「高速炉ドシメトリー手法に関する研究」

開示区分	レポートNo．
T	$2960 \quad 8<-0$
	この資料は 図春室保存資料です閲覧には技術資料関覧票が必要です 炉•核撚料開発丞業団大洗工学センター技術管理室

昭和59年1月

関口 晃，中沢正治，谷口武俊，植田伸幸 （東京大学，工学部）

複製又はこの資料の入手については，下記にお問い合わせください。

〒311－13 茨城県東茨城郡大洗町成田町4002

動力炉•核燃料開発事業団
大洗工学センター システム開発推進部•技術管理室

Enquires about copyright and reproduction should be addressed to：Technology Management Section O－arai Engineering Center，Power Reactor and Nuclear Fuel Development Corporation 4002 Narita－cho，O－arai－machi，Higashi－Ibaraki， Ibaraki－ken，311－13，Japan

動力炉•核燃料開発事業団（Power Reactor and Nuclear Fuel Development Corporation）

「高速炉ドシメトリー手法に関する研究」
 研究成果報告書 目 次

第I章 ドシメトリー用アンフォールディングコードNEUPAC－83 の完備化 1
（本章の内容は，別冊にマニュアルとしてましめられているので，ことでは省く。）
第II章 ドシメトリー用定数の作成上評価 2
II－1，ドシメトリー断面積ライブラリー（第1版） 2
II -2 ，反応断面積の共分散誤差ライブラリー（第 1 版） 2
If -3 ，ドシメトリー断面積ライブラリーの検討 3
II -4 ，反応断面積の共分散誤差ライブラリーの検討 4
II－5，NEUPAC -83 ドシメトリー断面積ライブラリー（新版） 5
II－6，NEUPAC－83共分散誤差ライブラリー（新版） 6
II－7，結論 8
References 9
Appendix 2 18
2－1，ENDF／B－V Covariance File 18
$2-2$ ，共分散誤差処理プログラム＂COURX＂ 20
第III章 新しいドシメトリー手法の検討•調査 30
III－1 フルーエンスモニター ${ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right){ }^{93 \mathrm{~m}} \mathrm{Nb}$ 反応の研究現況調査 30
（1）緒言 30
（2）PTBにおける研究例（Cf－ 252 に対する平均断面積測定） 30
（3）Tourwé らの研究 35
（4） $\mathrm{EBR}-\mathrm{II}$ と $\mathrm{BR}-2$ での Nb ドシメトリー相互比較 38
（5）国内での研究など 43
III－2 Damage－monitor の研究調査 46
III－3 まとめ及び今後の課題 52

緒 言

本研究報告書は，動力炉核燃料開発事業団の受託研究（昭和57，58年度）を中心にして，高速実験炉「常陽」の炉内中性子ドシメトリーの確立を目標にして行なった研究•調査結果の成果報告書である。高速実験炉「常陽」は MARK－I 炉心からMARK－II 炉心 100 MW 運転への移行 も無事終了し，今後は主として燃料•材料の照射試験に供される予定になっており，この様な照射研究に対応する高速中性子ドシメトリー技術の確立を目標にしたものである。

本研究は，東京大学•工学部の弥生炉に打けるドシメトリー研究を発展させる形で，既に5年間，常陽担当部門の方々と協力して継続してきているものであり，アンフォールディングコード －NEUPAC はその開発成果であった。 これを用いて，日米の高速炬ドシメトリーに関する技術
今回は，乙れらの経験を基に，より利用し易いコードにするための入出力部の改良及びドシメト リー断面積の整備を実施し，NEUPAC－83としてましめたものである。
又，新しいドシメトリー法としては，長半減期且つ低エネルギーに閾値を有する ${ }^{93} \mathrm{Nb}(\mathrm{n}, \mathrm{n})$ ${ }^{93 \mathrm{~m}} \mathrm{Nb}$ ドシメータの研究状況及びDamage モニターについての調査研究を行なった。とれらは，現在研究段階にあるとは言え一部国外にて先行的に実用化されているので，常陽において专実用研究を開始することが望ましいと考えられる光のである。なお，HAFM（Helium Accumul－ ation Fluence Monitor）のレビューについては，別途，行なう予定にしているが，これも材料照射実験のドシメトリーに極めて有効と考えられるので今後の実用化研究が期待される。本研究を進めるに当り，動燃の方々及びプログラム改良を担当された三菱総研には大変お世話になり ましたので，ここに御礼申し上げたいと存じます。

