•使用方法等をまとめたものである。これにより，「JASPE R実験解析」と同様の作業を行うに当たって，各種コード類の使用•解析等にお ける一助となるものと考える。

また， 2 次元中性子輸送コードDORTコードの使用方法（入カデータ作成） について，同コードを用いた作業の中で確認された内容を明記した和文マニュア ルを作成し，これを付録に添付する。

本報告書の揭載内容を表，Iに，J A S P E R 実験解析作業における使用コ ードの流れを図，1に，それぞれ示す。

表． 1 JASPER実験解析関連コーデイリティ類—覧

無限希釈断面積）ァイ）J S D J 2 B P0C3J12．C0070．FILE．JSDJ2B．BAINARY

図． 1 J ASPER実験解析 計算コード類の流れ
（1／2）

［1．概 要］

図． 1 JASPER実験解析 計算コード類の流れ（2／2）
\qquad は，PNC所有コードを， \square

2．断面積ファイルの作成補助

「J A S P ER実験解析」では，「無限希歌断面積ファイルJSDJ2B」，「共鳴自己遮蔽因子ファイJJFTJ2B」を基にRADHEAT－V3コードを用いて，中性子 100 群実効断面積ファイルを作成して，解析に使用した。この作業の中で，ジ間厸 や师イ仏・パラフインは，前記のライプラリ中にデ ータが存在していないことから，他のライプ ラリからMACROJコード等を用いて断面積データを抽出 し，これをRADHEAT－V3の出カファイル形式に変換して，MOTに追加する処理を行っている。

ここでは，MOT：媒質毎編集形式の実効断面積ファイル（RADEEAT出力ファイルの連結ファ似） に関するファ似の書式（形式）を記すと共に，基準MOTへの媒質追加エーテイティMOTtoMOTの内容，使用方法を記す。

2． 1 MOTファイルの内容

媒質毎編集形式の実効断面積ファアルMOTは，RADHEAT－V3により作成した媒質別の実効断面積ファイルを基に，ANISN，DOT3．5解析システム中のプ听 ラ 4 TAPEGATHERを用いて各媒質断面積ファイルを連結したものであり，1種類の媒質に関して見れば，そのファイル内容はRADH EAT－V3の出カファイルと同一のものである。

MOTファイルの内容を表2．1に示す。

表2． 1 MOTファイルの内容

```
do 10 k = 1, nmat
    read(iunit) (nk (1), l=1,4),(titl(l), l=1, 12)
    read(iunit) ((x (lt, ig), lt=1, nk (2)),ig=1, nk (1))
10 continue
```

ここで，nmat ：MOTに含まれる媒質数。 （ねジャンドれ展開次数を含まない媒質の種類数）
nk（1）：エネルギー群数。
$n k$（2）：ルジャンドル展開次数（P1 次数）。 P_{3} の時， $\mathrm{nk}(2)=4$ 。
nk（3）：MOT内のレコード（シーケンス）番号。
nk（4）：マテリアル番号。通常，nk（4）＝nk（3）としておく。
titl ：媒質の名称等のラべれを48文字までで記述。［character＊4］

2． 2 MOT への媒質追加エーテイリティ MOT toMOT

ユーティリティMOTtoMOTは，数本の作成済みMOTファイルから任意の媒質を抽出し，基準MOTファイルに付加して，新しいMOTを作成するものでる。

以下に，MOTtoMOTの使用方法を，図2．2にMOTtoMOTのリース・プロダ jム・リストを示す。

【入カデータ】 スカデータは，以下の書式でFT05F001から与える。
Record\＃1 format（＊）NFILES，IGO，LPN
$\left.\begin{array}{lll}\text { Record\＃2 } & \text { format（＊）} & \text { IPN，NMAT，IMAT } \\ \text { Record\＃3 } & \text { format（＊）} & \text {（IGET（k）．K＝1，MAT）}\end{array}\right\}$ NFILE回繰り返す。 ここで，
NFILE ：入力として使用するMOTファイル数（最大10）
IGO ：入力MOTのエネルギー群数。入カファイル読み込み時に，エ䘞ギ一群数をチェックする。
LPN：出力MOTの P_{1} 次数。入力するMOT中の最大 P_{1} 次数を越えないこと。
IPN：入力MOTのP1次数。
NMAT ：入力側MOTに収録された媒質の総数（P1次数を展開しない数）。
IMAT ：入力側MOTから抽出する媒質の総数（ P 1 次数を展開しない数）。
IGET ：入力側MOTから抽出する媒質のMOT内1コード（シーケンス）番号。 Po のレコード番号をIMATケ スカする。

【ファイル設定】

【実行プロシジャ】
FREE AT（VBS FBA）
ATTR VBS LR（X）BLK（23476）RECFM（V B S） $\operatorname{DSORG}(\mathrm{PS})$
ATTR FBA LR（137）BLK（19043）RECFM（F B A）DSORG（PS）
ALLOC F （ FT 10 F 001 ）DA（maked－mot－file）NE T SP（10，5）USING（YBS）RELEASE
ALLOC F （FT06F001）DA（mot tomot－list）NE T \＄P（5，1）USING（FBA）RELEASE
ALLOC F（FT05F001）DA（input－data－file）SHR
ALLOC F（FT11F001）DA（input－mot－file－\＃1）
ALLOC F（ET12F001）DA（input－mot－file－\＃2）
？
ALLOC F（FTnnF001）DA（inpat－mot－file－\＃na）
RUN uty．fort（MOTtoMOT）
FREE AT（VBS FBA）F（FT05F001 FT06F001 FT10F001 FT11F001 FT12F001 ．．FTnnF001）
EXIT

```
        PROGRAM ADMOT
```



```
C (INPUT) RECH1 ; NFILES, IGO, LPN
            REC#2.1 ; IPN, NMAT, IMAT
            REC#2.2 ; (IGET (K),K=1, IMAT)
        REPEAT RECH2.1 AND REC#2.2 NFILES TINES.
            NFILES ; NUM OF INPUT MOT AND GROUPS
            IGO ; NEUTRON GROUP NUKBER OF INPUT M.O.T
            IPN ; NUN. OF ORDER OF SCATTERING FOR INPUT M. O.T
            NHAT ; NUN. OF MATERIALS IN INPUT M.O.T YITHOUT
                        ORDER OF SCATERRING.
            ImAT ; NUN. OF mATERTALS READ FROH INPUT M.O.T
            IGET : SEqUENCE ID-NO. READ FROM INPUT M.O.T
    (FILES) FT05F001 : INPUT DATA.
            FT06F001 : OUTPUIT LIST.
            FT10F001: OUTPUT NEY M. 0. T FILE.
                            FT11F001 ... FT (10+NFILES) F00: INPUT M. 0.T
C<<N. O.T FORMAT>>
                            REC#1 ; IG , ITL, SEQ-NO., MAT-D , (TITL (K), K=1, 12)
                            REC#2 : ( (X (I, J), I=1, ITL). J=1, IG)
C=================================================$===================
    CHARACTER TITL (12) *4, TITLE *48, FILEN (4) *10, OTITL (12) *4
    DIMENSION X (103, 100) , NK (4)
    DIMENSION IGET (500)
C
    data NFile / 10/
C
C----((( START )))--+----
    READ (5, %) NFILES , IGO , LPN
    HRITE (6, 6000) NFILES , IG0
6000 FORMAT (/,
    11】,'#########################################################', /.
    2 1X'# UTYLITY ADMOT MADE BY I.T.J 1993/OCT #',/.
```



```
    4 1X,'# ADMOT MAKES A NEM M.O.T FROM SUM M. O.T FILES. #',/.
    5 1X,'# THE MAX OF INPUT M.O.T IS 10 FILES. #,%/,
    6 1X,'######################################################',//
    7 1X,' NFILES =', I4,' GROUP =', I3,//)
C
    LHAT = 0
    DO 1000 I = 1. NFILES
C
        READ (5, #) IPN , NHAT . INAT
        READ (5, *) (IGET (L), L= L. IHAT)
`
        MRATE (6, 6100) [. IPN, MHAT, LHAT
        mRITE (6, 6110) (IGET(L), L=1, IEAT)
    6100 FORMAT (GHI.
    1 IX.'FILE(',I2,') PN(',I2,') NMAT=', I4,' IBAT=',I4,/.
    1 IX. '--- MAT-ID FOR USE ---')
6110 FORHAT (2 (4X, 515))
c
        NFILE = NFILE + 
        TRITE (6, 6120) NFILE
    6120 FORMAT(/, ld, '--- READ ORIGIMAL L.0.T --- GNIT(', I3, ')')
c
```

図 2． 2 MOTへの媒質追加エーティリティ MOTtoMOT ソース・リスト（1／3）

図 2．2 MOTへの媒質追加エーデ师ィ MOTtoMOT ソース・リスト（2／3）

```
9100 CONTINJE
    FRITE (6, 6.910) NFILE, K, KK-I, IHAT, IGET (IHAT)
6910 FORMAT (//.
    I 1X, *&# NOT FIND MATID.UNIT(',I3,') NHAT(', [3,') PN(', I2, ')',%.
    1 IX,* INPUT IHAT=',I3,' LAST-ID = ', [3,//.
    1 [X,' PROCESS [S TERHITED BY INPUT IGET DATA ERROR. ')
    STOP
C
9500 CONTINUE
    WRITE (6, 6950) NFILE, IGO, NK (1)
6950 FORMAT (//.
    1 1员'*## IGO IS NOT MATCH BETTEEN INPUT AND H.O.T. UNIT(', 13,'J',/
    1.1员, INPUT IGO ='. 13,/.
    1 1X, READ NK(1) =', I3,//,
    1 IX," PROCESS IS TERMTED BY INPUT IGO ERROR. ')
    STOP
C
9600 CONTINUE
    FRITE (6.6960) NFILE, (OTITL (KKK), KKK=1, 12),
6960 FORMAT (//.
    1 [X, '; & L LPN IS NOT MATCH BETTGEN READ N. O. f. UNIT(', [3,')',/
    1, 1X, * P-0 :', 12A4,/r
    1 1X,' P'I2.2.' :',12A4,//.
    1 IX.' PROCESS IS TERHITED BY INPUT IGET ERROR. ')
    STOP
C
9900 CONTINUE
C
    D0 9901 I = 1, 12
        TITL (I) = '',
9901 CONTINUE
        FRITE (10) 0, 0, 7, 0, (TITL (K), K=1,12)
C
    TTRITE (6, 6990) LMAT
6990 FORNAT (//.
    1 IX,' ### PROCESSING NORMAL END.'.//.
    1 1X,' THE LAST SEQUENCE NUMBER OF NET H.O.T = '.I5.//\
C
    END
```

図 2．2 MOTへの媒質追加エーディリティ MOTtoMOT ソース・リスト（3／3）

3．AN I SN関連

一連の「J A S P ER実験」の各々において，NE213 測定器を用いた高速中性子群スペク トルの測定が行われている。この測定データと解析計算結果とを比較するに当たり，スペクト ル図の重ね描きを見ることは，計算結果を評価する上で有効な手段となっていた。この為，測定されたデータを，ANISN計算結果のスカラ・フラックス・ファイルと同型式のファイル に変換し，AINSN，DOT3．5解析システム中の後処理プログラム DOTPLOT を用いた比較図の作成を行 った。

ここでは，ANISNの計算結果として出力されるスカラ・フラックス・ファイルの内容 を記すと共に，測定データをANISN形式ファイルに変換するためのユーティリティCON VAFの内容•使用方法を記す。

3．1 ANISN・スカラ・フラックス・ファイルの内容

ANISNの計算結果スカラ・フラックスは，エネルギ群数第1群から順に低エネルギ群側に計算され，各群毎の収束が得られた段階で，そのエネルギ群に関するフラックス分布がス カラ・フラックス・ファイル（リスタート・ファイル）に出力される。

スカラ・フラックス・ファイルの内容は， P 0 近似の場合と P 0 近似以外の場合で異な る。ここでは，J A S P E R 実験解析で用いた P 0 近似以外の場合に関するスカラ・フラッ ク・ファイルの内容について，表3．1に示す。

表3．1 ANISNスカラ・フラックス・ファイルの内容（Po近似以外の場合）

3． 2 ANISN形式ファイルの作成 convAF

ユーティリティ ConvAFは，高速中性子群スペクトルの测定データを，測定時のエネルギ境界（群数）で計算されたANISNスカラ・フラックス・ファイルとして作成するものである。

測定データには，エラーパーが付与されているため，㴬定中央値，エラーバー最大値，エ ラーバー最小値のそれぞれをメッシュ1，2，3に割り当て，3メッシュのANISN計算が行われた形でスカラ・フラックス・ファイル作成する。

以下に，convAFの使用方法を，図3．2．1 にconvAFのソース・リストを示す。

【入力データ】

入カデータは，测定データのラちの1ケースを図3．2．2に示す形式で与える。図3．2．2は，「新遮蔽材透過実験解析」におけるNE213高速中性子群スペクトル測定のデータであり，測定 が行われた 4 種類のデー夕を全て掲載している。これら4種類の測定データに対して，それぞ れ 3 メッシュのスカラ・フラックス・ファイルを4ケ作成することとなる。
record \＃1 format（i4，1x，al）IGM，EBAR
record \＃2
record \＃2：
ここで，IGM ：測定データのエネ快 群数
EBAR ：エラーバ－表示の確認。 $\mathrm{E}=$＝誤差，$\%=$＝誤差率
EB1，EB2 ：エ补ギ 群境界の上限値，下限値
FN：フラックス
ER ：エラーグ一値

【関連ファイル】
FT05F001：測定データ（図3．2．2 参照）を入力。
FT06F001 ：convAF出カリスト。
FT31F001：ANISN形式スカラ・フラックス・ファイルの出力機潘

```
【実行プロシジヤ】
    CONTROL MSG NOLIST
    SET &FT05 = &STR (ne213-data-file)
    SET &FT06 = &STR(list-file)
    SET &FT31 = &STR (output-file)
    DEL '&FT06'
    DEL '&FT31'
    FREE ATTR (XX)
    ATTR XX LR(X) BLK(23476) RECFM(V B S) DSORG (PS)
    ALLOC DA('&FT31') NE T SP(10 10) USING (XX) RELEASE
    FREE ATTR (FB)
    ATTR FB LR(137) BLK(19043) RECFM(F B A) DSORG (PS)
    ALLOC DA('&FT06') NE T SP(10 10) USING (FB) RELEASE
    ALLOC F(FT05F001) DA('&FT05') REU
    ALL0C F(FT06F001) DA('&FT06') REU
    ALLOC F(FT31F001) DA('&FT31') REU
    RUN uty. fort (CONVAF)
    FREE AT (XX FB) F(FT05F01 FT06F001 FT31F001)
    EXIT
```

```
        PROGRAH CONVAF
    CONYERT FLJX TO ANTSA RESTART PILE FORBAT
    CHARACTER LINE \(\ddagger 72\), EBAR 1
    DIHENSION BE (2, 100) , FX (3, L00) , ER (100)
        \(I C H=0\)
        \(I S N=0\)
        \(I M=3\)
        \(H M=1 S N+1\)
C
C.... READ fluX data
    1000 CONTINUE
        READ (5, (A72)') LINE
        FRITE (6. \({ }^{\circ}\) (A72) ') LINE
        IF (LINE (1: D).EQ ' \(\ddagger\) ') GO TO 1000
    \(\subset\)
        READ (LINE, ' (I4, 1X, AI) ') IGM, EBAR
        IF (EBAR . EQ. '\%') THEN
        WRITE (6, 6000) IGN
        ELSE
        TRITE (6. 6010) IGM
        ENDIF
    6000 FORNAT \(/ / 3 X_{1}\) 'IGH \(=\) ', [3 /
    1 3X, 'ERROR-BAR IS READ AS ERROR (\%).' //
    6010 FORMAT (/, 3X, 'ICH \(=\) ' 13 /
    1 3X, 'ERROR-BAR IS READ AS NEUTRON FLUX. " \(n\)
C
    MRITE (6, 6100)
6100 FORHAT (5X, 'ENERGY BONNDARY', 5X, 2X, 4X, 'FLUX', 4X, 4X, 'ERROR/2'/
    1 1X, 3X, 'UPPER', 4X, IX, 3X, 'LORER')
    DO \(2000 \mathrm{I}=1\), IGX
1500 CONTINUE
        READ (5, ' (A72) '. END=9000) LINE
        IF (LINE (1: I) . EQ ' \(\ddagger\) ') GOTO 1500
        READ (LINE, \(\ddagger\) ) BE (1, 1), BE (2, I), FX (1, I), ER (I)
        ERR2 \(=\operatorname{ER}(\mathrm{I}) / 2.0\)
        IF (EBAR . EQ ' \(\boldsymbol{q}^{\prime}\) ) THEN
            \(\operatorname{FX}(1, I)=(\operatorname{DE}(1,1)-B E(2,1)) \neq F X(1, I) / 1 . \operatorname{OEG}\)
            \(E R R 2=\operatorname{ER}(1) / 2.0 / 100.0 \div \mathrm{FX}(\mathrm{I}, \mathrm{I})\)
        ENDIF
C
        \(\mathrm{FX}(2, \mathrm{I})=\mathrm{FX}(\mathrm{I}, \mathrm{I})-\mathrm{ERR} 2\)
        \(\operatorname{FX}(3,1)=\operatorname{FX}(1,1)+E R R 2\)
        TRITE (6, 6200) BE (I, I), BE (2, I), FX (I, I), ERR2
        WRITE (31) ( \(\mathrm{PX}(\mathrm{K}, \mathrm{I}), \mathrm{K}=\mathrm{I}, \mathrm{I}\) ) \() ~(\mathrm{FX}(\mathrm{L}, \mathrm{I}), \mathrm{L}=\mathrm{I}, \mathrm{KN})\)
        FTRITE (31) (FX (K, I). K=J, [M)
    6200 FORMAT (2 (1X, E12.5). 2 (2X, E12.5) )
2000 CONTINUE
    PRITE (6. *) " \(\ddagger \neq \ddagger\) END OF PROCESSING \(\$ * *\) "
    GO TO 9900
C
9000 CONTINUE
    PRITE (6, \(\ddagger\) ) - ERROR : NOT ENOGTH FLUX DATA.
\(\mathfrak{c}\)
    STOP 9
9900 COHTINEE
    END
```

図3．2．1 ANISN形式ファイルの作成エーティリティ convAF ソース・リスト

測定データRun7888A

$\mathrm{S}_{12} \mathrm{MI}: I$	79．ICM BH	RUN	
EB1	EB2	FN	ER
20．0E＋06	16． $000 \mathrm{E}+06$	1． $02 \mathrm{E}+00$	0．777E＋00
16．OEF＋06	12． $000 \mathrm{E}+06$	1． $69 \mathrm{E}+01$	2． $3708+00$
12． $0 \mathrm{EO} 0+6$	10． $000 \mathrm{E}+06$	5．66E＋01	2．910E
10． $0 \mathrm{E}+06$	8． $000 \mathrm{E}+06$	1．88Et02	6． $850 \mathrm{E}+00$
8． $05+06$	6． $000 \mathrm{E}+06$	6． $288 \mathrm{E}+02$	1． $420 \mathrm{E}+01$
6． $0 \mathrm{E}+06$	4． $000 \mathrm{E}+06$	1． $97 \mathrm{E}+03$	2． $210 \mathrm{E}+01$
4． $0 \mathrm{E}+06$	3． $000 \mathrm{E}+06$	1． $99 \mathrm{E}+03$	2． $000 \mathrm{E}+01$
3． $0 \mathrm{E}+06$	2． $000 \mathrm{E}+06$	5． $55 \mathrm{E}+03$	2． $830 \mathrm{E}+01$
2． 0 E +06	1． $6000+06$	3． $43 \mathrm{E}+03$	1． $550 \mathrm{E}+0$
6E＋06 $2 \mathrm{E}+06$	1． $200 \mathrm{E}+06$	4． $89 \mathrm{E}+03$	2． $0708+01$
1． $0 \mathrm{E}+06$	0． $81.8 \mathrm{E}+06$	4． $47 \mathrm{E}+03$	1． $500 \mathrm{E}+01$

測定データRun1561A

		FN	
$0.2755 \mathrm{E}+06$	0． $2319 \mathrm{EE}+06$	2． $09 \mathrm{E}+03$	1． 70
$0.2319 \mathrm{E}+06$	0． $1962 \mathrm{E}+06$	2． $43 \mathrm{E}+05$	
0． $1962 \mathrm{E}+06$	0． $1685 \mathrm{E}+06$	2． $998 \mathrm{E}+05$	2
0． $1447 \mathrm{E}+06$	0． $1209 \mathrm{E}+06$	4． $50 \mathrm{E}+05$	14

測定データRun1561D

＊SMI：I－A 179．ICM BHIND RUN 1561 D11			
$\begin{aligned} & * \\ & 0.16 B 1 \\ & 0.165+06 \end{aligned}$	0． 1428 E		
0． $1428 \mathrm{E}+06$	0． $1206 \mathrm{E}+06$	4． $79 \mathrm{E}+$	
0．1206E＋06	0． $1035 \mathrm{E}+06$	4． $71 \mathrm{E}+$	
0．1035E＋06	$0.0881 \mathrm{E}+06$	4．61E＋	
Et06	0． 0744	7	
$4 \mathrm{~B}+06$	0． $0539 \mathrm{E}+06$		
$39 \mathrm{E}+06$	0． $0453 \mathrm{E}+06$	8． 48	
453E＋06	0． $0385 \mathrm{E}+06$	7．87E＋05	
0． $0385 \mathrm{E}+06$	$0.0334 \mathrm{E}+06$	8．77E＋05	
34E＋06	0． $0282 \mathrm{E}+0$	1．	1． 27

測定データRun1560A

$* \operatorname{SM1}_{12} \dot{\sigma} \mathrm{I}-\mathrm{A}$ ＊EB1	ICM BHIN EB2	RUN 1560A	\％
1． $4000 \mathrm{E}+06$	1． $1863 \mathrm{E}+06$	0．126E＋05	3． 20
1． $1863 \mathrm{E}+06$	1． $0064 \mathrm{E}+06$	0． $140 \mathrm{EE}+05$	3.27
1． $0064 \mathrm{E}+06$	0． $8602 \mathrm{E}+06$	0． $205 \mathrm{Et}+05$	2． 62
0． $72623 \mathrm{E}+06$	0．7253E＋06	0． $40388 \mathrm{E}+05$	1． 36
$0.6241 \mathrm{E}+06$	$0.5229 \mathrm{E}+06$	0． $824 \mathrm{E}+05$	－0．88
0． $5229 \mathrm{E}+06$	0． $4442 \mathrm{E}+06$	0． $747 \mathrm{E}+05$	1． 20
0． $4442 \mathrm{E}+06$	0． $3767 \mathrm{E}+06$	0． $706 \mathrm{E}+05$	1． 35
0． $3207 \mathrm{E}+06$	－． $3205 \mathrm{E}+06$	1． $140 \mathrm{E}+05$	0． 76
0． $2775 \mathrm{E}+06$	0． $2305 \mathrm{E}+06$	1． $980 \mathrm{E}+05$	0.67
$0.2305 \mathrm{E}+06$	$0.1968 \mathrm{E}+06$	2． $220 \mathrm{E}+05$	0.61

図 3．2．2 convAF用入力データ例（NE213による高速中性子群スペタトリ測定データ）

「JASPER実験解析」では，主な 2 次元中性子輸送解析コードとしてDOT3．5を使用した。

D0T3．5による計算では，前処理として，T S F S R Cコード（JASPER実験解析用 2 次元境界線源作成プログラ4）により，邞心から所定の距離における 2 次元 R Z 体系用の内部境界線源 を計算し，これを初期体系計算に使用した。解析体系が長り，必要メモリ数がDOT3．5の許容値 を越えた場合には，DOT3．5の計算結果として作成された角度中性子束ファ似を，内部又は外部境界線源として使用する接続計算を行った。この時D0T3．5から出力される角度中性子束は，計算時に与える入力データにより，その方向成分（前方方向成分のみ）を指定して使用した。

また，J A S P ER 実験における体系後方フラックス測定データに対して，D0T3．5による実験解析体系に関する計算結果（スカラ・クラックス・クァイツ）を用いて，解析体系外钼測点計算コードSPAC ETRAN－IIIにより実験データ測定点に関するフラックスを計算して，両者の比較，計算結果の評価を行っている。

ここでは，DOT3．5用の境界線源ファイルの内容，及び，計算結果スカラ・フラックス・フ ァイルの内容について記す。

4． 1 DOT3． 5 境界線源ファイルの内容

D0T3．5の境界線源は，解析体系を構成するメッシュに対して配置される。各メッシュにお けるデータは，入カデータの解析条件で与える角度分点数に応じた角度中性子束（Boundary an gular flux）として設定される。

境界線源は，コードの内部処理により次の様に分類される。
（1）内部境界線源～データで与えられた値は，全方向に対する値が有効となる。
（2）外部境界線源～データで与えられた値は，それが配㯰される外緑境界から解析体系内部方向に向から成分のみが抽出されて，使用される。

表4．1に境界線源ファイルの内容（書式）を示す。

表4．1 DOT3．5用境界線源ファイルの内容

```
do 10 i = 1, igm
    read (iunit) ( (baf (m,k), M=1, mm), k=1, im)
10 continue
```

igm : エネルキ群数
mm : 角度分点数
im : 線源を配置する軸 (RZ体系の i 軸又は j 軸)
baf : 角度中性子束

4． 2 DOT3． 5 ・スカラ・フラックス・ファイルの内容

DOT3． 5 の計算結果スカラ・フラックスは，エネルギ群数第1群から順に低エネルギ群側に計算され，各群毎の収束が得られた段階で，そのエネルギ群に関するフラックス分布が スカラ・フラックス・ファイルに出力される。

DOT3．5・スカラ・フラック・ファイルの内容を，表4．2に示す。

表4．2 DOT3．5・スカラ・フラックス・ファイルの内容
do $10 \mathrm{ig}=1$ ， igm
mrite（iunit）（（ scalar（i，$j), i=1, i m), j=1, j m)$ ，
（（（fmoment $(\mathrm{i}, \mathrm{j}, \mathrm{m}), \mathrm{i}=1, \mathrm{im}), \mathrm{j}=1, \mathrm{j} \mathrm{m}), \mathrm{m}=1, \mathrm{~m})$ ），
（（ angular $\mathcal{Z}(\mathrm{m}, \mathrm{j}), \mathrm{m}=1, \mathrm{~mm}), \mathrm{j}=1, \mathrm{jm}$ ），
（（ angularR（ m, i ）$, m=1, m), i=1, i m)$
10 continue

ここで，
igm ：エネルギ群数
im ：R Z 体系R軸のメッシュ数
jm：R Z 体系 Z 軠のメッシュ数
mm ：角度分点数
mo ：$\frac{(\mathrm{A} 03 \times(\mathrm{A} 03+3) \mid}{2} \mathrm{~A} 03$ ；Nジャトド川展開次数
scalar ：スカラー・フラックス。
fmoment：モーメント。Po 近似の場合は，モーメンとして1語が書かれる。
angularZ：R Z 体系R 軸最外縁における外向き角度中性子束。
angularR：R Z 体系 Z 軸最後端における外向き角度中性子束（接続計算で使用）。

本年度のJ AS PER実験解析「新遮蔽材透過実験解析」において，2次元中性子輸送計算コードDORTを使った解析を行った。DORTを用いた主な理由は，「新遮蔽材透過実験」 におけるポリエティン部材領域での＂中性子散乱減速効果＂について，解析体系の総メッシュ数をあ まり増大させることなく，精度良く評価を行うことが可能な機能（可変メッシュ）をDORTが有しており，DOT3．5には無いことが揚げられる。

DORTの＇可変メッシュ＂機能は，解析体系内で詳細なメッシュ切りを要すると考えられ る領域についてのみ「詳細メッシュ（fine mesh）」を，他の領域には標準的なメッシュ切り （例，中性子の平均自由行程）を用いた「粗切りメッシュ（couase mesh）」 を設定することが可能であり，RZ体系内に複数のR軸メッシュ切りを設定する事となる。

DOT3．5の場合，ある領域に関して詳細なメッシュ切りを行うと，その他の領域も同様にメッシュが増えることから，メモリ及びC P U所用時間の増大等の制約により計算不能と なることが考えられた。そこで，DORTにおける＂可変メッシュ＂を用いた計算を試すことと なったものである。

DORTには，＂可変メッシュ＂の他に，＂可変角度分点数＂，＂可変ルジャンドル展開数＂と いった機能も揚げられるが，「新遮蔽材透過実験解析」では，＂可変メッシュ＂機能を使用した だけに留まったことから，本報告書では，同機能に関する記述のみを行う。

5．1 D OR T 境界線源ファイルの内容

DORTの境界線源ファイルは，解析体系における標淮I－set（RZ体系R軸方向めッシュ切りに関するセット 内から，入カデータ 62䍩 No．47で指定）で定義されたメッシュ数に対して配置され なければならない。

境界線源ファイルには，ファイルの作成記録情報（タイト少等），解析体系情報，及び，Z 軸と R 㒖それぞれに関する複数の境界線源に対する配道位直データ，角度中性子束データが含まれ ている。このらち，作成記録情報と解析体系情報は，DORTの実行に何ら影響を及ぼさない。配置位置データについては，DORT実行時の影響を確認していないが，R 軠分布の線源デー夕を一つだけ与えて，DORT実行時の線源入力位置と線源ファイル内の配置位置データが同一の場合は，両者の問に差違が生じることは無い。

表5．1に境界線源ファイルの内容（書式）を示す。

表5．1 DORT境界線源ファイルの内容

```
    read (iunit) hame, (huse (i), \(\mathrm{I}=1,2\) ), ivers
    read (iunit) date, user, charge, case, time, (titl (i), \(\mathrm{i}=1,12)\}\) 作成記録情報
c
    read (iunit) igm, jm, im, ima, mma, nintsr, njntsr, (dum(i), i=1, 19) 解析体系情報
c
    if ( nintsr. ne. 0 . and. njntsr. ne. 0 ) then
    read (iunit) \(\langle(\mathrm{j}), \mathrm{j}=1, \mathrm{njntsr}),(\mathrm{r}(\mathrm{i}), \mathrm{i}=1\), nintsr\()\)
    elseif( nintsr.eq. 0 ) then
    read (iunit) ( \(z(\mathrm{j}), \mathrm{j}=1\), njntsr)
    elseif( njntsr.eq. 0 ) then
    read (iunit) (r (i), \(i=1\), nintsr)
    endif
c
    do \(10 \mathrm{ig}=1\), igm
    if (nintsr. ne. 0 ) then
            \(\operatorname{read}(\mathrm{i} u n i \mathrm{t}) \quad(\mathrm{bij}(m, j, n), m=1, m m), j=1, \mathrm{j} m), n=1, \mathrm{nintsr})\)
    elseif(njntsr. ne. 0) then
            read (iunit) ( \((b j i(m, i, n), m=1, m), i=1, i m), n=1, n j n t s r)\)
        endif
        10 continue
ここで，igm は解析時のエネルギ群数を，ima はR軸方向めッシュ数を，mma は角度分点数を表 す。その他の変数は以下の通りである。
\begin{tabular}{|c|c|c|}
\hline hname & （a8） & ファイルid。＝＇BNDRYS＇ \\
\hline huse & （2＊a8） & ユーザid。 \\
\hline ivers & （i4） & ファイル・バージョンNo． \\
\hline date & （a8） & Timer option 4で定義。 Timer optionは，米国版DOSシス \\
\hline user & （a8） & Timer option 5 で定義。 \\
\hline charge & （a8） & Timer option 6 で定義。 テムにおけるオプションである。 \\
\hline case & （a8） & Timer option 7 で定義。 PNC版では，意味を持たない。 \\
\hline time & （a8） & Timer option 8 で定義。 \\
\hline title & （12＊a8） & ユーザスカのタイトル。 \\
\hline igm & （i4） & エネルギ群数。 \\
\hline jm & （i4） & 2軸方向メッシュ数。 \\
\hline ima & （i4） & R軸方向メッシュ数。標準I－setのメッシュ数。 \\
\hline mma & （i4） & 角度分点数。 \\
\hline nintsr & （i4） & Z軸分夜の線源をR 軸に設定する数。 \\
\hline njntsr & （i4） & R 軸分布の線源を C 軸に設定する数。 \\
\hline idur & （12＊i4） & 全て0をセットする。 \\
\hline Z，r & （r8） & 線源配置位置。解析体系が z 軸に関して \(30 \mathrm{~cm} \sim 150 \mathrm{~cm}\) であ ，線源 を 55 cm の所に配置する場合， 55.0 となる。 \\
\hline bij，bji & & 角度中性子束。 \\
\hline
\end{tabular}
```

5．2 DOT3．5用境界中性子源ファイルの変換 BNDRYC

DORTを使用した「新遮蔽村透過実験解析」を行うに当たり，初期体系における境界中性子源ファイルとして，DOT3．5用にTSFSRCコードで作成した線源ファイルをDORT用に変換して使用 することが考えられた。DORTを含むDOSシステムには，境界線源ファイル変換プログラ4 BNDR YSが含まれていたが，これを使用した境界線源ファイル変換結果は，DORT用境界線源ファイル としての情報（作成記録情報，解析体系情坡）が不足しており，DORTの実行に使用することが出来なかった。

そこで，先に記した「D0T3．5用境界線源ファイルの内容」と「DORT用境界線源ファイルの内容」を基に，DOT3．5用線源ファイルをDORT用に変換するための小エーティリンィ BNDRYCを作成した。

以下に，BNDRYCの使用方法を，図5．2．1 にBNDRYCのソース・リストを，図5．2．2に実行プ ロシジャ・リストを示す。

【入カデータ】 入カデータは特に無い。実行プロシジャにおいて，TSFSRC出カファイル名と DORT用線源ファイル名を指定するだけである。

【関連ファイル】
FT05F001 ：実行プロシジャからの使用ファイル名入カデータ機番。
FT06F001 ：BNDRYC出カリスト。
FT20F001：TSFSRC出力のD0T3．5用線源ファイル割付機番。
FT10F001 ：BNDRYC出力の DORT 用線源ファイル割付機番。

図5．2．1 DOT35 用境界中性子源ファイルの変換1ーテイリディBNDRYCのソース・リスト
7 5X,\#
7 5X,\#
9 5X '\#',/
9 5X '\#',/
A. 5X. 'TSFSRC RESALT REAB FROM $=$ ', A60. $/ 7$
C
c.... input halues at proceder
c ig ; NUHEER OR ENERGY GROUPS AT DOT35 ANALISYS.
JIE : NULBER OF Z-AXIS INTERVALS. (DUHMY)
IH ; NUMBER OF R-AXIS INTERYALS.
NINTSR ; NUMBER OF R-AXIS BOLNDARY SOURCE SETS FOR DORT ANALISYS
NJNTSR : NUUBER OF Z-AXIS BOUNDARY SOURCE SETS FOR DORT ANALISYS
ZPOINT ; POSITIONS OF NJNTSR SETS OF BOUNDARY SOURCES.
READ (5, *) IG, JH, IM, HHM NINTSR, NJNTSR. ZPOINT
c
IF (NINTSR NE. O. AND NJNTSR NE. 1) THEN
TRITE (6, 6900) NINTSR, NJMTSR
STOP 1
ENDIF
6900 FORMAT (//.

2 IX, ' H NTST AMD NJNTSR DATA PAIR IS INYALLD.

4 1X, ' * BNDRY-C WHICH IS THIS YERSION CAN E'.