関口 晃，中沢正治，谷口武俊，植田伸幸

第 I 章 ドシメトリー用アンフォールディングコード

先に作製したNEUPAC－コードについて，従来の使用経験を基に，いくつ加の改良を行なっ た。その主たる点は
（1）入出力部分の簡略化
（2）ドシメトリー断面積の整備
（3）その他，内蔵スペクトル群，自己遮蔽因子補正ルーチンなどの末使用部の削除 などが中心であった。
（2）については，第II章に詳述されるほか，（1）と（3）については，使用マニュアル ${ }^{(*)}$ そ詳しく説明 されているので，とてでは省略する。なお，との改良されたNEUPAC コードはNEUPAC－83 と命名されている。
（＊）NEUT－Research Report 83－10＂Neutron Unfolding Package Code＂NEUPAC －83＂＂T．Taniguchi，N．Ueda，M．Nakazawa and A．Sekiguchi，Department of Nuclear Engineering，University of Tokyo（1983）

第II章 ドシメトリー用定数の作成と評価

NEUPAC－83コードは，従来のNEUPACコード ${ }^{(1)}$ そおねる問題点の1つとして挙げられて いる入カデータの頝雉さを考慮しI／O の簡路化を中心として改良された。この入カデータの煩雑化という点で，最も考慮すべきものの1つとして，アンホールディングの際に使用する核反応断面積と共分散誤差情報の取り扱いが挙げられる。本研究では，I／O の簡略化を目的とした NEUPAC－83コード専用の第1版のドシメトリー断面積ライブラリーを作成した。続いて，と の第1版の断面積ライブラリーの種々の問題点を検討し，これらの点を改善し，第2版のドシメ トリー断面積の整備，作成を行なった。

II－1 ドシメトリー断面積ライブラリー（第1版）

本ドシメトリー断面積ライブラリーは，高速増殖炉＂常陽＂のサーベイランス・ドシメトリー解析を目的とし，常陽におけるドシメトリー実験で用いられるドシメトリー・センサーの核反応断面積を中心として，一般的なドシメトリー断面積も含め， 23 種の反応断面積が納められている。 Table 2 －1に本ライブラリーに納められている反応断面積の一覧表を示す。
本ライブラリーの反応断面積は，Table $2-2$ に示すエネルギー構造を有する 103群構造の群平均断面積である。使用した核データファイルは，ENDF／B－V の Dosimetry File（Tape 531）である。作成方法は，侅データファイルより，ポイントワイズ断面積を作成する RESENDコードと無限希釈群平均断面積を作成するCOMICコードをカップリングした COMICRコードを使用した。てのCOMICRコードについては，Ref． 2 を参照されたい。

II－2 反応断面積の共分散誤差ライブラリー（第 1 版）

NEUPAC－83コードでは，前述した様に，入力データとして反応断面積とともに，各反応断面積に関する共分散誤差倩報が必要である。この共分散誤差データは，例えば，エネルギー構造 103 群の解析の場合， 1 つの反応断面積に関し， 103×103 個のデータとなり，非常に膨大なデ ータ量となる。よって，NEUPAC－83コードにおねるI／Oの簡略化の点からも断面積ライプ ラリーの作成とともに，共分散誤差ライブラリーの作成も行なった。
反応断面積の共分散誤差のデータベースとしては，断面積作成に用いたENDF／B－V
Dosimetry Fileに納められている通常Covariance File と呼ばれているFile 33 を使用した。 てのCovariance Fileに関する詳しい説明はAppendix 2－1 に示されている。Table 2－1に，