C
WRITE (6. 6100) IG, JH, IM, HM, NINTSR, NJNTSR, ZPOINT
6100 FORHAT (/.
$15 X^{\prime}$-- CONTROL DATA ECHO.
\qquad -1.
 WH $={ }^{\prime}, 16,1 H$,
3． 5 X ，＇MUHERER OF R－AXIS BOUNDARY SOURCES $=$＇ 16 ．
$45 X^{\prime \prime}$＇NUMBER OF Z－AXIS BOUNDARY SOURCES $=$＂， $16, \%$ ．
5 5x．＇POITION OF BOUNDARY SOURCE SET $=$＇，FIO．4，／／．
$65 X$, ＇$====$ BOWDDARY SOURCES $====='$ ）
c
C．．FILE IDENTIFICATION ．．［BNDRYS FORMAT FILE RECORD HO．1！
TRITE（10）HNAME，（TITL（K），K＝1，10）
C
C．．FILE LABEL ．．［BNDRYS FORhat FILE RECORD NO．2！
WRITE（ 10 ）$(\operatorname{TITL}(\mathrm{K}), \mathrm{K}=1,20)$
C
C．FILE CONTROL ．． ［BNDRYS FORHAT FILE RECORD NO．3！
WRITE（10）IG，Jw，IM，MM，NINTSR，NJNTSR．（HJN（K），$K=1,20$ ）
C
C．．MESH DISCRIPTION ．．\quad［BNDRYS FORMAT FILE RECORD NO． $4!$
TRITE（10）ZPOINT
C．
C．．J－BOANDARY DIRECTIOHAL SOURCES．
DO 100 ［ $=1$ ，IG $\operatorname{READ}(20) \quad((\mathrm{BIJ}(\mathbb{H}, \mathrm{J}), \mathrm{H}=1, \mathrm{HN}), \mathrm{J}=1, \mathrm{IM})$

C
C．LIST PRINT TO FT06FOOI．
MRITE（ 6.6200 ）I
C D0 $50 \mathrm{~J}=1$ ，IH
TRITE（6，6300）J FRITE（ 6,6400 ）（BIJ（ $\mathrm{H}, \mathrm{J}), \mathrm{H}=1, \mathrm{HH})$
C
50 CONTIMUE
C
100 COMTINLE
C
6200 FORMAT（／，1X，＇《く＜IG＝＇，I4，＇＞＞＞＇）
6300 FORHAT（ $/ 1,1 X^{\prime}$＇．，R－AXIS BOMNDARY IM（＇，I4．＇）．．UNDER S－N DATAS＇）
6400 FORHAT（ 10 （2X，IPE11．4））
©
END

図5．2．1 DOT35 用境界中性子源ファイルの変換ユテティリティ BNDRYCのソース・リスト

```
PROC O
CONTROL NOHSG NOLIST
/
SET \(\& L_{N} I T=2 S T R\) (DASD)
```



```
/ 1
DEL '\&FOTRK'
DEL 'tFT06'
/
CLDISP
HRITE 〈SSYSDATE〉 〈RSYSTIHE〉
WRITE
If:TRITENR ENTER TSFSRC RESALT FILE KAKE (FULL NAME) =>
READ RTSFSRC
IF \(\$\) TSFSRC \(=\) THEN GOTO [1
/
12: WRITENR ENTER BMDRYC OUTPUT FILE MAME (FULL NAHE) \(\Rightarrow\)
READ \&BNDRYC
IF \({ }^{2}\) BNDRYC' \(=\) THEN GOTO 13
    SET \(\&\) BNDRYC \(=\mathbb{Z}\) SSUIDESTR (. ©. PMDRYC)
    FRITE BNDRYC RESALT SET TO DEFULT FILE \(\Rightarrow\) 'BNDRYC'
/*
I3:MRITE
RRITENR ENTER NUBBER OF ENERGY GROUP (DEF=21) =>
READ \&IG
IP \(\mathrm{LIIG}=\) THEN SET \&IG=ESTR (21)
[31: WRitens nubrer or 2-hesh at Dot \(35 \quad \Rightarrow\)
READ \&JH
IF \& J IH= Then goto 131
I32: MRITENR NJUBER OF R-HESH AT DOT35 \(\Rightarrow\)
READ \(\overline{\text { a }}\) IH
IF \(8 \mathrm{IH}=\) THEN 6010132
I33: \(\operatorname{TRITENR} \quad\) NUABER OF S-N AT DOT35 (DEF \(=96\) ) \(\Rightarrow\)
READ \(\operatorname{LII}\) id
```



```
I34: PRITEMR POSITION OF B. SOURCE (DEF=55. 525) \(\Rightarrow\)
READ \& 2
IF \(82=\) THEN SET \(\& 2=8 S T R(55.525)\)
\(\stackrel{\prime}{\circ}\)
SET \(\mathrm{AHINTSR}=\varangle S T R(0)\)
SET \(\mathrm{ZNONTSR}=\mathrm{ASTR}(1)\)
/*
WRITE ... SET INPUT DATA FOR BNDRY-C ...
/ \(/\)
FREE F (WFI) AT (T)
ATTR \({ }^{4}\) LRECL (80) BLKSIZE (3600) RECFH (F B) DSORG (PS) OUTPUT
ALLOC F(HKI) DA('\&HORK') NEM T CAT SP (1 I) UNIT ( \&UNIT) USING(F)
/
oparfle mil output
SET \&FK1 = \&TSFSRC
PUTFILE MKI
/4
SET \& WTK = \& IG
putile whi
/ 4
SET \(8 \mathrm{HKI}=\mathrm{Z} \mathrm{JH}\)
PUTfle FI
/t
```



```
PUTfle 明I
/
SET 8 FTK \(=8 \mathrm{EMH}\)
PUTfle fill
/ 1
SET 2 MKI \(=8 \mathrm{NHTSR}\)
PUTII HKI
/ \(/\)
SET RHK1 = 2NJNTSR
puTlie finl
/*
SET 8 WK \(1=82\)
putile fral
CLOSEPILE WG1
FREE F (呯 1 )
```

図5．2．2 境界線源ファイル変換エーティリティ BNDRYC 実行プロジシャ

```
/*
F1:DEL '&BNDRYC'
FREE AT (VBS FBA) F(FT10R001 FT20FOOD)
ATTR YBS LRECL (Y) BLKSIZE (23476) RECFH(Y B S) DSORE (PS)
ALLOC DA ('BMDRYC') NEW T SP (10 5) GNIT (&UNIT) USING (VBS) RELEASE
ATTR FBA LRECL (137) BLESIZ (19043) RECFH (F B A) DSORG(PS)
ALLOC DA('FT06') NEET T SP (10 5) UNIT (&NMT) USING (Fba) RELEASE
frge at (VbS FBa)
/*
ALLOC F(FT05POOL) DA('EMORK') REU
ALLOC F (FT0GFO01) DA("&FTOG') REU
ALLOC F(FT20F001) DA('&TSFSRC') REU
ALLOC F(FTIOFOON) DA('&BNDRYC') REU
/*
RIN uty. fort (BNDRYC)
/*
FREE F(FT05F01 FT0GF001 fTl0F001 FT20F001)
EXIT
```

図5．2．2 境界線源ファイル変換コーティリティ BNDRYC 実行プロシジャ

5． 3 RTFLUM変換後のスカラ・フラックス・ファイルの内容

「新遮蔽材透過実験解析」では，DOSシステムによるDORTの計算を行った後，同シ ステム内に含まれる計算結果スカラ・フラックス・ファイル書式変換プ啲うムRTFLUMを用いて，DOT3．5形式ファイルへの書式変換を行い，D0T35 用後処理プロダラム DOTPLOT ゃ SPACETRAN－再を使った計算結果の俨価を行った。この作業は，＂可変义ツシュ＂機能を用いない話筧（DOT35 と同様の体系データ）に関して，期待通りの成果を発揮した。

RTFLUMによる変換後のスカラ・フラック・ファイルの内容を，表5．3に示す。

表5．3 RTFLUM出カスカラ・フラックス・ファイルの内容

```
        do 10 ig=1, igm
            mrite(iunit) (( scalar (i,j), i=1, iset (j)), j=1, jm),
+ (((fmoment (i, j, m), i=1, iset (j)), j=1, jm), m=1, mo),
+ (( angularZ (m, j),m=1,mm), j=1, jm),
t (( angularR (m,i), m=1, mm),i=1, isbt)
10 continue
ここで,
    igm : エネルギ群数
    iset: R Z体系Z軸メッシュ毎のR軸のメッシュ数
    isbt : 標準I-setのR軸のメッシュ数
    jm : RZ体系Z軸のメッシュ数
    mm : 角度分点数
    m0 : {A03\times(A03+3) }
    scalar : スカラー•フラックス。
    fmoment : モーメント。
    angularZ : R Z 体系R軸最外縁における外向き角度中性子束。
    angularR : R Z 体系 Z 軸最後端における外向き角度中性子束(接続計算で使用)。
```

5． 4 RTFLUM スカラ・クラックス・ファイはの DOT3．5後処理プログラム用形式への変換 DORTDOT

D O R T の計算において，＂可変メッシュ＂機能を使用した場合，RTFLUMの出カファイルが DOT3．5用後処理プログラムの読み込み書式に一致しない問題が発生した。これは，
（1）DOT3．5は，RZ両軸に関するメッシュ切りが固定である為，後処理プロが彶もそのよう に設計されている。
（2）RTFLUMは，スカラ・フラックスに着目した処理を行うように設計されている為，計算結果としての各メッシュのフラックスを忠実に抽出する。従って，可変メッシュ機能による複数のR軸メッシュ切りに応じたメッシュ数で出力を行う。

以上の相違が原因であると判明した。
そこで，RTFLUMの計算結果ファイルに出力されるデータのうち，DORT計算体系の最外縁に関する外向き角度中性子束データを抽出し，DOT3．5用後処理プロダラ4 SAPCETRAN－IIが必要 なデータを読み込み可能な形式に変換するエーテイリティ DORTDOT を作成した。DORTDOT は，前記の機能を有すると共に，スカラ・クラックス・データの一部をファイルに出力する。この機能により，DOT3．5用後処理ブログラム DOTPLOT を用いて，R軸左端におけるZ軸方向トラバース図及びスペタトリ図の作成が可能である。但し，可変メッシュ機能によるR軸方向詳細メッシュの設定位置と粗切ツメッシュ設定位置では，メッシュ・ボックスの大きさが果なることに留意する必要がある。

以下に，DORTDOT の使用方法を，図5．4．1 にDORTDOT のソース・リストを，図5．4．2 に実行プロシジャ・リストを示す。

```
【入力データ】
Card.#1 IM, JM, IGM, ISCTM, MM, ISETM
Card. #2 LSET
Card. #3 (ISETN (K), K=1, ISETM)
Card. #4 (ISETJ (J), J=1, JM)
```

(DORT解析条件)
IM: R 軸メッシュに関するセット中の最大メッシュ数。
JM : Z軸メッシュ数。
IGM: エネルギ群数。
ISCTM : ルジャンドル展開次数。
MM : 角度分点数。
ISETM : R軸メッシュに関するセット (I-set) 数。
LSET: 摽準R軸メッシュ (標準I-set) に設定したI-setのセット番号。
ISETN: 各I-setのR軸メッシュ数。
ISETN: 各 Z 軸方向メッシュに設定するI-setのセット番号。

【関連ファイル】
FT05F001 ：入力データ割付機番。
FT06F001 ：DORTDOT 出力リスト。
FT02F001：RTFLUM出力の計算結果スカラ・フラックス・ファイル。
FT03F001：DORTDOT 出力のDOT35 後処理プログ $5 厶$ 読み込み可能ファイル。

```
PROGRAN DORTFH
```



```
    DORTFH' PICKS UP 'DIRECTIONAL FLUX OUTGOING' FROM NFLSY WHICH IS
C OUTPUT SGALAR FLUX FILE OF DORT "R-Z' CYLINDER ANALYSIS FITH YARIABLE
G HESH USING CALCULATION. AND IT HAKES NFLSY FILE FITH DOT35 FORMAT,
C WHICH HAS CONSTANT I-HESH INTERYALS. THB NFLSV OF DOT35 FORHAT IS
C USED BY UTYLITY 'SPACETRAN'.
    PARANETER (MHO = 96)
    PARASETER (ISETS = 5)
    PARANETER (INO = 300)
    PARAHETER (JMO = 400)
C
C-
    DINENSION SFLUX (IHO, JMO), FHOH (IMO),
    1 AFLUXI (WMO, IMO), AFLJXI (MMO, JMO)
    IMTEGER ISETJ (JM0). ISETN (ISETS)
    DIMENSION DUHMY( IHO)
C
    DATA ISETN / ISETS * -999 /
    DATA ISETJ / JMO # -999/
    DATA DJTHMY / IMO & 0.ODO /
C
    CALL INPUT(INO, JMO. MHO, ISETS, LSET
    1 IH, JM, IGH, ISCTM, WM, ISETN', [SETJ, [SETN )
    LA= ISCTH * (ISCTM+3)/2
    IHNO = ISETM (LSET)
    DO 1000 IG = I, IGH
        READ (2, END=90.00) ((SFLUX (1, J), I=I, ISETN (ISETJ (J))), J=1, J#),
            (((FHOH (I), I=1, ISETN (ISETJ (J))), J=1, JM), K=l, LA),
            ((AFLUXJ (H, J), M=1, MM), J=1, JM),
            ((AFLUXI (M,I), M=1, NM), I=1, IMN0)
C
            #RITE (6, '(/////, IX, 19HDORT NFLSY READ GR#, I3, 100(1H%))') IG
            MRITE (6, 6101) (SFLEX (I, J4), I=1, ISETN (ISETJ (JN)))
            #RITE (6, 6102) (FHOON(I), I=1, ISETN (ISETJ (J4)))
            TRITE (6, 6I03) (AFLUXJ (HM, J), J=1, JH)
            FRITE (6, 6104) (AFLUXI (HM, I), I=1, ISETN(LSET))
C
6101 FORHAT (1X, '(SCALAR FLUX LIST OF EACH I-HESH FOR JH.) './.
    1 (10(2X, IPE10.3)))
6102 FORNAT (//, 18.'( HONENT LIST OF EACH I-NESH FOR JM/LA.)',/,
    (10(2X, IPE10.3)))
6103 FORHAT (//, 1X,'( A. FLUX(J) LIST OF EACH J-HESH. <H=⿴HD) ',/,
    (10(2X, 1PE10. 3)))
```



```
    1 (10 (2X, IPE 10. 3)))
C
            MRITE (3) ((SFLUX(I, J), I=1, ImN0), J=1, JW).
                                    ((DUSHY (I), I=1,IMNO), J=1, JM , K=1, LA),
                                    ((AFLUXJ (G, J), M=1, , M% , J=1, JN),
                                    ((AFLUXI (M, I), N=1, ,MP), I= 1, IMNO)
C
1000 CONTINUS
C
    FRITE (6, 6110)
6110 FORNAT (IHI,
    1 [X.'###### KEY FLUX OF CALCULATION RESALTS ', 80(1H#),/.
    1 IX,'=== B.D.FLLX OF J-AXIS POR DORT-TYPE NFLSY (H=1 AND MS)===')
    TRITE (6, 6100) (AFLUXJ (1, J), J=1, JH)
    WRITE (6, "(/)")
    RRITE (6, 6100) (AFLUXJ (UN, J), J=1, JM)
0
```

図5．4．1 RTPLUXは DORTDOTソース・リスト（1／5）

```
        WRITE (6, 6120)
6120 FORMAT//
\(11 X\), \(===\) B. D. FLUX OF I-AXIS FOR DORT-TYPE NFLSV ( \(M=1\) AND BH ) \(====^{\prime}\) )
6-- \(3 / 6-N A\)
    WRITE ( 6,6100 ) (AFLUXI (1, I), I=1, IHM)
    TRITB ( 6,6100 ) (AFLUXI ( \(1, \mathrm{I}, \mathrm{I}=1\). IMNO)
    TRITE (6, ' ( \(/)^{\prime}\) )
C WRITE ( 6,6100 ) (AFLUXI ( \(M, \mathrm{I}, \mathrm{I}, \mathrm{I}=1,1 \mathrm{IN})\)
    WRITE ( 6,6100 ) AFLUXI ( \(14, I), I=1, I M N 0)\)
6100 FORHAT (10 (1H , IPE12.5))
c
        60 T0 9900
9000 CONTINELE
PRITE (6, 6900) IG, IGM
6900 FORMAT (//)
```



```
    \(15 X\), ' THE END OF RECORD IS DETECTED AT GROUP ', 13.3.
    I 5 X . ' DURING DORT (RTLIN) OUTPUT FILE READING.
            /'. '13. 3. ',
```



```
    \(2 / 1\)
```



```
    15 X, ' \(\ddagger \ddagger\) BY NOT HUCH BETTEN DORT-NPLSV AND INPUT DATA. \(\ddagger \neq ’ / / / /\)
C
    STOP 11
9g00 CONTINUE
©
    END
    SUBROUTINE INPUT (IHO , JHO , HHO , ISETS , LSET
    1 -IH, JH, IGM, ISCTH, MH, ISETM, ISETJ , ISETN)
C
    INTEGER ISETJ (1), ISETM (1)
C
    TRITE (6, 6900)
6900 FORMAT \(U\)
```



```
    \(17 \mathrm{X},{ }^{\prime} \neq \mathrm{NNN} \quad \mathrm{PPP}\)
    \(17 \mathrm{X}, \ddagger \quad \mathrm{N}\) NH \(\mathrm{F} \quad \mathrm{L}\)
    I 7X, \(\quad \mathbb{N} \quad \mathrm{N} \quad \mathbf{F}\) LLLLL SSSS V lill
```



```
    1 7X. ' \({ }^{\prime}\) PROGRAM "NPLSVI* HHICH IS UTYLITY FOR DORT IS
    1 TX, '\# PICK UP OUTGOING DIRECTIONAL FLUX OF R-Z CYLINDER.
    i 7X, ' \(\quad\) FHICH IS CALCURATED YITH "I-SET VARIABLE HESH"
    \(17 X\), '\# AND SETS 'NFLSY' FILE AS SAHE AS NFLSY OF DOT35.
```



```
    \(1 / /)\)
C
    It \(=-999\)
    JH \(=-999\)
    IGX \(=-999\)
    ISCTH= -999
    㬳 \(=-999\)
    ISETM \(=-999\)
c
    IMN \(=-999\)
C-CARD. 1. 1-
    READ (5, \%) IH, IM, IGM, ISCTN, MM, ISETM
    TRITE (6, 6910) [H, JH, IGM, ISCTH, HM, ISETM
6910 FORHAT (///, IX, 'CARD. 1 : IN, JH. IGN, ISCTH, ! H , ISETH'./.
C
    IF (IH. GT. IHO) GO TO 9000
    IP (JH.GT. JH0) GO TO 9000
    P ( ISCTM. GT. 5) GO T0 9000
    IP ( \(\mathrm{AL} . \mathrm{GI}\). HMO ) CO T0 9000
    IP ( ISETS. GT. ISETS) GO TO 9000
C
C-CARD. 1. 2-
    READ (5. \#) LSSET
```