本共分散誤差ライプラリーのデータベースとしたENDF／B－V の誤差データの一覧表を示す。
しかしながら，File 33 に納められている共分散誤差データの現状は，誤差評亚も含めた反応断面積測定データ不足及び反応断面積の統一的な評価法が確立されていないというような基本的 な問題点が残されているため，実際に有効なデータとしては，まだ粗いェネルギー領域について の分散データしかないというあのが多く，加えて，反応断面積毎に分散データの与えられている エネルギー領域が違っているという問題点がある。

以上の事を考え，本研究では，ENDF $/ \mathrm{B}-\mathrm{V}$ のCovariance File．File 33 のデー夕より，任意のエネルギー群構造をもつ反応断面積の共分散誤差行列を作成するCOVRXプログラムを作成した。てのブログラムは，Appendix 2－2 で説明するが，LB＝1，2，5，に関する誤差デー夕しか取り扱えない。さらに，リー4でも説明するが，共鳴パラメータ（File 2）の共分散詋差 データ（File 32）李取り扱えない。一例としてENDF／B－V Dosimetry File ${ }^{\circ}{ }^{63} \mathrm{Cu}$
（MAT＝6435）のFile 33 のデータを用い，COVRXプログラムにより計算したエネルギー群構造15群の共分散誤差行列の結果をTable 2－2－2 に示す。

I－3 ドシメトリー断面積ライブラリーの検討

本ライブラリーの群平均断面積は，II－1でも述べられた様に，ENDF／B－V Dosimetry File より，RESENDコードを用い， $0^{\circ} \mathrm{K}$ の温度に対するポイントワイズ断面積を作成し， COMICコードにより重みスペクトルとして，Maxwell＋1／E＋Fissionスペクトルを用い，群平均化した無限希釈断面積である。

しかしながら，本ドシメトリー断面積にはいくつかの問題点が挙げられる。
最初に断面積ファイルを処理する群定数作成コードについて述べる。本ライブラリー作成には，前述したRESENDコードとCOMICコードをカップリングしたCOMICRコードが使用された。 しかし，このRESENDコードに関して，最近，IAEA のエネルギー依存断面積討算コード国際比較 ${ }^{(3)}$ を通し，原研，長谷川他によって，いくつかの問題点が指摘された。との国際比較は， RESEND，RESENDD，RECENTコードにより，ENDF／B－V Dosimetry Fileから， $0^{\circ} \mathrm{K}$ のポイントワイズ断面積及び 620 群 SAND－IIタイプの平均断面積を計算し，比較したものであ る。この比較結果より指摘された点は以下の事である。
（1）RESENDコードの公式版の使用は，まったく推められない。理由としては，分離共鳴領域に扣いて，全断面積の形しかチェックしないため，他の部分断面積に大きな誤差を与える。
（2）RESENDDコードについては，次に述べる3つの事が挙げられる。（i）NDF Bファイル のFile 3 の断面積に対して内挿公式 1 で与えられる断面積の取り扱いに不備がある。（ii）非常に狭い分離共鳴レベルについて，発生データ点が十分でないため，最悪の場合，共鳴積分値に対して，数十 $\%$ の過大評価となる場合がある。（iii）非分離共鳴の処理にあたって，非分離

共鳴パラメータが与えられているエネルギー点での断面積の内挿によるべきであって，非分離共鴠パラメータの内挿であってはならないのに対し，とれを行なっている。
（3）以上，述べた事より，現時点ではRECENTコードの採用が望ましい。
とてで一例として ${ }^{58} \mathrm{Fe}(\mathrm{n}, \boldsymbol{r})$ 反応断面積の結果を示す。Fig． $2-1 \mathrm{k}^{58} \mathrm{Fe}(\mathrm{n}, \gamma)$ 反応断面積に関するRECENT／RESENDD，及びRESEND／RESENDDの計算による断面積比を示す。 これから， 6.2 KeV の共鳴において断面積に大きな違いがある事がわかる。この原因としては，前述した様にRECENTコード及びRESENDDコードにおける狭い幅の共鳴に対するポイントワ イズ断面積の発生データ点の違いによるものが考えられる。実際にRESENDDコードでは 6.17618 KeV から 6.19900 KeV で 2 点のデータしか作成されないのに対し，RECENTコードで は，このエネルギー範囲で87点のデータが作成されている。又，乙の様な現象は ${ }^{232} \mathrm{Th}(\mathrm{n}, \mathrm{f})$ ， ${ }^{238} \mathrm{U}(\mathrm{n}, ~ r)$ 反応断面積においても生じている。この様な原因からFig． $2-2$ に示す 6.2 KeV の共鳴領域の断面積及び共鳴積分値にも明らかな差が見られる。

次に挙げられる問題点としては，高速実験炉＂常陽＂解析用断面積ライブラリーの場合，ドシ メータの照射位置での温度がサーベイランス位置で約 $400 \sim 450^{\circ} \mathrm{C}$ であるため，ドップラー効果 を考慮する必要がある。更にドシメータの自己遮蔽効果を考慮しなければならない。

本研究で作成した第 1 版のドシメトリー断面積ライブラリーは，現段階では以上述べた様な問題点をもつため，これらの点を考慮した断面積ライブラリーの整備が次の重要な課題である。

II－4 反応断面積の共分散誤差ライブラリーの梌討

反応断面積の共分散誤差ライブラリーに関しては，II－2で述べられているが，この誤差ライ ブラリーの問題点としては，次に述べる様な点が挙げられる。
（1）任意のエネルギー群構造への共分散データの変換方法に物理的条件が含まれていない。
（2）共鳴領域の断面積誤差評価が不十分である。
（3）相対測定により得られた反応断面積間の相関誤差が考慮されていない。
（4）断面積の群定数化に伴なう誤差評侕が行なわれていない。
以上の事が挙げられるが，（1）及び（2）項は本研究で作成した COVRXブログラムの改良が必要で ある。次にその改良点につき考えてゐる。

まず，共分散データの変換方法に関しては物理的条件として，反応率 $\int_{\sigma(\mathrm{E}) \phi(\mathrm{E}) \mathrm{dE} \text { を保存す }}$ るという条件を加えた変換方法を考える。初期のエネルギー群構造 i をあつ群定数を

$$
\overline{\sigma_{\mathrm{i}}}=\int_{\mathrm{E}_{\mathrm{i}}}^{\mathrm{E}_{\mathrm{i}+1}} \sigma(\mathrm{E}) \phi(\mathrm{E}) \mathrm{dE} / \int_{\mathrm{E}_{\mathrm{i}}}^{\mathrm{E}_{\mathrm{i}+1}} \phi(\mathrm{E}) \mathrm{dE}
$$

とする。
ことで， $\int \sigma(\mathrm{E}) \phi(\mathrm{E}) d \mathrm{E}$ を保存するという条件を加え，初期の群構造i から群構造 mへFig．
$2-3$ に示す 3 つの場合を考え，変換行列 $\mathbf{T}\left(=\mathrm{T}_{\mathrm{im}}\right)$ を作成する。添字 i は初期データ，mは変換後のデータに関するものである。作成された変換行列Tを用い，次式より，任意のェネルギー群構造の共分散誤差行列 C_{m} を作成する。

$$
\mathbf{C}_{\mathrm{m}}=\mathbf{T}^{\mathrm{t}} \mathbf{C}_{\mathrm{i}} \mathbf{T}
$$

とてで $\mathbf{C}_{\mathbf{i}}$ はENDF／B—Vに与えられている反応断面積の相対共分散誤差行列である。 \mathbf{T}^{1} は変換行列 \mathbf{T} の転置行列である。