 DORTDOTソース・リスト（2／5）

```
C
    FRITE (6, 6911) LSET
    6911 FORMAT (/, IX,'CARD. 2 : LSET',/, IX," ', I4)
C
    IF(LSET. GT. [SETH) GO T0 9000
C-CARD. 2 ARRAY -
    READ (5, *) (ISETN (K), K=1, ISETM)
`
    #RITE (6, 6912) ISETH, (ISETN (K), K=1, ISETM)
    6912 PORMAT (/, 1X, 'CARD. 2 NTM OF EACH I-SET. (I-SETS)=', I5,/, (10I5))
    MO 100 K=1, ISETE
        IF(ISETN(K).GT. IH.) GOTO 9000
    100 CONTINUE
C
C-CARD. }3\mathrm{ ARRAY
    CALL RSETJ (ISETJ, JH)
    MRITE (6, 6913)'JM, (ISETJ (K), K=1, JM)
    6913 FORNAT (/, 1X, 'CARD, 3 NO. OF I-SET BY J-INTERVALS. (JN)=', I5,/.
    (10!5))
    DO 200K = 1, JM
    IF(ISETJ (K). GT. ISETN) GO TO 9000
    200 CONTINUE
C
    TRITE (6,69[4)
6
    RETURN
    9000 CONTINUE
    FRITE (6, 6100) IH, IHO, JM, JMO, ISCTM, 5, WM, WNO, ISETM, ISETS
    6100 FORMAT (//, IX,'t** INPUT DATA ERROR $&*',/,
```



```
    2 1X,', JM =',15, NUST BE LESS EQUAL TO ,I5, ,',
    3 1X,' ISCTM =',I5, NUST BE LESS EQUAL TO ', I5, ' '%/
    5 [X,' ISETM = ',I5, MUST BE LESS EQUAL TO ',I5, ',',
    MRITE (6, 6200) (ISETN (K), K=1, 5)
6200 FORMAT (//, 1X, -- ISETN ARRA' --'./, 10(16))
C
    HRITE (6. 6300) (ISETJ (K), K=1, JM0)
6300 FORHAT (//, 1X, '-- ISETJ ARRAY --*,/,10(I6))
C
    FRITE (6, 6400)
6400 FORMAT (///. IX,
    1 '*** PROCESSING IS TERHINATED BY INPUT DATA ERROR. ***',///)
C
    STOP 1
9100 CONTINUR
    TRITE (6, 6500) LSET, IN, JM, ISETJ (JM), ISETN (ISETJ (JM))
6500 FORMAT (//, I%, '&&* INPUT DATA ERROR ¥#ま',/,
    1 1X,' LSET. GT. ISETH) LSET = ', IS,
    * IH/IM=',15,'/', I5,/.
    2 IX,' ISETN(ISETJ(JM) ) = ISETN('I5, ') =',I5,///.
    | '*** PROCESSING IS TERNINATED BY INPUT DATA ERROR. #*キ',///\
    STOP 2
    END
    SGBROMTINE RSETJ(ISETJ, JH)
C SUB. RSETJ READS 'R'-INDICATOR USED DATA FROH CARD.
C-
    PARAUETER (NHO = 25)
    INTBGRR ISETJ(1)
    CHARACTER CARD*72, TARDS (NF0) # 10, FORN 
C
```

 DORTDOTソース・リスト（3／5）

```
        J=0
1000 contmuS
        READ (5, (a72)'. END=8000) CARD
c
        DO 10 K = 1, N%O
            MARDS (K) = ',
    locomtinue
C
c
        DO 500 L = 1, NT
        J= J + 1
        IF(J.GT.JH) G0 T0 9000
c
            LR = INDEX (FARDS (L), 'R')
            IF( LR. EQ.0)THEN
                    LRO= INDEX (FARDS (L),'')-1
                    IF(LRO.LT.0) LRO=10
                    TMRITE (FORH, '(2H(I, I3. 3, IH) ') LRO
                    READ (PARDS (L), FORM) ISETJ (J)
            ELSE
                    FRITE (FORM, '(2H(I, 13.3, IH) ') LR-1
                    READ (FARDS (L), FORH) NR
                    LRO= INDEX (WARDS (L) (LR+1:10), ')-1
                    IP(LRO. LT. 0) LRO= 10-LR
                    MRITE (FORM, (2H(IT, [3.3, IH) )') LRO
                    READ (FARDS (L) (LR+1: 10), FORW) ISETJ (J)
                    DO 100\mathbb{K}=1,NR-1
                    J=J +1
                    IF(J.GT.JM) G0 T0 9000
                    ISETJ (J) = ISETJ (J-1)
                    comtinuE
            ENDIF
500 contrnue
GO TO 1000
8000 CONTINLE
    RETURN
9000 CONTINUE
        WRITE (6, 9010) JH, CARD, (PARDS (I), I=1, NM)
9010 FORHAT (///.
        1 IX, '###### INPUT DATA ERROR IS DETECTED. ###################'./;
        1X, NUNBER OF [SET (J) ARE OYER OF MAX DATA JH = : 15, }\because//
        3 1X, [MPJTT CARD [', A72, '-',%
        4 1X," LIST OF WARDS ON THE CARD IS './. 25 (1X, A10. \X).///.
        5 IX, '### PROCESS IS TERHINATED BY INPUT DATA ERROR AT SUB. RSETJ.'.
        + ' ***'.//
c
    BND
    SUBROUTINR NWARD (CARD , NW, YARDS, NFO)
c- - SUB. NHARD COUNTS NUGBER OF MardS ON THE INPUT CARD.
```



```
c
    NW = 0
    KS = 1
c
    100 comtinue
    DO 200 K = KS , 72
C
            IF ( CARD (K:E).NE.' ') THEN
                NTONTN
                    IF(NYM.GT.NFO) GO TO 9000
C
                        LE=INDEX (CARD (K:X+9).' ')-1
                    IF(LE.LT.0) LE = 10
        KE = K + LE - !
        WhRDS (NTM)=',
        MARDS (IFI) (1:LE) =CARD (K:KE)
```

 DORTDOTソース・リスト（4／5）

```
c
        KS = KE+1
        60 T0 100
        BNDIF
200 CONTINUE
    RETURN
9000 CONTINJE
    HRITR (6,9010) NTO, CARD, NTM
9010 FORMAT (////.
    1 1X, "###f## IMPUT DATA ERROR IS DETECTED. ###################',/,
    2 1X,' NUNBER OR PARDS FOR A CARD ARE LESS EQINL TO *, I5, %:.//,
    3 1X,' INPITT CARD [',A72, '"',/,
    4 IX,' NUH. OF MARDS ON THE CARD IS m= *, I5,///.
    5 IX,'### PROCESS IS TERHINATED BY INPUT CARD ERROR AT SUB. NWMRD."
C
    END
```

 DORTDOTソース・リスト（5／5）

```
CONTROL MSG NOLIST
SET &FT05 = &STR(dortdot-data-file)
SET &FT06 = &STR(list-file)
SET &FT02 = &STR(read-file-from RTFLUM)
SET &FT03 = &STR (output-file-for DOT35 POST PROCESSER)
DEL '&FT06'
DEL '&FT03'
FREE ATTR (XX)
ATTR XX LR (X) BLK (23476) RECFM(V B S) DSORG (PS)
ALLOC DA ("&FT03') NE T SP(10 10) USING (XX) RELEASE
FREE ATTR (FB)
ATTR FB LR (137) BLK (19043) RECFM (F B A) DSORG (PS)
ALLOC DA ('&FT06') NE T SP(10 10) USING (FB) RELEASE
FREE ATTR (IN)
ATTR IN INPUT
ALLOC F (FT05F001) DA('&FT05') REU
ALLOC F (FT06F001) DA('&FT06') REU
ALLOC F(FT02FOOI) DA('&FT02') REU USING (IN)
ALLOC F (FT03F001) DA('&FT03') REU
RUN uty. fort (DORTDOT)
FREE AT (XX FB IN) F (FT05F01 FT06F001 FT02F001 FT03F001)
EXIT
```

図5．4．2 DORTDOT実行プロシジャ・リスト

6．J A S P ER実験解析用ユーティリティ

「J A S P E R 実験解析」でき様々な測定データに対して，D0T3．5，DORTの計算結果を用 いた評価を行った。この中には，測定データをJ A S P ER実験解析の計算条件と同じ形に調整したり，DOT3．5，DORTの計算結果から測定データと同型式に変換するといった処理が含まれ
 ィコティ類から，以下に示すものについて本節で紹介する。
（1）NE213SP NE 213 測定器による高速中性子群スペクトル測定データを，JASPER実験解析用の中性子 21 群のエネルギ境界に振り分けたファイルを作成する。この結果は，SAPCETRAN－II．からの計算結果と直に比較ができると共に，DOTPLOT によ る両データの比較図作成を可能にするのもである。
（2）XCOLP1 XCOLPIは，「IHX実験解析」において，ナトリ所放射化量の計算時に使用する ナトリウム $\left({ }^{23} \mathrm{Na}\right)$ の（ $\mathrm{n}, ~ r$ ）反応断面積縮約を行うものである。テキスト・ データとして与えられた 100 群用のデータを元に，ANI S Nによる 100 群計算結果のフラックス・データをパラメタとして用いて縮約を行う。
（3）NA2C03 NA2C03は，「IHX実験解析」におけるナトリウム・カプセルの放射化量を計算する為に作成したものである。データとして，DOT3．5計算結果フラックス・ データとXCOLP1の計算結果であるナトリウム $\left({ }^{23} \mathrm{Na}\right)$ の $(\mathrm{n}, ~ r)$ 反応断面積を用いる。

以降，小節毎にそれぞれのユーティリティについて述べる。

6． 1 NE 213 測定データの変換 NE213SP

JASPER実験内の各実験において，NE 213 測定器による高速中性子群スペクトル測定が行われた。この測定データは，実験ケース毎に3～4ケースの測定が行われており，各 ケース毎に測定用エネルキ群境界が異なっている。ms－FORTRAN ver．4用に作成したユーティリ ティNE213SP は，JASPER実験解析用の中性子エネルギ群境界とは異なる測定データを入カデー夕として，解析用のエネルギ群に振り分けたファイルを作成するものである。この結果を基に， SAPCETRAN－IIIからのDOT3．5計算結果と測定データ間の比較が直にできると共に，先に紹介した ANISN 形式ファイル作成ユーティリティconvAFにより，DOTPLOT 用のファイルを作成し，両デ ータのスペクトル比較図を作成する事が可能となる。

以下にNE213SP の使用方法を，図6．1にNE213SP のソース・リストを示す。

【入力データ】 NE213SP の実行後，画面の表示に従って，次のファイル名を入力する。
（1）実験データ・ファイル名：実験データとして，convAF用のデータを必要なだけ連結
したものを用いる。
（2）NE213SP からの出カファイル名。
（3）NE213SP 出力のリスト・ファイル名。

```
        PROGRAN NE213
*=========
This program calcurates 21G-1lux data from NE213 and atomosphere-
hydrogen-proton recoil detector exalination data.
```



```
C
    PARAMETER (NHAX=50)
C
    CHARACTER LINE %72, BBAR*I, INDAT*50, OFILE 1 % 50, OF ILE2 %50
    REAL EG(2,NHAX),E21 (22),F21(21)
    REAL ED (3, NHAX), PL (2, NHAX)
    INTEGER NBK (NHAX)
C
    DATA E21 /
    1 1.4918E07, 5.4881E06, 3.3287E06, 2.0190E06, 1.2246EO6,
    2 7.4274E05, 4.5049E05, 2.7324805, 1.6573E05, 6.7379E04,
    3 2.4788EO4, 9. 1188E03, 3.3546E03, 1.234IE03, 4.5400E02.
    4 1.6702EO2, 4.7851E01. 1.3710E01, 3.9279E00, 1.1254E00,
    5 4.1399E-1. 1.0000E-3 /
C
    FRITE (%, '(1X, 35Henter Examination data IMPUT file = .%)')
    READ (*, '(A50)') INDAT
    MRITE (*,'(1X, 36H Resalts output file name = . 古)')
    READ (%, '(A.50)') OFILE!
    MRITE (#, (iX. 36H Output listing file name = , %)')
    RBAD(%, '(A50)') OFILE2
C
    OPEN (1, FILE= INDAT)
    OPBL (2, FILB=OFILEI, ACEESS='SEQUENTIAL', FORM='FORHATTED')
    OPEN (3, FILE=OFILE2, ACCESS='SEQUEHTI AL', FORH=*FORLATTED')
C
    WRITE (3, 6000) [MDAT, OFILE1, OFILE2
6000 FORHAT(
    1 1X, '==а== program NE213 : Calc|rates 2IG-spectrum data ====='./.
    2 1X,'INPUT file name =',A50./.
    1%.'Resalts Outpul =',A50,/.
    4 1X,'Listing Output =', A50,//,
    5 IX,'---- input data echo -..--')
```


NE 213 SPソース・リスト

```
c
c---- Read input data of examination.
    1000 continue
        READ(1, '(A72)', END=2000) LINE
        IF(LINE (1:I).EQ. '*' ) G0 T0 1000
        #RITE (2,6010) LINE
        #RITE (3, 6010) LINE
    6010 FORMAT (A72)
`
    G0 T0 1000
c
    2000 cONTINUE
        WRITE (3,'(24H- input data end ----, n')
        RETIND (2)
        NB=0
        NH=0
C
    2100 CONTINUE
        READ (2,' (I2, 4X, A1) ', END=3000) N, EBAR
C
    NB=NB+1
    D0 2200 I=1,N
            NN=N+1
            NBK(NN) =NB
c
            IR (NN. GT. NHAX ) THEN
                    FRITE (3,6100) NHAX
    6100 FORHAT(1X,'--- DATA LINE limits is ', I3,
        ENDIF
c
    C
            READ (2, *) EG (1,NM), EG (2,NN), ED (1, MN), ED (2, NN)
            If ( ebar eq. 'g' ) them
                    ED (1, NK)=ABS ( (EG (1, NN) -EG (2, MN)) )ED (1, MN)
                    ERR = ED (2, NH)/2.0/100.*ED (1,NN)
                    ED (2,NN) =ED (1, NN) -ERR
                    ED (3,NN) =ED (1,NN) +ERR
            ELSE
                    ERR =ED (2,NN)/2.0
                    ED (2,NM) = DD (1, MN) -ERR
                    ED (3,NH) =ED (1,NN) +ERR
            ENDIF
c
    2200 continue
        G0 T0 2100
C
    3000 continge
    REMIND (2)
    MRITR (2, 6110) NB, MN
    #RITE (3, 6111) NB, NN
    6110 FORMAT/, 14, 'Num. of data block = ', I3,/.
                    1X, Num. of flux data = ', I3,//.
                            1x,', Emergy.U Energy. L, BLK Flux '.
                            1X, " 
                    [CPS/kW/cq4] [CPS/kT/CD2]')
C
    6111 F0RMAT(/, 1X, 'Num. of data block = ', I3./.
    l IX,Nuq. of IIUX data = , I3.//,
            1X, 'Num. of flux data =', I3,//,
            1X, Energy.U Energy. L ELK
            1X,: 
    C
    C... SORT data by energy boundary. 1 to Domn-mord.
        DO 3200 [=1. NN-1
            DO 3100 J=[+1,NN
            IF( EG(1, J).GT. EG(1, I) ) THEN
                    DO 3110 K=1, 2
```

 NE213SPソース・リスト

 NE213SPソース・リスト

 NE213SPソース・リスト

 NE213SPソース・リスト

6． 2 マクロ断面積の縮約 XCOLPI

JASPER実験の「IHX実験」において，ナ归能・カプセ放射化量の測定が行われた。 これに対する解析計算データとして，DOT3．5の計算結果フラックス・データとナトリウムの （ n, γ ）反応断面積を用いた放射化量の計算を行った。この計算時に使用するナトリウム $\left({ }^{2} \mathrm{Na}\right)$ の (n, γ) 反応断面積を， 100 群用のデータから 21 群に縮約する為に，ms－FORTRAN ver． 4 用に作成したものがユーティリティ XCOLP1である。縮約のパラメータとして， AN I S Nによる100 群計算結果のフラックス・データを用いる。

以下にXCOLP1の使用方法を，図6．2．1にXCOLP1のソース・リストを示す。図6．2． 2 に， 100 群ナトリウム (n, γ) 反応断面積データを，図6．2．3に， 100 群ANISNフ ラックス・データを，それぞれ例として示す。

【入力データ】 XCOLPL実行後，画面の表示に従って，以下の入力を行う。
（1）XCOLP1からの出カファイル名（21群縮約断面積）。
（2） 100 群断面積ファイル名。
（3）ANISN フラックス・ファイル名。
（4）ANISN フラックス・ファイル中のスペクトル・データの内容id。 $0=$ per lethagy， $1=$ as is。

図6．2．1 マクロ断面積縮約ユーティリティXCOLP1ソース・リスト

```
    2, 7.4274E+05, 4.5049E+05, 2.7324E+05, 1.6573E+05, 6:7379E+0
    3,2.4788E+04,9.1188E+03, 3.3546E+03, 1.2341E+03, 4.54008+0
    4,1.6702E+02,4.7851E+01, 1.37102+01, 3.9279E+00, 1.1254E+0
    5 , 4.1399E-01 , 1.00002-03 /
C
C.... 100G to 21G
    DATA MS / 10, 5, 5,5,5,5,5,5,6,4.
    1 4,4,4,4,4, 5, 5,5,5,4, 1//
C
C===== START ==u=u=
C
    TRITE (*,6000)
    6000 FORHAT (25 (%).
        15X,60(1H=)./,
        2 5X, PROGRAM XCOLP1 ... DEC. 1992 by S.T
        3, /, 5X, 30 (2H-),//
        45X, 100群断面積のANISN-Fluxによる21群への䙋約䬦算',/
        5 5x,60 (1HF). n
C
        FRITE (#, 6010)
        READ (*, '(A)') OFILE
    60.10 FORHAT(
    13X'<<ファイル設定。 計算結果リスト:OFILE './
```



```
    3 3X, " 100群断面䅡: IFILE1',
    + "= ₹ ; Read from Keyboad. './.
    4 3X,", .......................
    + '= file name ; Read from the Iile.'./.
        X, ', ANISN FIUx : IFILE2',
        '= % : Read from Keyboad. './,
        3X,',
```



```
C
    TRITE (*,601[)
    READ (*,'(A)') SFILE
6011 FORMAT (3X,' Enter SFILE Iile mame m', '#)
C
    MRITE ( }\ddagger,6012
    READ (#, '(A)') IFILE]
6012 FORHAT (3X,' Enter IFILEI file name #> ', 呈)
c
    WRITE ($, 6013)
    READ (*,'(A)') IPILE2
6013 FORHAT (3X,' Enter IFILE2 file mame =>', 古)
C
    TRITE (*, 6014)
    READ (#, *) LETHAG
6014 FORAAT (3X,' per Lethagy=0. not=1 Which o => ', %)
c
    OPEN (11, FILE=0FILE)
    OPEN(12, FILE=SFILE)
C
    READ X-section data ----
    IF(IFILEI.EQ '#' ) THEN
        IND = 1
        CALL XEYBOD(X , EN , IND)
    ELSE
        CLOSE(1)
        OPEK (1, FILE=IFILEI)
        CALL INPDAT(X )
        CLOSE(1)
    ENDIF
C
    READ ANISN-FLEX data ----
    IF(IPILR2.EQ. ' f' ) THEN
        IND =2
        CALL EBYBOD (BBF , EN . IND)
    BLSE
        CLOSE (2)
        OPEN (1, FILE=IFILE2)
        CALL IMPDAT( BBF)
```