共鳴領域の断面積の誤差は，ENDF／B－V のCovariance File（File 32）に共鳴パラメー夕の不確定性データが与えられているので，これらのデータをBreit—Wigner の一準位公式を用い，評価し，従来のスムーズ断面積の誤差に加え合せれば良いと考えられる。しかしながら，現在の不確定性データでは，各共鳴間の相関は与えられていないため，共鳴領域で細加いェネル ギー群構造を有する群平均断面積を作成する場合には，まだ問題点は残己る。
次に標準断面積（ $\left.{ }^{10} \mathrm{~B}(\mathrm{n}, ~ \alpha), ~{ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})\right)$ との相対測定により得られた反応断面積の誤差評価は，実験データ及び核データ評侕法の点からも現段階では不十分であり，今後の課題である う。
最後に微視断面積の群定数化に伴なう誤差 ${ }^{(4)}$ としては，従来の断面積の誤差に加え，次に示す様な項を考えるととである。

$$
\begin{aligned}
& \bar{\sigma}_{\mathrm{g}}=\int_{\mathrm{u}_{\mathrm{g}}} \sigma \phi \mathrm{du} / \int_{\mathrm{u}_{\mathrm{g}}} \phi \mathrm{du} \\
& \triangle \bar{\sigma}_{\mathrm{g}}=\frac{1}{\int_{\mathrm{u}_{\mathrm{g}}} \phi \mathrm{du}}\left[\int_{\mathrm{u}_{\mathrm{g}}} \triangle \sigma \cdot \phi \mathrm{du}+\int_{\mathrm{u}_{\mathrm{g}}}\left(\sigma-\bar{\sigma}_{\mathrm{g}}\right) \triangle \phi \mathrm{du}\right]
\end{aligned}
$$

この式の第 2 項成分が，群定数化に伴なう誤差で，重みスペクトル $\phi(\mathfrak{u})$ の不確定性によって生 じる項である。この項を群定数の共分散の形で示すと，

$$
\left(\triangle \sigma_{\mathrm{g}} \triangle \sigma_{\mathrm{k}}\right)=\frac{1}{\int_{\mathrm{u}_{\mathrm{g}}} \phi \mathrm{du} \int_{\mathrm{u}_{\mathrm{k}}} \phi \mathrm{du}}-\int_{\mathrm{u}_{\mathrm{g}}} d \mathrm{u}_{1} \int_{\mathrm{u}_{\mathrm{k}}} \mathrm{du} u_{2}\left\{\sigma\left(\mathrm{u}_{1}\right)-\bar{\sigma}_{\mathrm{g}}\right\}\left\{\sigma\left(\mathrm{u}_{2}\right)-\bar{\sigma}_{\mathrm{k}} \overline{\Delta \phi\left(\mathrm{u}_{1}\right) \triangle \phi\left(\mathrm{u}_{2}\right)}\right.
$$

となり，$\overline{\triangle \phi}\left(\mathrm{u}_{1}\right) \triangle \phi\left(\mathrm{u}_{2}\right)$ を如何に与えるかによって，群定数には極めて大きな共分散が入る可能性があると言える。しかしながら，現状としては，この重みスペクトルの共分散を定量的に評価するのが問題となるため，この群定数化に伴なう誤差評価も今後の大きな課題となるである う。

II－5 NEUPAC－83ドシメトリー断面積ライブラリー（新版）

NEUPAC－83コードのI／O の簡略化を目的として作成された第 1 版のドシメトリー断面積

ライブラリーの問題点は，！ 1 － 3 で述べられているが，これらの点を改善するため，本研究では ロスアラモス国立研究所（LANL）で開発されている群定数作成システムNJOY ${ }^{(10)}$ を用いて， ライブラリーの整備を行ない，NEUPAC－83コード専用のドシメトリー断面積ライブラリー新版を作成した。

核データファイルとしては，第1版と同様ENDF／B－V の Dosimetry Fileを使用した。本 ライブラリーの反応断面積をTable $2-4$ に示す。新版のライブラリーには，第 1 版に加え，新 たた ${ }^{6} \mathrm{Li}(\mathrm{n}, \alpha),{ }^{10} \mathrm{~B}(\mathrm{n}, \alpha),{ }^{23} \mathrm{Na}(\mathrm{n}, \gamma),{ }^{32} \mathrm{~S}(\mathrm{n}, \mathrm{p}),{ }^{47} \mathrm{Ti}\left(\mathrm{n}, \mathrm{n}^{\prime} \mathrm{p}\right),{ }^{48} \mathrm{Ti}\left(\mathrm{n}, \mathrm{n}^{\prime} \mathrm{p}\right)$ ， ${ }^{55} \mathrm{Mn}(\mathrm{n}, 2 \mathrm{n}),{ }^{59} \mathrm{Co}(\mathrm{n}, 2 \mathrm{n}),{ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right),{ }^{115} \mathrm{In}(\mathrm{n}, \gamma),{ }^{115} \mathrm{In}\left(\mathrm{n}, \mathrm{n}^{\prime}\right),{ }^{127} \mathrm{I}(\mathrm{n}$, $2 \mathrm{n}),{ }^{182} \mathrm{Ta}(\mathrm{n}, r),{ }^{197} \mathrm{Au}(\mathrm{n}, r)$ の 14 反応が追加され， 37 の反応断面積が納められてい る。とれらのうち，${ }^{182} \mathrm{Ta}(\mathrm{n}, ~ r)$ 反応断面積は $\mathrm{ENDF} / \mathrm{B}-\mathrm{N}$ を用いて作成した。さらに ${ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$ 反応断面積はIAEAで作成されたIRDF－82（International Reactor Dosimetry File）の 620 群平均断面積より，Maxwell＋1／E＋Fissionスペクトルを用い縮約作成した。

今回，整備された反応断面積は，ドップラー効果を考慮し， $300^{\circ} \mathrm{K}$ 及び $700^{\circ} \mathrm{K}$ の二通りにつ いて計算したが，両者にはほぼ差違は見られなかったため， $300^{\circ} \mathrm{K}$（室温）での値を採用した。更记共鳴遮蔽因子は $\sigma_{0}=10^{10}$（barn）として計算を行なった。

本ライブラリーの断面積は後述するBoxer format により与えられており，NEUPAC－83コ ードでは，新たに追加されたサブルーチンTRIEVRルより処理し，従来同様の入カデータとなる様に変換される。

II－6 NEUPAC－83 共分散誤差ライブラリー（新版）

本研究では，NEUPAC－83ドシメトリー断面積ライブラリーの整備とともに，共分散誤差ラ イブラリーの整備，改善を行なった。第1版の共分散誤差ライブラリーの検討項目に関しては， II－4 で述べたが，これらの点を考慮し，新版は断面積ライブラリー作成で使用したNJOYシス テムを用い，断面積ライブラリーとの一貫性を保つと同時に問題点の改善を行なった。

本研究では，II－4で指摘した任意のエネルギー群構造への共分散データの変換にNJOYシス テムのERRORRモジュールを使用した。との変換方法はFig．2－4に示すユーザーの入力エネル ギー群構造とENDF／Bに与えられているエネルギー群構造から合成エネルギー群構造を作成し， NJOYシステムのRECONRモジュールにより作成されたボイントワイズ断面積を用い，以下に示す関係式により計算する。

$$
\begin{equation*}
\mathrm{X}_{\mathrm{i}}=\frac{\sum_{K(i)}^{\sum} \phi_{\mathrm{K}} Z_{\mathrm{K}}}{\underset{K(i)}{\sum \phi_{\mathrm{K}}}} \tag{1}
\end{equation*}
$$

Fig．2－4 エネルギー群構造の関係

こてで X_{i} はユーザーのエネルギー群構造を有する群平均断面積である。 ϕ_{K} 及び Z_{K} は，合成 エネルギー群構造における重みスペクトルと群平均断面積である。本研究では重みスペクトルと して，Maxwell＋1／E＋Fissionを用いた。次に群平均断面積 X_{i} の共分散は，次の式より計算する。