図6．2．1 マクロ断面積縮約ユーティリティXCOLP1ソース・リスト
［6．パリコン版コーテイリティ］

```
        close(2)
        ENDIF
C
C
    ATOT = 0.0
    D0 100 1 = 1, 100
        IF( LETHAG. EQ 0) BBF (I) = BBF(I) # (LOG (EN (I)) - LOG (EN (I+1))
        ATOT = ATOT + BBF (I)
    100 CONTINUE
c
c
    calcuration -----
    IC =0
    N21 = i
    BB=0.0
    ET =0.0
    D0 1000 I = 1, 100
        IC = IC + 1
        BB= BB + BBF (I) #X (I)
        BT = ET + BBF (I)
        IP (IC. EQ NS (N21))THEN
            BRX N21) = BR/ET
            N21 = N21+1
            IC}=
            BB}=0.
            T =0.0
        ENDIF
    1000 CONTINUE
C
C----- OUTPUT ----
    MRITE (11, 6100)
6100 FORMAT (
    1X, 4X, 1X, [ Energy. 1 ]-[ Energy. 2 ] [ X-sect ] [ANISN-F ]'
```



```
C
    002000 I = 1 , 21
        mRITE (11, 6110) I, EN (I), EN (I+1), X (I), BBF (I),
    1
    Oo CONTINuE
c
    D0 2010 I = 22.100
        TRITE (11, 61 12) I, EN (I), EN(I+I), X(I), BBF (I)
    2010 CONTINUE
        WRITE (11, 6113) ATOT
C
    6110 FORHAT(IX, I4, IX, IPE11.4, 2X, E11. 4, 2(2X, El1. 4).
    1 5X, EII.4, 2X, E11.4, 2X, E11.4)
6112 FORLAT ([X, I4, IX, IPE11.4, 2X, E11.4, 2(2X, E11. 4) )
6113 FORLAT(IX, 4X, IX, 11X, 2X,11X, 2X, 11X, 2X, IPE11.4)
C
    TRITE (12, 6200) (BBX (I), I=1, 21)
6200 FORHAT (5 (2X. IPE11. 4))
G
    END
    SURROUTINE KEYBOD(BBF, EN , IND )
    DINENSION BBF(1), EN (1)
    CHARACTER INDX (2)*16
    DATA INDX/' 100 样断面辕 ', '100群F1ux'/
C
    TRITE (*,6000) [NDX (IND)
    6000 FORHAT (25 (%),
    1 1X, '=== ', Al6,' read from keybord. === ',/
    2 1X,' No.', 1X,'[ Energy. 1]-[ Energy. 2 ]']
C
    D0 1000 I = 1 , 100
        MRITE (#, 6100) I, EM (1), EN (I+1)
            RBAD (*, *) BBF (I)
    1000 CONTINUB
    6100 FORHAT (IX, I4, IX, IPEII, 4, 2X, E11. 4.' }=>\mp@subsup{>}{}{\prime},\mp@code{##)
C
    RETURN
    END
```

図6．2．1 マクロ断面皘絔約ユーティリティXCOLP1ソース・リスト

```
        SUBROUTINE INPDAT(BBF)
        DIHENSION BBF(D)
        CHARACTER CARD*72
C
    CLOSE (90)
    OPEN (UNIT=90. STATUS='SCRATCH'
    * ACCESS='SEQUENTIAL' , FORH='FORHATTED')
C
1000 CONTINUS
    READ (1, ' (A72)', END=2000) CARD
    IF(CARD (1:1). EQ. ' '')GO T0 1000
    MRITE (90,'(A72)') CARD
    60 T0 1000
C
    2000 CONTINUE
    REPIND(90)
    READ (90, %) (BBF (%), K=1, 100)
C
    RETURN
    END
```

図6．2．1 マクロ断面積縮約ユーティリティXCOLP1ソース・リスト

Na	（ n, r ）			
2．1410E－04	2．0540E－04	I．97508－04	1．89308－04	1． $81608 \mathrm{CO4}$
1．74508－04	1． $6950 \mathrm{E}-04$	1． $6760 \mathrm{E}-04$	I． $65908-04$	1． $6330 \mathrm{E}-04$
1．5870E－04	1．5270E－04	1．55308－04	1．64708－04	1．7310E－04
1．8080E－04	1．8790E－04	1．94708－04	2．02208－04	2． $0850 \mathrm{E}-04$
2． $0660 \mathrm{E}-04$	2．03108－04	2．0000E－04	1．97108－04	1．94508－04
1． $9220 \mathrm{E}-04$	1．9680E－04	2．10908－04	2．2740E－04	2．86508－04
3．2630E－04	3． $4560 \mathrm{E}-04$	3．3530E－04	3．0670E－04	2．61801－04
2． $5670 \mathrm{E}-04$	3． $0500 \mathrm{E}-04$	3． $9080 \mathrm{E}-04$	5．68508－04	6．99502－04
7． $0050 \mathrm{~B}-04$	7． $4730 \mathrm{E}-04$	8，28108－04	8．52408－0．4	7．87500－04
7．24008－04	1． $30108-03$	8， $0150 \mathrm{P}-04$	5．0980E－03	1．3690E－05
$3.8680 \mathrm{E}-0.5$	4．4860E－03	1．2900E－03	4． $0640 \mathrm{E}-03$	2．65700－05
2， $61308-05$	3． $8610 \mathrm{E}-05$	$7.0440 \mathrm{E}-05$	1．47308－04	1．9320E－03
8． $9000 \mathrm{E}-04$	2．93208－03	1． $6710 \mathrm{E}-02$	1．98208－01	6．20208－02
1． $6950 \mathrm{~B}-02$	9． $9720 \mathrm{E}-03$	7．6650E－03	6．73708－03	6．42308－03
6．35708－03	6． $6770 \mathrm{D}-03$	7． $0560 \mathrm{E}-03$	7．49508－03	8． $0010 \mathrm{E}-03$
$8.8080 \mathrm{E}-03$	9． $7340 \mathrm{E}-03$	1．0800E－02	1．2080E－02	1．3510E－02
1．5110E－02	1． $6960 \mathrm{~B}-02$	1．8900E－02	2．1180E－02	2． $3730 \mathrm{E}-02$
2． $6650 \mathrm{E}-02$	2．97508－02	3． $3290 \mathrm{E}-02$	3． $7280 \mathrm{E}-02$	4．1640E－02
4． $6750 \mathrm{E}-02$	5．21008－02	5． $8420 \mathrm{E}-02$	6． $6050 \mathrm{E}-02$	7．4830E－02
8． $4790 \mathrm{E}-02$	9． $6200 \mathrm{E}-02$	1．09208－01	1． $2320 \mathrm{E}-01$	4． $6970 \mathrm{E}-01$

図6．2．2 100 群 ${ }^{23} \mathrm{Na}(\mathrm{n}, ~ \gamma)$ 反応断面積デー夕

＊AKISN－FLUX at The last void in conf．I－B＋（No Pb）：（Location void． XX ）				
＊単位 $\mathrm{B} / \mathrm{min} /$	－1／4			
2．1980E＋02	2． $65308+02$	8． $4810 \mathrm{E}+02$	9． $6920 \mathrm{E}+02$	2． $3930 \mathrm{E}+03$
2． $5760 \mathrm{E}+03$	5． $4850 \mathrm{E}+03$	6． $3830 \mathrm{E}+03$	1．0150E＋04	1．1520E＋04
1．7270E＋04	1．9510Ef04	2． $1560 \mathrm{~B}+04$	2．4290E＋04	2．84608＋04
4． $2630 \mathrm{E}+04$	4． $4330 \mathrm{E}+04$	3． $9730 \mathrm{C}+04$	5． $8310 \mathrm{EtO4}$	5． $45508+04$
9． $4020 \mathrm{E}+04$	8． 9550 Et 04	1． $0240 \mathrm{E}+05$	1．13708＋05	1． $11408+05$
9．72708＋04	1． $0140 \mathrm{E}+05$	$9.9330 \mathrm{E}+04$	9． $49408+04$	8． $81008+04$
8．73308＋04	8． $3280 \mathrm{E}+04$	9． $9060 \mathrm{E}+04$	1．7160E＋05	1．84008＋05
1． $62108+05$	2． $02608+05$	2． $3380 \mathrm{E}+05$	1． $97208+0.5$	2．7500E 705
3． $2940 \mathrm{E}+05$	2． $07708+05$	1． $4650 \mathrm{E}+65$	2． $6550 \mathrm{E}+0.5$	2． $4280 \mathrm{E}+05$
1．4640E＋05	3． $08508+05$	4． 1780 Et 05	2． $4590 \mathrm{E}+0.5$	4．4070Et05
1． 0830 Et 06	4． $24408+05$	6．1440Et05	3． $8300 \mathrm{E}+0.5$	1．1200R＋06
7． $7450 \mathrm{C}+05$	6． $8140 \mathrm{Et}+5$	6．2080E＋05	5． $5720 \mathrm{E}+0.5$	4． $7510 \mathrm{E}+05$
3． $46408+05$	2． $52008+05$	1． 0290 Et 05	2． 7690 Bt 04	1．88008＋05
4． $07508+05$	6． $32808+05$	7． $7290 \mathrm{E}+05$	8． $38408+05$	8． $4860 \mathrm{R}+05$
8．35808＋05	8． $12108+05$	7．8840E＋05	7． $6400 \mathrm{E}+0.5$	7． $3680 \mathrm{E}+05$
7． $13108+05$	6． $87908+05$	6． $6320 \mathrm{E}+05$	6． $3960 \mathrm{~B}+05$	6．1650R＋05
5． $94008+05$	5． $7210 \mathrm{P}+05$	5． $5070 \mathrm{E}+05$	5． $2960 \mathrm{Bta5}$	5．08608＋05
4． 88 108＋05	4． $6810 \mathrm{E}+0.5$	4． $4830 \mathrm{E}+05$	4． $2870 \mathrm{E}+0.5$	4． $0910 \mathrm{E}+05$
3．8940Et05	3． $6930 \mathrm{P}+05$	3． $4940 \mathrm{E}+05$	3． $2880 \mathrm{E}+0.5$	3． $0800 \mathrm{E}+05$
2．87508＋05	2． $6630 \mathrm{P}+05$	2． $4600 \mathrm{E}+05$	2．2620E＋0．5	1．1560E＋06

図6．2．3 縮約パラメタ・ANISN100群計算結果フラックス・データ

6． 3 ナトリウム放射化量の計算 NA2C03

JASPER実験の「IHX実験」において，ナトリウム・カプセル配置位置におけるD0 T3．5の討算結果スペクトル・データとナトリウムの（n， n ）反応断面積から $\mathrm{Na}_{2} \mathrm{CO}_{3}$ の関す る放射化量の計算を次式により行った。

放射化量 $\mathrm{S}[\mathrm{Ci} / \mathrm{g} / \mathrm{min} / \mathrm{kW}]=\frac{\lambda \times \mathrm{NA}}{3.7 \times 10^{+10} \times \mathrm{M}} \times \Sigma\left(\sigma_{1} \times \Phi_{1}\right) \quad \mathrm{i}=1,21:$ 工裉骎群
この計算に使用するナトリウム $\left(\mathrm{Na}_{23}\right)$ の $(\mathrm{n}, \boldsymbol{\gamma})$ 反応断面積は，6．2節で紹介した XCOLP1により計算したものであり，スペクトル・データとしてD0T3．5の計算結果からナトリウ ム・カプセル配置位置におけるデータを用いている。これらデータを基に，ms－FORTRAN ver． 4用に作成したユーティリティNA2CO3により，放射化量の計算を行った。

以下に，NA2C03の使用方法を，図6． 3 にNA2C03のソース・リスト示す。

【入カデータ】 NA 2 CO 0 実行後，画面の表示に従って，以下のファイル名を入力する。
（1）NA2C03からの出カリスト・ファイル名（計算結果）。
（2）DOT3．5スペクトル・データ・ファイル名。
（3）群断面積ファイル名。
（4）DOT3．5スペクトル・データ・ファイル中のスペクトル・データの内容id。 $0=$ per lethagy， $1=$ as is。

図6．3放射化量計算ユユーティリティ NA 2 CO 3 ソース・リスト

```
C.... 2IG ENERGY bOUNDARY.
    DATA ES
    1/1.4918E+07, 5.4881E+06 , 3.3287E+06 , 2.0190E+06, 1. 2246E+0
    2,7.42748+05, 4.5049\textrm{E}+05, 2.7324E+05, 1.6573E+05, 6.7379E+0
    3,2.4788E+04, 9.1188E+03, 3.3546E+03, 1.2341E+03, 4.5400E+0
    4, 1.6702E+02, 4.7851E+01, 1.3710E+01, 3.9279E+00, 1.1254E+0
    5, 4. 13998-01, 1.00002-03/
c
C
C===== START ======
    MRITE (*, 6000)
    6000 FORMAT (25 ()).
    1 5X. 60(IIF=)./,
    3.%.50, 30(2G-)./.
    45x,
    5 5X, 60(1H=)./n
〔
    MRITE (*, 6010)
    READ(*''(A)') OFILE
    6010 Forampl
    13X.,<フフイル設定。計算䊩果リスト:OFILE',%
    2 3X, , DOT3. 5 計算結果: IFILEI',
    + % , = : Read from Keyboad. %/.
    43X.'[CPH/k//cu2/Leth] or [cPM/cm2/kF]:....'
    + , = file name : Read from the file.'.//.
    3 3x,', N a-23 (n, 7) 断面栍: IPILE2'.
    + 'r = ; Read from Keyboad. ',/.
    4 3X,'
    + '= file pame: Read from the file. ',///.
    5 3X,' Enter OFILE file name }
c
    WRITE(*,6012)
    READ (*'(d)') IFLLEI
    6012 FORHaT(3X,' Eater IFLLEI Iile name => ', 并
c
    MRITE (#, 6013)
    READ (*, '(4)') IFLLE2
    6013 FORHat(3X.' Enter IFILE2 file name =>', f)
c
    MRITE (*, 6015)
    read (*, &) Lethag
    6015 FORHAT (3X, '. Enter IFILE2 TYPE (PER-Lethagy=0/N0=1) => '. F)
c
    OPEN (II, FILE=0FILE)
&
c
    READ X-section data ----
    IF(IFILE2.EQ ' %') THEN
        IND = 1
        CALL KEYBOD (X . ES , IND )
    ELSE
        close(1)
        OPEN (1. FILE-1FILE2)
        ChLL INPDAT(X)
        CLOSE (1)
    endif
c
CC DO 10I = 1, 21
cc X(I) =X(I) &1, 08-24
cc :o comtinue
c
C-
    READ ANISN-FLUX data -----
    IP( IFILEI. EQ ' ' ' ) THEN
        IND =2
        CALL KEYBOD(BBX , ES , IND)
    ELSE
        CLOSE(2)
        OPEN (1, FILE=IFILRI)
```

図6．3放射化量計算ユーティィリティNA2CO3ソース・リスト

```
            CALL INPDAT(BBX)
            CLOSE(2)
        ENDIF
C
C---- PER LETHAGY to FLLX ----
    IF(LETHAG. NE. 0) GO TO 120
    ATOT = 0.0
    10 100I = 1, 21
        BBX(I) = BEX (I)*(LOG (ES (I)) - LOG (ES (It1)))
        ATOT = ATOT + BBX(I)
    100 CONTINUE
C
C... set CPS to CPH.
    120 CONTINUE
CC DO 130I = I . 21
CC BBX(I) = BBX (I) #60.0
CCI3O CONTINUE
C
C-
            calcuration -
    150 CONTINUS
    S1=0.0
    S2 = 0.0
    D0 1000 I = 1, 21
```



```
            SI = S1 + SI (I)
            IF(I, LT. 21) $2 = S1
1000 CONTINUE
c
C----- ourpur ...--
    #RITE (11,7000)
    7000 FORMAT(IX,'+++ 故射化軘の計算 +++',/,
```



```
    2 IN,'NM, (HeV) (HeV)
7010 FORHAT (1X, [4, 2 (2X, IPE12.5) . 4(2X, E12.5))
C
    MRITE( *, 7005)
    #RITE ( }\ddagger,7006) (X(K),K=1,21
    GRITE ( #, 7007)
    MRITE ( }\ddagger,7006) (BBX (K),K=1,21)
    MRITE ( }\ddagger,7100) S
    HRITE( #, 7200) S2
    7005 FORNAT (//////////, 1X '+++ N a -23 (n, r) 断面栍 +t+')
    7006 FORMAT (6 (2X, IPELI.4))
```



```
C
    D0 2000 I = 1. 21
        #RITE (II, 7010) I, ES (I), ES (I+I), X(I), BBX (I), SI (I), SI (I)/SI
    2000 CONTINUE
6
    RITB (11,7100) S1
    TRITE (11,7200) S2
    7100 FORMAT (/
        1 1X,'N a 故射化量',/
    < 2 1X,',
    5 / ,
        = ', MPE[2.5, n
C
7200 FORHAT (/, 1X,' S expect21 = ',IPE12.5)
C
    END
    SUBROLTINE KEYBOD ( BBF , EN , IND )
    DIRENSION BBF (1). RN (1)
    CHARACTER INDX (2) {14
    DATh INDX/' 2 1 群断面積', '2 1 群Flux'/
C
```