ことで重みスペクトル $\phi(\mathrm{E})$ の不確定性はないと仮定した。 a_{i} は は sensitivity coefficient と呼 ばれるすので，次式で定羲される。

$$
\begin{equation*}
\mathrm{a}_{\mathrm{iK}}=\frac{\phi_{\mathrm{K}}}{\sum_{\mathrm{K}(\mathrm{i})} \phi_{\mathrm{K}}} \tag{3}
\end{equation*}
$$

ことで $\mathrm{C}_{0 \mathrm{~V}}\left(Z_{\mathrm{K}}, Z_{\mathrm{l}}\right)$ は， $\mathrm{ENDF} / \mathrm{B}$ の共分散情報より作成された絶対共分散である。最後に相対共分散誤差は

$$
\begin{equation*}
\text { Re1. } C_{o v}\left(X_{i}, X_{j}\right)=\frac{C_{O V}\left(X_{i}, X_{j}\right)}{X_{i} \cdot X_{i}} \tag{4}
\end{equation*}
$$

により計算する。

更にERRORR モジュールにより，第1版で指摘された共鳴領域の断面積の誤差評価を行なっ た。とれは，ENDF／B－V の共分散ファイル（File 32）に与えられている共鳴バラメータの不確定性情報を用い，Breit－Wigner の式を共鳴パラメータにより偏微分した式から（2）式と同様に $\mathrm{C}_{\mathrm{ov}}\left(\mathrm{A}_{r}, \mathrm{~A}_{\gamma}\right), \mathrm{C}_{\mathrm{ov}}\left(\mathrm{A}_{\gamma}, \mathrm{A}_{\mathrm{f}}\right), \mathrm{C}_{0 v}\left(\mathrm{~A}_{f}, \mathrm{~A}_{\mathrm{f}}\right)$ を計算した。てれらの値は前述した群平均断面積の誤差に加え合せた。しかしなから，File 32 には各共鳴間の相関は与えられていな いため，この共鳴パラメータの不確定性による寄与は，共分散行列の対角成分にのみにだけ考慮 されている。

標準断面積との相対測定により得られた反応断面積の誤差評価について述べる。本ライブラリ －の ${ }^{238} \mathrm{U}(\mathrm{n}, ~ r)$ 反応（MAT＝6398）は， $4 \mathrm{KeV} \sim 20 \mathrm{KeV}$ で ${ }^{10} \mathrm{~B}(\mathrm{n}, ~ \alpha)$ 標準反応断面積と の相対測定により得られたデータである。ての ${ }^{238} \mathrm{U}(\mathrm{n}, ~ r)$ 反応に関しては，ENDF／B -V の標準断面積ファイル（Tape 511）により，現在解析中である。

以上，新版の共分散誤差ライブラリーは，第 1 版で指摘された群定数化に伴なう誤差を除き，現時点での問題点は改善されている。更に，群平均断面積と同様，共分散誤差情報はデータ量の

縮少化をはかったBoxer Format により与えられている。との表現法はFig．2－5 k示すもの で，従来の約 $1 / 50$ とデータ量が縮少された。一例として，${ }^{23} \mathrm{Na}(\mathrm{n}, ~ r)$ 反応断面積に関する群平均断面積，共分散誤差をFig．2－6に示す。

II－7 結 論

本研究において作成された共分散誤差情報も含めた新版のNEUPAC－83ドシメトリー断面積 ライブラリーは，当初の目的としたNEUPAC－83コードの簡略化に大きく寄与するとともに，現時点では，データの質も最善のものであると言える。

References

1) M. Sasaki and M. Nakazawa, "Production of Analysis Code for "JOYO" Dosimetry Experiment: User's Manual of Neutron Unfolding Package "NEUPAC"'", PNC N941 80-192Tr, Jan. 1980.
2) T. Ikegami, Private Communication.
3) A. Hasegawa and T. Narita, "Comparisons of Energy Dependent PointWise Cross-Section Generation Codes: RESEND, RESENDD, RECENT", JAERI-M-82-128, 1982.
4) M. Nakazawa, "Influences of the Covariance Matrices over Reactor Neutron Dosimetry", JAERI-M 9523, 1981.
5) T. Taniguchi, "Fast Reactor Dosimetry and Its Uncertainty Analysis", Master Thesis, Univ. of Tokyo, 1981.
6) Proceeding of 2nd PNC/DOE Specialists' Meeting on Collaborative Dosimetry Test, SA013 FWG81-01
7) N.J.C.M. van der Borg, Personal Communication,
8) F. G. Perey, "The Data Covariance Files for ENDF/B-V", ORNL-TM-5928, 1977.
9) D. E. Cullen et al., 'The International Reactor Dosimetry File (IRDF-82)", IAEA-NDS-42/R, 1982.
10) "The NJOY Nuclear Data Processing System, Vol. I, II", LA-9303-M (ENDF-324), 1982.