図6．3放射化量計算ユーティリティ NA 2 CO 3 ソース・リスト

FRITE（ $*, 6000$ ）INDX（IND）

6000 FORHAT（25（ $)$ ）
1 IX，＇$===$＇，Al4．＇read fron keybord．$==$＇$^{\prime} /$.
2 1X，＇No．＇，1X，＇［ Energy．1］－［Energy．2 ］＇）
c
DO $10001=1.21$
TRITE（ $\ddagger .6100$ I．ER（I），EM（I +1$)$
$\operatorname{READ}(\neq \ddagger) \mathrm{BBF}$（I）
1000 CONTINUE
6100 FORMAT（1X．I4，IX，IPE11．4，2X，E11．4，＂\Rightarrow＇，茾）
C
RETURN
END
SUBROUTINE INPDAT（BBF）
BINERSION BBF（1）
CHARACTER CARD $\ddagger 72$
c
CLOSE（90）
OPEN（UNIT＝90，STaTUS＝＇SCRATCH＇
＊ACCESS＝＇SBQUBNTIAL＇，FORM＝＇FORMATTED＇）
C
1000 COMTINUE
READ（1．＇（A72）＇，EMD＝2000）CARD
IF（ CARD（1：1）．EQ＇\＆＇）G0 TO 1000
FRITE（90，＇（A72）＇）CARD
GO T0 1000
6
2000 CONTINUE
RETIND（90）
READ（90；；）（BBF（K）$, \mathrm{K}=1,21$ ）
C

RETURN

END
図6．3放射化量計算ユーティリティ NA 2 CO 3 ソース・リスト

付 録

D ORT
 入カデータ・マニュアル

～目 次～

1．DORTシステム（DOS）
$\cdots \cdot-45-$
－－DOS実行JCL例 ——
．．．．－ $47-$

2．DORT
．．．．．－ $50-$
－－－カード入力の概要－－－
．．．．．－53－

3．DORTスカデータ詳細
A．タイトル
B．J C L 論理機番設定
（61¥7）
．．．．．－55－
C．整数型制御データ
（ $62 ¥ ¥$ ）
．．．．－55－
D．実数型制御データ（63＊＊）
…－ 56 －
E．第1配列データ・ブロック（71¥¥～78¥ㅍㅍ）
…－ $62-$
F．第2配列データ・ブロック（81¥¥～87¥¥）
G．概要設定データ・ブロック（ $1 * * ~ 30 ¥ ¥)$
．．．．．－65－
H．外部境界中性子源のカード入力（ $91 * * \sim 92 * *$ ）
．．．．．－66－
I．flux Guess のカードス力（ $93 * * \sim 95 * *$ ）
．．．．．－68－
J．分布型中性子源 のカード入力（ $96 * * \sim 98 * *)$
…․－68－
．．．．．－68－

```
1．DORTシステム（DOS）
```

1． 1 システムの構成

DORT ：Tmo－Dimensional Discrete Ordinates Transport Code．
（2 次元体系中性子輸送計算コード）

補助機能ユーティリティ
DOS DRIVER ：•計算を実行する諸機能（ルーチン）の制御•調整を行う。
GIP ：－DORTス力用の断面積ファイル作成を行う。
RTFLUM：•f1uxファイルの編集，及び，様々な形式（例えば，DOT：3．5用やDORT用） のfIuxファイル間のフォーマット変更を行う。
BNDRYS：•DORT訃算結果の境界fluxから，以降の接続計算で内部境界中性子源として使用するための境界 f l uxの抽出を行う。
GRTUNCL：•RZ体型におけるポイント・ソースからファースト・コリジョン・ソース を作成する。この計算結果は，DORTにおいて特殊な分布型中性子源と して使用できる。

1． 2 システムの作成者
OakRidge 国立研究所，米国 テネシー州 オークリッジ

1． 3 使用言語 及び 計算機

FORTRAN，CAL ；CRAY（A）
FORTRAN，ASSEMBLER ；IBM（B）

1． 4 解析に関する緒言

DORTは，初期DOTコードを基本として作成されている。DORTは，1次元または 2 次元 の体系について，媒質毎の粒子の相互作用の結果としての「生成」，または，外部中性子源として与 えられる「入射」のいずれかによって，fluxや粒子の流れを計算する。主要な解析対象として，中性子とフォトン（光子；r 線）に関する深い（長い）体系の輸送計算が挙げられる。 k 値や修正値解析計算（search）の様なきわどい問題に関しても解析可能である。計算結果に関する多量の印刷出力 を行うことが可能であり，以降の接統（䋱続）計算のために，計算結果の出カファイルを変換するこ とも可能である。

1． 5 解 法

拡散理論または囄散軸輸送理論（discrete ordinates）の方法のいずれかを用いて，ボルツマン輸送方程式を解いている。離散方向軸法では，初期処理段階において，平衡（Blance）方程式を以下に記 す状況に関する粒子の流れについて解いている。すなわち，解析メッシュ毎の各セルにおける離散方向（角度分点）セットに関するものと，エネルギ群構造における各群に関するものについてである。

輸送計算に関する繰り返し計算（Iteration）は，全セル，全角度分点，全エネルギ群に関して暗 にカップリングされた状態で実行され，更に，中性子源の再生が計算される。収束加速法については，様々な手法が使用できる。また，異方性断面積を任意のルジャンドル展開次数において，表現（使用） することができる。計算結果のファイルは，リスタート計算で使用することが可能であり，また，他 のコード（DOT3．5等）での情報（入力）として使用することが可能である。

以下の影響を考慮するために，様々な補修技法が用意されている。例えぼ，有意誤差内で起因さ れる責値のfIuxや，断面積拡張時の端数切り落としによる負の散乱中性子源等による影響を近似的に処理する方法である。

第1ディメンション（I）のメッシュ数は，第2ディメンション（J）に沿って変化するものと して取り扱うことが出来（可変メッシュ・モード），また，角度分点の数は，領域メッシュ毎とエネ ルギ群毎に変更することが出来る（スーパー・メッシュモード及び可変角度分点・モード）。角度分点セットは，粒子の流れの現象を詳細に説明する様に集約した離散角度毎に設定することが出来る。

1． 6 使用上の制限

外部力場（external force filds）や非線形効果については，取り扱うことが出来ない。可変ディ メンジョン（可変モードのメッシュ，角度分点等）は，特殊な問題のパラメタに基づく如何なる制限 をも受けずに使用することが出来る。ただし，ある種のオプション（特に乨散理論）は，可変メッシ ユや可変角度分点を用いた計算にほ向かない場合がある。

1． 7 動然大洗におけるDORTシステム（DOS）の実行JCL

DORTシステムは，基本的には，（コア・メモリ）$=6 \mathrm{M}$ バイト以内で実行可能なロードモジ ユール群である。メイン・ロード・モジュール「DRIVER」は，DORTシステムに与えられた カードスカデータを一旦すべて說み込み，そのエコーをFT06番から印刷出力する。その後，カー ドス力内の区分カードに従って，各サブ・ロードモジュール「DORT（＝D0T4．2），GIP，BND RYS，RTFLUM，GRTUNCL」を実行して行くものである。

各サブ・ロードモジュールは，それぞれ，単体でも実行可能なものであり，こういった使用をす る場合には，区分カードを入れないスカデータが必要となる。

DORTの試行を繰り返した経験から，以下の注意点を見いだすことが出来た。
DORTのマニュアルでは，「スクラッチ・ファイル機番としてFT81～FT84及びFT91～FT94を使用する」とあるが，この他に，DOT3．5 と同様にFT01～FT04の機番をワーク・ファイル器番とし て割り当てる必要がある。この処置を行わない場合，なんらかの計算の為に使用するワーク・領域を可能な限ロコア・メモリ内で確保して行き，挙げ句の果てにエラー・コート「S080A－v0000］（コア・ メモリの領域不足）で計算が中断してしまう。この時，コア・メモリとして 10 M バイトを使用した計算も行ってみたが，実行状況は同じこととなった。

次項に，1994年5月現在，動燃大洗で実行可能なDORTシステム（DOS）用の計算例と して，「内部境界中性子源を用いたR Z 体型計算」に関するJ C L を示す。

くClass．Dの
最大メモり梳， 6 Mバイト。
（1）．C．L MOM
／／＊RTRLUK STEP INPUT DATA SAMPLE．
$/ / *=$ RTFLIS

／／SYSPRINT	DD SYSOUT＝＊
／／FT06F001	DD SYSOLT $=$＝
／／FT90F001	DD SYSOUT＝＊
／／＊	
	UNIT＝FORK，DCB $=(\mathrm{RECFH}=\mathrm{FBA}, 137, \mathrm{BLXSI} 2 \mathrm{E}=19043)$
／＊UNIT＝FORK，DCB＝（RECFK＝FBA，LRECL＝137，BLKSILE＝19043）	
／／＊	
／／＊IP NTPLX＝31．ELSE NOT SET．	
／／＊FT3IF001 DD DISP＝SHR，LABEL＝ （，，IN ），	
／／＊DSH＝（FLUX GESS OR RESTART FLOX FILE	
$/ / *$	
／／＊DORT OUTPUT FLUX IS CONYERTED BY RTFLUK－STEP OF DORT－SYSTEM．	
／／＊THE RESALT OF RTFLUH－STEP FILL BE WRITEN TO FT72FOO 1 （SET AT RTFLUM）	
／／FT32FOOI DD UNIT＝TORK，DISP＝（NRM，PASS），SPACE＝（TRK，（400，200）），	
／／DCB＝（RECEN＝YBS，LRRCL＝X，BLLSIZE＝23476，BUFN0＝1）．	
／／DSN＝\＆${ }^{\text {FLLUX }}$	
／\＃DSN＝POCOD11．TEST．DORT．FLUX	
／／＊	
／／＊（（ X－SECTION PILE URIT ））－－ALTMAS USE．－－61数 N0． 3 NTSIG＝8－－－－－	
$/ / \quad$ PSN＝DOCODII．TEST2．G21P3．GIT	
／／＊	
／／＊IF NTBSI＝33 AND（ EACH Of 62\％\％IBL，IBR．IBB，IBT＝4），ELSE NOT SET．	
／／FFT33F001 DD DISP＝SER，LABEL＝（， 1 IN）	
／／＊DSM＝（EXTERNAL BOUNDARY SOURCE FILE NAWE）	
／／＊	
／／＊（（ DISTRIBUTED SOURCE IMPUT UNIT ））－－－mon 61ay N0． 5 ATBSI＝34－－－－	
／／＊IF NTDSI＝34 AND（ 62 纾 IMPSRK＞0）．AND USE SERaTCH FILES	
／／＊ELSE NOT SBT．	
／／＊FT34F001 DD DISP＝SHR，LABEL＝ 6 ，．IN）	
／／＊DSN＝（DISTRIBUTED SOTRCE RILE NAME）	
／／＊	
／／＊IF NTFCI＝11 THEN SET，ELSE NOT SET．	
／／＊FTIIF001 DD DISP＝SIR，LABEL＝ $6 .$. INA，	
	DSN＝（GREAT GNCLE OUTPUT MHICH IS SPECIAL DISTRIBUTED SOURCE
／／＊	
／／＊AT DOT35 JASPER ANALISIS，－WB USE TSFSRC OUTPUT SOURCE．THEN FE MAKE	
／／＊CONVERT PROGRM PROM TSPSRC OJTPUT SOLRCE TO BNDRYS－FOREAT FILE．	
／／＊ENDER DSN IS CONVERTBD FILE FROW TSFSRC SOURCE FILE TITH BNDRYC．	
／／＊IP NTIBI＝12 THEN SET，BLSE NOT SET．	
／／FT12F00 D DISP＝SHR，LABEL＝（，，IN），	
／／＊DSN＝POCOD 11．TEST．TSFSRC．FT60	
	DSN＝POCOD 11．BRDRYC．TSFSRC
／／＊	
／／＊IF MTIBO＝21 THEN SET，ELSE NOT SET．	
／／FFT2 PROOI DD DISP＝（NEM，CATLG），TNIT＝DASD，SPACE＝（TRK，（20，10），RLSE），	
／／＊DCB $=($ RECPM $=$ YBS ，LRECL $=\mathrm{X}, \mathrm{BLKSI}$／$=23476$ ），	
／／＊DSN＝POCODI1．TEST．DORT．NTIBO	
／／	
／／＊IF NTNPR＝16 THEN SET，ELSE NOT SET．	
／／＊FT16F001 DD DSN＝\＆DORTFTI4，DISP＝NEF，PASS），SPACE＝（TRK，（50，20），RLSE），	
／／＊	
／／＊IP NTDIR＝22 THEN SET，BLSE NOT SET．	
／／＊FT22FOO1 DD DISP＝（REF，CATLG）．DRIT＝DASE，SPACE＝（TRK，（20，10），RLSE），	
／／＊DCB＝（RECFH＝YBS，LRECL＝X，BLKSIZE＝23476）．	
／／＊DSN＝POCODIL．TEST．DORT．NTDIR	
／／＊	

〈㖕算結果flux の出力。機番は スカデータ61羘

で指定する。

く＝断面稹ファイル
境み込み。機番は
入力データ
61竍きで指定する
＜DOT3．5用に
TSPSRCで作成した
内部境界中性子源 をBNDRYS形式に変換したもの。

```
//*((( dISTRIBUTED SORCE OUTPut )])---------- 617% NO. 11 NTDSO=23 ----
//: IF NTDSO=23 THEN SET, ELSE NOT SET.
//FFT83F001 DD DISP= (NEP, CATLG), UNIT=DASD, SPACE= (CYL, (10, 2), RLSE),
//* DCB= (RECPH=YBS, LRECL=X, BLKSIZE=23476);
//* DSN=POCODII, TEST. DORT. NTDSO
//*
//#---------( DOT3 FORHaT FLUX OUTPUT, BY RTPLOM STEP.)
//FTT2F00I DD UAIT=DASD, DISP= (NEW, CATLG), SPACE=(TRK, (400, 200), RLSE),
// DCB= (RBCFH=YPS, LRECL=X, BLKSILE =23476),
// GSN=POCODII.TEST. DORT. RTRLUH
//*
/*#==n== COUPACT TYPE LIST OUTPUT
/*#
/+COMPACT EXEC PGH=TLOCRRT, PARH='TYPE2, CC=YES'
/*UTYIN DD DSN=&&DORTLIST, DISP= (OLD, DELETE)
/4JTYNLP DD SYSOUT=*
/#UTYLIST DD SYSOUT=*
/#*
/&COHPACT EXEC PGM=JLOCPRT, PARH='TYPE2, CC=YES'
7#UTYIN DE DSN=EADORTFT06, DISP= (OLD, DELETE)
/#UTYNLP DD SYSOUP=%
/&UTILIST DD SYSOUT=*
/**
/ICOUPACT EXEC PCH=JLOCPRT, PARH='TYPE2, CC=YES'
/tUTYIN DD DSN=&&DORTFT90, DISP= (OLD, DELETE)
/&UTYNLP DD SYSOUT=#
/aTYLIST DD SYSOUT=*
/**
/**(|( IF 61%# N0.9 NTNPR`O, THEN USE. )/ )
/**COMPACT EXEC PGM=JLOCPRT, PARM='TYPE2, CC=YES'
/*#UTYIN DD DSN=L&DORTFT16, DISP= (OLD, DELETE)
/**UTYNLP DD SYSOUT=*
/##UTYLIST DD SYSOUT=*
/**
//
```

2．DORT

2． 1 カード入カフォーマット
カード入カデータは，タイトル・カードど T＂区切りで設定されるデータ・ブロックで構成され る。各データ・ブロックでは，様々な配列データを入力し，配列番号によって「実数データの配列」 か「整数データの配列」かの区別が認战される。

解析を行う問題が連続する入カデックでは，区分カード（separator card）を問題デック毎に配置しなければならない。区分カードは，区分カードの第1カラムから入力を行う。区分カードとして －D I AG＂を入力すると，ERROルーチンで軽度の診断が行われる。区分カード C DMP＂を使用 すると，重度の診断が得られる。区分カード＝END＇を入力した場合，そこまでで計算を中止する。 ＇＝END＇が無い場合，次のデックの計算を実行する。各問題デックの実行中は，入力した全デック のデータをメモリ中に保存するものではない。

タイトル・カードと区分カードを除く全てのデータは，FIDO入カプロセッサで読み込まれる。 FIDOス力の詳細は，付録，Aに掲載している。データ配列や各ブロックに関する説明は，小節毎 にまとめて以降に掲載する。最初の4ブロックのデータは常に必要であり，その他のデータ入力の有無にかかわらず＂T＂区切りをス力しなければならない。

最初の4ブロック以後のブロックで配列番号 91 以上のプロックは，フラックスや中性子源の入 カファイルを準備せずに行う簡単な問題の為に用意されたカード入カ用のオプションである。

各配列データが読み込まれると，その配列に対する入力で与えた長さと読み込んだ配列の長さを比較し，これが一致した場合にはメッセージを出力する。各ブロックの読み込み終了毎に，配列長の相違や不適当な事項を検出すると，ERROルーチンがコールされ，エラー内容の説明出カとエラー －フラグの設定が為される。データは，各ブロック毎の読み达み終了と同時に，編集が行われる。

入カデータの処理は，エラーが検出された後も続行される。この機能を用いることにより，初期 に魜出されたエラーの有無に係わらず全データのテストを行うことが出来る。エラーが柈出された場合，入カデータの処理が終了した段階でコードが停止される。

一つのエラーは，それ以後のデータ処理において，エラーを発生させる可能性がある。エラー検出後の正しいデータに対して，エラーとなったデータが正しいデータの処理に影響を及ぼすことが有 るためである。

以下に記す最初の 4 ブロック・データは，問題の概要設定をおこなう。
1．制御データ配列（61～63）は，配列長さと計算オプションの設定を行う。
2．第1デー夕配列（ $71 ~ 78$ ）の長さは， $61 ~ 63$ 配列の中で定義されておら，また，以降の配列の長さの定義を含んでいる。これらの配列は，可変メッシュ，可変角度分点（Variable Quadrature），可変Pl次数及びスーパー・メッシュの特徵を表すものである。
3．第2データ配列（81～87）の長さは，61～78配列の中で定義されており，また，以降の配列の長さの定義を含んでいる。これらの配列は，角度分点方向（Directioal Quadrature）の定義，粗メッ シュ（Coarse mesh）の定義等の他，編集領域に対する物性ゾーンの配置を行う。
4．概要入力配列（ $1 \sim 30$ ）は，他の配列データの長さを左右するものではない。これらの配列は，領域メッシュの定義，断面積のミキシング，放射化等の諸量の定義等を行う。