TABLE 2-1
UNFOLDING CODE NEUPAC-83 DOSIMETRY CROSS SECTION LIBRARY AND UNCERTAINTY LIBRARY

INDEX NO.	REACTION TYPE	ERROR DATA SCUECE
1	27A1 (N, Z) 24 NA	VARIANCE (ENDE/B-V)
2	27AL ($\mathrm{N}_{\text {r }} \mathrm{P}$) 27 MG	VARIANCE (EADE/B-V)
3	$45 S C(N, D) 465 C$	VARIANCE (5 (EDE/B-V)
4	¢6TI (N, P) 465 C	VARIANCE (ENDE/B-V
5	47TI (N, P) 47SC	VARLANCE (ENDE/B-V)
6	48TI (N, D) 48SC	VARIANCE (EADE/B-V)
7	5AFE (N, P) 54MN	COVARTANCE (ENDF/B-V)
8	56 Fe (N, P) 56 N	COVARIANCE (ENDE/B-V)
9	585E (N, G) 5900	COVARTANCE (ENDE/B-V)
10	58NI (N, N$) 58 \mathrm{CO}$	VARIANCE (ENDE/B-V)
11	58N土 (N, 2N) 57NI	VARTANCE (ENDE/B-V)
12	$59 \mathrm{CO}(\mathrm{N}, \mathrm{A}) 56 \mathrm{MN}$	VARIANCE (ENDE/B-V)
13	$59 \mathrm{CO}(\mathrm{N}, \mathrm{G}) 60 \mathrm{CO}$	VARIANCE (ENDE/E-V)
14	60NI (N, P) 60 CO	VARIANCE (ENDF/B-V)
15	$63 \mathrm{CU}(\mathrm{M}, \mathrm{A}) 60 \mathrm{Co}$	COVARTANCE (ENDE/B-V)
16	$63 \mathrm{Cu}(\mathrm{N}, \mathrm{G}) 6 \mathrm{ACU}$	VARIANCE (ENDE/B-V)
17	$65 \mathrm{CU}(\mathrm{N}, 2 \mathrm{~N}) 6 \pm \mathrm{CU}$	COVARTANCE (ENDE/B-V)
18	232TH (N, G)	VARIANCE (EADE/B-V)
19	232THf(N, F)	VARIANCE (ENDF/B--V)
20	2350 ($\mathrm{N}, \mathrm{F}^{\text {F }}$)	COVARIANCE (ENDE/B-V.)
21	237NP (N, F)	VARIANCE (ENDF/B-V)
22	2380 (N, F)	VARIANCE (EADE/B-V)
23	$238 \mathrm{U}(\mathrm{N}, \mathrm{G})$	VARTINCE (ENDE/E--V')

TABLE 2－2 103 Energy Group Structure in Units of eV

Group	Upper	Lower
1	$2.0000 \% \div 07$	1．82205＋07
2	$1.82205 \div 07$	1． $64505+07$
3	1． $64906 \div 07$	1．4018E：07
4	T．49185－07	1．3¢09E：07
5	$1.34905 \div 07$	$1.22145 \div 07$
6	1．22145－07	1．1052F－07
7	1．1052E：07	1．0000 -07
8	$1.0000 \div \div 07$	$9.04845 \div 06$
19	$9.04845 \div 05$	$8.18738 \div 06$
10	8．1873E：06	7．