2． 2 領域メッシュ

5 種類の解析領城メッシュ切りの方法が入カデータで指定できる。 $2 *$ と $4 *$ の 2 セットの詳細 メッシュ境界値を入力すると，2次元体型となる。これらの境界線が交わる小さな領域は，詳細メッ シュ（fine mesh）・グリッド・セルを構成する（ $\mathrm{R} \theta$ 体型の場合， 2 ＊配列はラディアンではなく，回転角度となる）。
$85 *$ と $86 *$ 配列の追加によって定義される粗（coarse）メッシュは，フラックス加速ルーチンで使用される。粗メッシュの設定がよい場合，CPUの所要メモリと実行時間を稼ぐことが出来るように なる。問題によっては，粗メッシュに関する専用アプリを用いることで，収束状況をより良くするこ とができる。粗メッシュの1セル長を平均自由行程（mean－free－pass）に設定することは，多くの問題 において模範的な考关方である。可変領域メッシュ・オプションを用いない場合，粗メッシュのデフ オルトとして詳細メッシュが用いられる。この場合，粗メッシュのI方向成分第 i 境界は，詳細メッ シュのI方向第 i 境界であり，同様のことが J 方向成分に対しても言えることとなる。
$75 *$ と $76 *$ 配列は，可変角度分点（variable quadrature）やsearch option 等を用いる場合の スーパー・メッシュを定義する。可変角度分点モードを使用する場合，74¥配列で各群毎に使用する角度分点セットの番号を入力しなければならない。スーパー・メッシュ及びスーパー・グループ境界 データは，スーパー・メッシュ境界データが詳細メッシュ境界と同一でなければならないことを除い て，ユーザの必要に応じて選択することができる。

8 玨配列の物性ゾーン・データは，虽に必要である。1つのゾーンには，1種類の媒質（要素） に関する断面積が配置されなければならず，逆に，1つの断面積を多くのソーンに配置してもよい。

84¥配列は，出力テーブルを圧縮するために用いられる物性ゾーンのグループを定義する。入力処理や編集処理の特性は，編集領域によって決定される。

2． 3 可変領域メッシュ

詳細メッシュは，J方向成分に連れて定義されるI方向成分として考えることが出来る。この定義を乨張して，I 方向成分のメッシュ数やメッシュ境界をJ 方向メッシュ毎に様々に設定することが出来る。ISET（j）配列は，J方向成分 j メッシュにおけるI方向成分のメッシュ数を定義して いる。この機能をうまく使用することにより，CPUの所要領域や実行時間を稼ぐことが出来る。粗 メッシュやスーパー・メッシュのI方向成分境界は，詳細メッシュに関するISETのI方向成分中 に含まれていなければならない。I S E T の左端境界と右端境界は，全て同じでなければならない。標準ISETとして，ISETの中で最もメッシュ数の大きいものが選択される。境界フラックスと境界中性子源は，標準ISETの形で取り扱われる。

2． 4 可変指向性形状

可変角度分点セット（Direction quadrature sets；M－sets）は，スーパー・ゾーンとスーパー －グループによって定義される。例えば，漏洩の無い，高エネルギ領域での，ストリーミング亀裂の領域における高度な偏向を定義することが出来る。標準M－setは，以下の様に選択される。

1．Mセットの中で，多くの上方指向や下方指向が有る場合。
2．厳密に 1 MM｜の指向性がある場合。
3． M セットの中で，上方向成分や下方向成分の多くのワレベルが有る場合。

2． 5 可変ルジャンドル展開
モーメント展開次数（P1）は，78¥配列の断面積データや77¥配列のエネルギ群データで定義 されるものでる。

ただし，この機能については，詳しい内容が確認できていない。

2． 6 アジョイント・データ
アジョイント問題を実行する場合，最初の4ブロックのデータが全て必要であり，全ての入力フ アイルを㳯備しなければならない。出力結果の為のファイルとしては，アジョイント問題の解析が Ω よりも，むしろー Ω の関数として解析されることを忘れてはならない。ここで Ω とは，角度分点セッ ト（Quadrature sets）で定義される方向を意味する。与えられた方向が $\mu>0, ~ \eta>0$ の場合，その方向に関して計算されるアジョイント・データは，（ $-\mu, ~-\eta)$ 方向における粒子の移動について求めたものとなる。入力されるファイルの意味は，同様に方向が逆に解釈され，出力に関しても，同様のことが言える。出カファイルには，計算順序で並んだエネルギ群（例えば，通常の順序からひっ くり返された順序）のデータを含んでいる。

2． 7 カード入カの概要
以降のデータ説明中，\＃はデータ数を，RVは推奨値を示す。各配列の後には，（）内に，そ の配列の長さを示している。［］内には，そのデータ入力を行う場合の必要条件が示されている。


```
A.タイトル•カード
=DORT
TITLE FORMAT (A72)
```

－B．制御データ配列		$11 \text { データ }$
61 \＃	論理磯譒設定	
E		
62 ¥	整数型制御データ	67 データ
E		
$63 *$	実数型制御データ	28 データ
E		
T		

$71 ¥$	I SET（J）	（\＃＝J M ）
$78 ¥$	NSIG（MT）	（\＃＝M T M ）
T	この＇T＂は，この	ロックの入力が

［ $\mathrm{I} M<0$ ］
$[\mathrm{MCR}<0]$
$[\mathrm{MM}<0]$
［IDFAC＞0］
［NTFOG＞0］
［IFDB2 $Z>0$ ］
［IGTYPE＞0］
［MIXL＞0］
［MIXL＞0］
$[M I X L>0]$

19＊	
20＊	
21＊	右㑡境界アルベド（\＃＝I GM＊JM）
22 ＊	下㑡境界アルベド（\＃＝I GM＊I MA）
23 ＊	上側境界アルベド（\＃＝I GM＊IMA）
24＊	ゾーン毎のflux収束判定規準（\＃＝I Z M）
25 ¥	放射化量計算に用いる媒質 i d（\＃）｜I ACT｜）
267	放射化量計算に用いる断面積テーブル内の位置（＂）
$27 *$	放射化量計算用の係数（＂）
287	群毎の初期iteration 打切回数（\＃＝I GM）
297	Z軸方向キー・フラックスの出力位置位置は昇順に（\＃＝\｜N K E Y F X \｜）
307	R軸方向キー・フラックスの出力位置位置は昇順に（\＃＝\｜N E Y F X \｜）
T	この＂T＇は，このブロックの入力が無い場合も必要である

	界中性子源のカード入力	
91＊	R 軸に配置する中性子源	（\＃＝M MA $*$ J M＊I GM）
92＊	Z 軸に配置する中性子源	（\＃$=$ MMA＊IMA＊IGM）
T		

G．flux guessのカードス $93 *$ $[\#=\mathrm{IMSJ}$ T $94 *$ $[\#=\mathrm{JM}]$ T $95 *$ $[\#=\mathrm{I} G M]$ T	

$96 *$	$[\#=\mathrm{IMSJM}+(\mathrm{IMSJM}$ or IM）$]$
T	$[\#=\mathrm{JM}]$
$97 *$	$[\#$
T	
$98 *$	$[\#=\mathrm{I} G M]$

［INPSRM＞0］
［INPSRM＝3］
［INPSRM＞1］
［IBL＝4 or \quad $B R=4]$
$[\mathrm{IBB}=4$ or $\mathrm{IBT}=4]$
［INPFXM＞0］
［INPFXM＝3］
［INPFXM＞1］
［KTYPE＝4］
［KTYPE＝4］
［ $\mathrm{IBL}=5$ ］
［ $\mathrm{IB} R=5$ ］
［ $\mathrm{IBB}=5$ ］
［IBT＝5］
［IEPSBZ＞0］
［ I F XM＜0］

3．DORT入力データ詳細

DORTシステムにおけるDORTの起動は，区分カード＝DORT＇による。＇＝DORT＇以降，＂＝END＂または次ステップ起動用の区分カードが現れるまでが，DORTの入力データとなる。 DORTの入カデータは，区分カード＝D ORT゙に続いて入力される 72 文字までのタイトル・カ ードで始まる。

ここで実行されるDORTとは，DOT4．2コードである。以降，ブロック毎の入カデータの説明を記す。

A．タイトル・カード
（72文字まで有効）

B．J C L 論理機番設定［61
 （11データ）

No	変 数	配列数	内 容	推奨	def	
61 ¥						
1	NTFLX		flux guess，又は，リスタート・ファイ缏用時の入力機番。	31	0	
2	NTFOG		計算結果fluxの出力機番。	32	0	
3	NTSIG		断面積ファイルの入力機番。（必 須）	8	8	
4	NTBSI		外部境界固定中性子源，使用時の入力機潘。	33	0	
5	NTDSI		分布型固定中性子源，使用児の入力機番。 INPSRM（ 62 羘 No．301＞0の場合，scrath機番として使用 される。	34		
6	NTFCI		first－collision source，使用時の大力機潘。 GRTUNCL により作成されるfirst－collision sourceは特殊な分布中性子源として入力される。（現在，使用不	11 可）	0	
7	NTIBI		内部境界（固定）中性子源，使用時の入力機番。	12	0	
8	NTIB0		内部境界中性子源（flux）の出力機番。接続計算時の内部境界固定中性子源として使用できる	21	0	
9	NTNPR		大容量印刷指定時の出力機番。 これを使用しない場合，全ての印刷出力は標準機番 FT06）に出力される。	16	0	
10	NTDIR		角度中性子束（directional flux）の出力機番。 NTIB0 に対して，最外境界における角度中性子束が出力されると思われる。接続計算時の外部境界固定中性子源となる？	22	0	
11	NTDSO		分布中性子源の出力機番。	23	0	
	＇E＇					

C．整数型制御データ

（67データ）

No	変 数	配列数	内 容	推䈁	def	
	2 ㅍㅍㅍ					
1	IADJ		adjoint indicator ；0 $/ 1=$ formard $/$ adjoint			
2	ISCTM		散乱断面樻の最大次数（P1次数の最大 1 値）			
3	IZM		ゾーン数			
4	IM		R Z のR 等，第1デ 状シションの最大数。 			
5	JM		R Z の C 等，第2デイメンションの最大数。			
6	IGM		エネルギー群数。			
7	IHT		断面積ファイルにおける各群毎の全断面積 $\sigma \mathrm{t}$ の位置。放射化断面積が無ければ，1 H T＝3			
8	IHS		断面積ファイルにおける各群每の自群散乱断面積 σ_{88} の位置。up－scattering が無ければ，I HS＝IHT＋1			
9	IHM		断面積ファイルにおける各群毎の断面積テーブル長。放射化断面積及びup－scat tering が無ければ， $\mathrm{I} H M=\mathrm{I} \mathrm{GM}+3$			
10	MIXL		mixing－table長。mixing－tableを使用市内場合，0。			
11	MCR		断面積ファイル中のLegendre展開の最大次数。負値の場合，78䍩配列に媒質毎のLegendre展開次数を与える （但し，本機能は今の処，使用出来ない）。	0	0	
12	MTP		断面積ファイルから読み込む断面積セットの数。 1 核種， 1 P n 次数当り， 1 ケと数える。 0 を入力した場合，MTP＝MTMと解秎し，全ての断面積が断面積ファイルから読み込まれることとなる：			
13	MTM		mixing－tableの計算結果を含む，全断面積セット数。			
14	IDFAC		崄度ファクタの指定。 $0 / 1=$ 非使用／ $3 * *$ 配列で刘シュ毎の濃度を入力。			
15	MM		角度分点数。 $M M=N(N+4) / 2$例として， S_{12} のとき， $\mathrm{MM}=12 \times(12+4) / 2=96$負値の場合，可変角度分点数モードとなり，MSTMAX（6 2䍳 No．61）ケの M－set毎の角度分点数を73¥¥配列から入力する時のセット数となる。			

No	変 数	配列数	内 容	推睪 def	
	2 信装				
16	INGEOM		座標系の設定。 $\begin{aligned} & 0=\mathrm{X}-\mathrm{Z} \text { slub } \\ & 1=\mathrm{R}-\mathrm{Z} \text { cylinder } \\ & 2=\mathrm{R}-\theta \text { circle } \\ & 3=180^{\circ}-360^{\circ} \text { 三角形メッシュ } \\ & 4=60^{\circ} \text { 三角形メッシュ } \\ & 5=90^{\circ} \text { 三角形メッシュ(非使用) } \\ & 6=120^{\circ} \text { 三角形メッシュ } \end{aligned}$		
17	IBL		左側境界条件		
18	IBR		右側境界条件	！	
19	IBB		下側境界条件	＋	
20	IBT		上側境界条件	－	
21	ISRMX		中性子束収束に関するouter iteration 最大回数	1	
22	IFXMI		初期inner iteration 最大回数 負値の場合， 28 ¥¥゙で各群毎の $1 / \mathrm{I}$ 最大回数を与える。 正値の場合， 28 辡配列は入力しない。	20	
23	IFXMF		最欮inner iteration 最大回数（ 0 で，無効となる）	－	
24	MODE		flux外插モデル（差分式）の指定。 $0=$ 線形外挿。負値の場合， 0 をセット。 $1=\quad$ 。 負値を有効とする。 $2=$ step mode（精度が低いが，負値が出ない） 3 ＝weighted difference mode（精度は，線形と stepの中間であり，負値が出ない）。 $4=\theta$－weighted mode（dimension search） $5=\wedge^{\prime}$ 外怆－weighted mode $「 \theta$－weighted mode」は，あらゆる問題に対して妥当な結果を計算する。「線形－0 model」は，TWOTRAN IIにおいて採用されている簡易モデルであり，異物質 を含まない炉心の様な問題では，適当な答えと早い計算が期待できる。ただし，長い体型の問題では，収束 の失敗や発散を計算することがある。 「meighted mod el」では，値のモデルに比べて良好な収束結果が得ら れる。このモデルは，Ke： な結果を期待できないが，長い体型の計算によく用い られる手法である。 英文マニュグ では，上記の4番加欠番であり，5番で θ－weighted 法と記載されている。DORTのプリント 出力 では，この点を， $4=\theta$－weighted， $5=$ vector wid とし ていることから，本マニュアルでは後者の設定を採用 している。		

[^0]
（＊1）この出力は，書式が境界線源と異なるため，接続計算には使用できない。

N	変 数	配列数	内 容	推奖	def	
	2 $¥$ ¥ $¥$					
4	MAXBLK		J 方向ブロック化最大数 $0=$ JMケのブロックを各群毎に確保する。 1 ＝各群毎に1ブロックだけを確保する。 $\mathrm{N}=$ 各群毎で許される最大ブロック数。			
47	ISBT		番号を指定する。		1	
48	MSBT		境界f1uxを計算する時に使用する角度分点数セッ ト（M－set）の番号。		1	
49	MSDM		境界線源角度分点数に使用するM－setの番号。現バージョンでは，MSDM＝MSBTとする。		1	
50	IBFSCL		最初の中性子源iteration中で，fluxが平衡状態（reba lance）に達するまでのflux iteration 回数。		1	
51	INTSCL		rebalance iteration の最小回数		4	
52	ITMSCL		rebalance iteration の最大回数		100	
53	NOFIS		核分裂スペクトルスカオプション $0=1 \neq *$ 配列でス力される 1.0 に規格化された核分裂 スペクト（X）で，核分裂を計算する。 $1=0$ と同様で， $1 * *$ 配列から 値を入力する。 $2=$ 核分裂の計算を行わない。1＊＊から，全0を入力			
54	IFDB22		D B ${ }^{2}$ スカオプション $0=$ オプション使用せず。 $1=6 * *$ 配列で，DB2Z（IG，1 1 ）を入力。			
55	ISTPP		拡散理論スウィープ（smeep）・オプション $0=$ 蟿方向メッシュ数の大きい方による線形置換法 $1=$ 連続 $0 /$ iteration 内での線形•行列置換法の選択 2 ＝線形置換法 $3=$ 行列置换法 $4=$ 連続 $\mathrm{i} /$ iteration 内での線形•行列置換法の選択 $5=\quad "$ 行列•線形 $6=\mathrm{J}$ 軸に開する中心から外侀への線形置換法	4 又 は 5		
56	KEYJN		Key－flux を則刷する J 方向メッシュの番号（ $0=$ 無効）		1	
57	KEYIN		Key－flux を印刷する I 方向メッシュの番号（ $0=$ 無効）		1	
58	NSIGTP		入力する断面積ファイルの書式オプション $\begin{array}{ll} 0=\text { G I P } & \text { フォーマット } \\ 1=\text { ORDOSW } & \text { フォーマット } \\ \hline \end{array}$			
59	NORPOS		計算結果の規格化に用いる断面積テーブルの位置 0 の場合，本ネプションは使用されない。			
60	NORMAT		計算結果の規格化に用いる媒質番号 0 ＝マクロ断面積を使用する。 負二規格化において密度ファクタを使用しない。			

No	変 数	配列数	内 容	推楽 ${ }^{\text {def }}$	
62 雨翌					
61	MSTMAX		M－setの最大数。 0 の場合，JMとなる。	JM	
66	NEGFIX		負の散乱中性子源に関するオプション 0 ＝オプションを使用しない。 1 ＝修正値を使用する。 $-1=$ Econay fixup。	－1	
63	LOCOBJ		計算機機種に応じたfast memory の用法（1） I BMの場合，0入力は，何もしない。		
64	LCMOBJ				
65	NKEYFX		29羘，30靽 配列で指定するkey－flux出力位置データ数。 0 で無効。負値は，群每の収束やiteration 制限の場合のみ印刷を行う。		
66	NCNDIN		ユーザ指定の最大コンディション・コード	4	
67	NUET		エネルギ群における中性子群の最終番号 0 の場合，NUET＝IGM とされる。	IGM	
	＇E＇				

```
D. 字数型制御データ [63**]
（28データ）
```

No	変 数	配列数	内 容	default	
	3＊＊				
1	TMAX		CPU打ち切り時間（分）。 $0=$ 無効		
2	XNF		中性子源の規格化判定。 $\mathrm{KTYPE}=0$（固定中性子源問題）の時， $\mathrm{XNF}=0$ で，オプション無効。 KTYPE $=0$ の時， $X N F=0$ は，$X N F=1.0$ として規格化を行う。		
3	EPS		中性子源iteration における固有値収束条件	1． 0×10^{-4}	
4	EPP		flux iterationにおけるpointwise fluxの収束条件	1． 0×10^{-3}	
5	EPV		＂におけるvoIumetric fluxの収束条件		
6	EPF		pointwiseの核分裂収束条件	1． $0 \times \times 10^{-3}$	
7	EKOBJ		KTYPE＝1（K 値解析問題）の時，Ke： t の初期値。 KTYPE＞1の時，求めるKe！ 1 の値。	1.0	
8	EVHT		keriの収束率	0.2	
9	EVCHM		iterationにおける最大Ev変化率	1.5	
10	EVMAX		Ev 変化竾囲の最大長	10.	
11	EVKMX		1 Ker＋EKOBJ｜の最大許容値	1.0	
12	EVI		初期固有値	1.0	
13	DEVDKI		初期固有値の滅小勾配	－1．0	
14	EYDELK		初期固有値の上昇勾配	0.3	
15	SORMIN		中性子源iteration の最大幅	10.	
16	CONACC		平衡（rebalance）判定規準	0.1	
17	CONSCL		部分平衡収束条件	1． 0×10^{-4}	
18	CONEPS		f1uxの収束判定規準	0.1	
19	HSOLOI		平衡最小散乱率（推等值 0．3）	0.3	
20	WSOLII		平衡 flux iteration 增大比率	－1． 5	
21	MSOLCN		平衡定数	1.5	
22	ORF		掋散理論におけるfIux 堌幅係数	0.6	
23	FSNACC		核分裂密度 増幅係数（現バージョンでは非使用）		
24	FLXMIN		収束㛟査時の最小 f 1 ux 値	1． $0 \times 10{ }^{-60}$	
25	SM00TH		末使用（ 0 を入力する）	0	
26	EP0		中性子源Iterationにおけるpointwise fluxの収束条件		

No	変 数	配列数	内 容	fault	
$63 * *$					
27	EXTRCY		中性子源繰り返し外挿の収束条件	0.2	
28.	THETA		flux外搜モデル（62拜 N No． $24 \mathrm{MODE}=4$ ）のパラメタ	0.9	
	， $\mathrm{E}^{\prime} \mathrm{T}^{\prime}$				

E．第1配列データ・ブロック
不要な配列データについては，入力しなくてよい。

	変数名	データ数	内 容	必要条件
71靽	ISET	JM	可変メッシュ：モードを使用するときの，Z軸方向メッシュ毎に与えるR軸方向メッシュに関するIセット番号。 I－set 番号は，IM（61羘 No．4）に責値で指定された値の絶対値が最大番号となる。デフォルト番号として 1 が設定さ れる。	IMK0
72 拜	IMBIS	JM	Z㬂方向メッシュ毎に与えるR軸方向メッシュの各セット ISET）毎のR軸方向メッシュ数。必要なデータ数（｜IM｜） を入力後，以降に 0 を充すこと（＇…F0 E＂）。	IM＜0
$73 ¥$	MMBMS	MSTMAX	各 $\mathrm{M}-\mathrm{set}$ 每の角度分点数 M－set の数は，MSTMAX（61羘 No．61）で指定される。各 M －set で指定する角度分点数の最大値は，MM（61羘 No．15）に負数で指定されている。 必要なデータ入力後，以降に 0 を充すこと（＂…FOE＂）。	MMK0
74¥¥	ISZNG	IGM	各エネルギ群を $\mathrm{M}-\mathrm{set}$ に振り分ける為の群每のset番号。IGM は，61羘 No． 6 で入力するエネルギ群数。	MMK0
75＊＊	SZNBZ	JM	スーバーメッシュ境界使用時の Z 軸方向境界値	MMKO or KTYPE >1
76＊＊	SZNBR	｜IM｜	スーバーメッシュ境界使用時のR軜方向境界値	
77	ISCTG	IGM	計算に使用する各群每のLegendre展開次数 （本機能は，今の処，使用できない）	ISCTMK0
7877	NSIG	MTM	ミキシング・テーブルの計算結果を含む断面積に関する各媒質每のLegender展開次数。 MTM は，61䍳 No．13で入力する使用媒質数。	MCR＜0
＇${ }^{\prime \prime}$			このデータ・ブロックに関する入力が無い場合でも＇T＇だけ は，入カすること。	

F．第2配列データ・ブロック
不要な配列データについては，入力しなくてよい。

	変数名	データ数	内 容	必要条件
81＊＊	T	MMSMSM	角度分点の重み係数	
82＊＊	EMU	MMSMSM	X又はR方向に関する角度分点の方向余弦；μ	
83\＃＊	ETA	MMSMSM	Z 又は θ 方向に関する角度分点の方向余弦；τ	
847¥	IZNRG	IZM （61羘 No．3）	$\begin{aligned} & \text { ソーン毎の領域数 } \\ & \text { IRED (61䍩 No. } 36)=I Z M, 0,-1 \text { の時, ソーン毎に } 1 \text { 領域が割 } \\ & \text { 当られるととから, この配列の入力は不要である。 } \end{aligned}$	$\begin{gathered} \text { IRED } \neq 0 \\ \text { or } \\ \mathrm{IACT} \neq 0 \end{gathered}$
85＊＊	ZCMB	JM	Z 軸に関する粗切りメッシュの境界値。	
86＊＊	RCMB	IMA	R軸に関する粗切りメッシュの境界値。 粗切りメッシュの値は，I－set毎に設定された詳細メッシュ境界に一致していなければならない。詳細メッシュの最外縁値まで入力後，それよりも大きな値をI－set指定のメッシュ数分充たさなければならない。	
87释	IJGSZ	$\begin{aligned} & \text { NISZN* } \\ & \text { NJSZN* } \\ & \text { NGSZN } \end{aligned}$	各スーパー・グループに関する，Z軸方向スーパー・メッシ ユ毎の，R軸方向スーパー・メッシュに対する角度分点数（ M－set）。	MM＜0
＇T＇			このデータ・ブロックに関する入力が無い場合でも＇T＇だけ は，入力すること。	

G．概要設定データ・プロック
不要な配列データについては，入力しなくてよい。

	変数名	データ数	内 容	必要条件
			IMSJM ：各J方向メッシュ毎のI方向メッシュ数の和。 $M \mathrm{M}>0$ の時， $\mathrm{IM} * \mathrm{JM}$ 。 IMSISM：R 方向境界点数。IM＞0の時，I M。 ISM：72羘配列で 0 でない数を入力した数。IM＞0の時，1	
1＊＊	CHI	IGM	各群における核分裂密度X。	
2＊＊	ZIN	$\mathrm{JM}+1$	Z 朝方向 fineーメッシュ境界値。	
3＊＊	DNI J	IMS JM	各メッシュ毎の密度ファクタ。	IDFAC＞0
4＊＊	RIN	$\begin{aligned} & \text { IMSISM } \\ & \text { +ISM } \end{aligned}$	R軸方向fineーメッシュ境界値。I－set No．1から順に詳細メ ッシュ境界値を入力する。各I－setの左端と右端は一致する	
5＊＊	ENER	IGM＋1 または IGM＋2	エネルギ群境界値 中性子第1群の上側エネルギ境界～同最終群の下側境界＋ γ 線第 1 群の上側境界～同最終群の下側境界値までを入力。本入力は，出カファイルへの変換の為にのみ使用される。一般的な計算では，使用されずに無視されることから，適当 な入力（例＇F1．0 E＇）を与えておけばよい。	NTFOG＞0
6＊＊	DB2Z	IGM＊ NREG	各領域毎に与える各群每のD B ${ }^{2}$ 値。	IFDB2Z＞0
7 7	ITHYG	IGM	群毎に与える解法の指定。 ［入力値］は，以下の理論を適用する最終0／I回を示し， ［入力値］>0 の時，拡散理論を使用， ［入力値］<0 の時，輸送理論を使用，が選択される。	IGTYPE＞0
8¥¥	IJZN	IMSJM	各メッシュ亡媒質ソーンの対応。	必 須
97⿰习习⿱⿱亠䒑十纟	IZMT	IZM	媒質ソーンと断面積 i D 番号の対応。	必 須
$\begin{aligned} & 10 \text { 诖 } \\ & 11 \text { 㛙 } \\ & 12 * * \end{aligned}$	MIXT NUCL DENS	MIXL MI XL MI XL	断面積のミキシング・デーブル。 MIXT；i d番号，NUCL；使用媒質の i d 番号，DENS；NUCL の濃度。	MIXL＞0 MIXL＞0 MIXL＞0
13羽	MATL	MTM	断面積ファイルから読み込む断面積のファイル内でのid番号。全データを読み込む必要は無い。 省略した場合， 1 ～MTM の数値がセットされる。	
14＊＊	ZNTSR	NJNTSR	Z軸方向内部境界中性子源を配置する位置。配置する個数は，NJNTSR（61¥¥ No．31）で指定する。	
15＊＊	RNTSR	NINTSR	R軸方向内部境界中性子源を配置する位置。配置する個数は，NINTSR（61乵 No．32）で指定する。	

	変数名	デー数	内 容	必要条件
．			$\begin{aligned} & \text { NJSZN : スーパー・ソーンZ方向の境界点数。MM>0の時, } 1 \\ & \text { NISZN : スーパー・ゾーンR方向の境界点数。MM>0の時, } 1 \\ & \text { IMA }:\|\mathrm{IM}\| \end{aligned}$	
16＊＊	ZNTSR	NJNTEX	Z朝方向内部境界中性子源を出力する位置。配置する個数は，NJNTEX（61羘 No．33）で指定する。	
17＊＊	RNTSR	NINTSX	R軸方向内部境界中性子源を出力する位置。配置する個数は，NINTFX（61羘 No．34）で指定する。	
18＊＊	FJSR2	NJSZN	Z 軠方向スーパー・ソーンのサーチ係数。	KTYPE＝4
19＊＊	FISR2	NISZN	R 軸方向スーパー・ゾーンのサーチ係数。	KTYPE＝4
$\begin{aligned} & 20 * * \\ & 21 * * \end{aligned}$	ABDOL ABDOR	IGM \ddagger JM	左側境界のアルベド。右側境界のアルベド。	$\begin{aligned} & \text { IBL=5 } \\ & \text { IBR=5 } \end{aligned}$
$\begin{aligned} & 22 * * \\ & 23 * * \end{aligned}$	$\begin{aligned} & \text { ABDOB } \\ & \text { ABDOT } \end{aligned}$	IGM ＊IMA	下側境界のアルベド。上側境界のアルベド。	$\begin{aligned} & \mathrm{IBB}=5 \\ & \mathrm{IBT}=5 \end{aligned}$
24＊＊	EPSBZ	IZM	各ゾーン毎のf1uxエラー重要度（規準值）。	IEPSBZ＞0
25垱	ICMAT	IACT	放射化量計算に用いる媒質 i d 番号。 IACTは，61羘 No． 35 で入力する放射化量計算ポイント数。	
26㸷	ICPOS	IACT	放射化量計算に用いる断面積テーブル内の位置。	
27＊＊	ACUML	IACT	放射化量計算に使用する係数。	
28样	ITMBG	IGM	群每の初期inner iteration 打ち切り回数。 61䍳No．22が負値の時，入力する。	IFXMI＜0
297¥	KEYAJ	NKEYFX絶対値	キー・f1uxを出力するZ軸方向の境界番号。 ｜NKEYFX｜（61幵 No．65）ケの印刷出力を行う。NKEYFX＜0の 時，収束完了時またはiteration 打ち切り時のみ出力される	
30¥¥	KEYAI	NKEYFX絶対値	キー・f Iuxを出力するR韩方向の境界番号。 NKEYFX（61鞋 No．65）ケの印刷出力を行う。NKEYFXく0の時，収東完了時またはiteration 打ち切り時のみ出力される	
＂T＇			このデータ・ブロックに関する入力が無い場合でも＇T＂だけ は，入力すること。	

H．外部境界中性子源のカードスカ［INGEOM 20 で，IBL，IBR，IBB，IBTのいずれかが $=4$ の時入力］

	変数名	$テ ゙-夕$ 数	内 容	必要条件
			MMA ：｜MM｜	
91＊＊	SIJ	MMA $*$ JM	Z 軸方向境界（メッシュ）に分布する角度中性子源。	IBL or $I B R=4$
92＊＊	SJI	MMA \＃IMA	R 軵方向境界（メッシュ）に分布する形の角度中性子源。	IBL or $\text { IBR }=4$
			本ブロックは，角度分点数ケのfluxを境界点回繰り返して 1 セット（ 1 群当 $り$ ）のデータと成っている。従って，91＊＊ または92キキ，または，その両方を群数（I GM）回繰り返す －I GM回の繰り返しな，若い順に第1群から割り当てられ る。 左右どちら向きの中性子源とも，同一角度分点に対する配列中に入力することが可能である。この場合，$\mu>0$ の時， そのデータ（FI J）は左側境界に，$\mu<0$ の場合，右側境界に中性子源が設定される。同様に，$\eta>0$ の時，F J I は ，下側境界に，$\eta<0$ の時，上側境界に設定される。 IADJ（62羘 No．1）＞0 の時は，エネルキ群を逆順で入力 しなければならない。 INGEOM $\geqq 20$ または，外部境界中性子源のカード入カが不要 の場合，このブロックの制限使用または省略することが出来 る。	
＇T ${ }^{\prime}$			このデータ・ブロックに関する入力が有った場合にだけ， ＂T＇を入力する。	

I．Flux Guessのカード入力［INPFXM＞0］

Flux Guessの大力は，INPFXM（62羘 No．29）の指定にしたがって，93＊＊，94＊＊，95＊＊配列から入力を行う。

このデータは，各配列の入カ終了毎に＂T^{\prime} を入力する。

J．分布型中性子源のカードスカ［ I N P S R M＞0 ］

分布型中性子源の入力は，INSRXM（62羘 No．30）の指定にしたがって，96＊＊，97＊＊，98＊＊配列か ら入力を行う。

このデータは，各配列の入力終了毎に＇T＇を入力する。

4．RTFLUM

4． 1 プログラムの概要

4．1．1 RTFLUM
RTFLUMは，DORT出力の標準fluxファイルの印刷，拡張，書式変換を行う物である。

4．1． 2 機能槪要
RTFLUMは，DOT3，VARFLMあるWはRTFLUMの出カファイルに関して，それ ぞれの間のファイル書式変換処理を行う。また，スカラ・flux，fluxモーメント，あるいは境界f1uxについて，ユーザ指定のオプションに従って印刷を行うことが出来る。

4．1． 3 処理概要

書式変換は，コア・メモリ内で実行される。ファイル出力を行ら為には，基本的な入力が必要で あり，入カファイルが無い場合には，ユーザ作成のカード入力によって，与えられなければならない。基本的に必要でないデータについては，コード内のデフォルト値が設定される。

4．1． 4 プログラム作成
W．A．Rhoads．オークリッジ国立研究所。

4．2 概 要

4．2．1 背 景

医学機関 C C C C では，RTFLUXファイル書式としてスカラー・f1uxと固定メッシュf1ux データを倍精度形式にすることを決定した。こうしたファイルは，VENTUREコード等により作成されて いる。このファイルでは，ある種のid情報を含んでおり，最初に 2 ケの配列データ・ブロック，続 いて各群毎のスカラ・fluxデータが，格納されている。

上記のファイル形式は，DOT4には適用できない書式となっている。そこで，新しく作成した単精度ファイルでは，filuxモーメントを配置し，不規則なメッシュに対応出来るようにし，更に，正確なリスタート計算の為の境界角度中性子束を包含出来るように設定することとした。こうしたこ とにより，Jobの実行に関する識別情報が配置され，作図等を行う穄に形状データ・ファイルを必要としない，十分な情報が盛り込まれることとなった。これらのデータは，一連のコードにとって必要な情報をブロック化して配置するように成っている。

広く使用されている第3の書式として，DOT 3 等によって使用される＂スカラ・f1ux形式＂ も用意されている。

RTFLUMは，様々なファイルから抽出したデータに関して，その平均値を提供しており，ま た，或コード用のファイルから他のコード用のファイルへの書式変換を行うことが出来る。例えば， VENTUREコードのデータをDOT4のflux guessとして用いることが可能であり，更に，DOT3用の作図プログラムにそのデータを用いることも可能となる。

加えて，モーメントや角度の成分を暗に拡張する機能が有ることから，低次の出力結果から高次 の入力データを作成することが出来る。大きくて深さのある解析計算で早期に計算が中断された場合 などにおいては，収束の不完全さが残る場合が考えられるが，RTFLUMでは，こういった問題に も対処できるように成っている。

4．2．2 適 用

R T F L UMは，入カファイルと出カファイルをユニット器番に設定するだけで実行することが出来る。もし，出力ファイルが不要の場合には，Dummyを設定しておけば良い。カード入力デー夕は，DOT4で採用されているFIDO形式で2ブロックの配列データ（1¥¥゙ッ，2＊＊）が与え られ，最後には，＂T＂がセットされる。

VARFLM用のファイルを入カファイルに設定した場合， 1 ¥ ¥ 配列中のMM，ISCAT，IGM，IM，JM，ISCAT， MMI，IGMI の値は，入カファイルから読み达まれた値で置き替えられる。多くの場合，IGMIより後ろの データについては，デフォルト値が適用可能である。

RTFLUX用のファイルを入カファイルに設定する場合，MMF6，ISCAT＝0 をカード入力で与える。
DOT3のスカラ・f1uxファイルを入力とした場合，MM，ISCAT，IGM，IM，MMがカード入力で与 えられなければ成らない。この時，デフォルト値として，ISCAI＝ISCAT，MMI＝MM，IGMI＝IGM が設定され る。

入力ファイルと出力ファイルの間で角度分点数が異なる場合，MMとMMI を必ず入力しなけずばな らない。また，PI次数が異なる時には，ISCATとISCAIを入力しなければならない。

もし，入カファイルが，IGM 群全群に渡って収本を完了していないものを使用する場合，IGMIに は，収束が完了した最後の群潘号を入力する。

RTFLUM入カデータ

RTFLUM入カデータ

No	変 数	配列数	内 容	推楽	def	
2＊＊						
1 2 3 4 5	EV DEVDK EKEFF POTER XNORM		Kefr 値計算における固有値。探索計算における固有値の勾配。探索計算における k_{ef} ！値。出 力。規格化ファクタ。 0 の時，無視される。			
$\begin{aligned} & { }^{\prime} \mathrm{T}^{\prime} \\ & \cdot=\mathrm{END}{ }^{\prime} \end{aligned}$			DOS 終了宣言の区分カード。			

[^0]:

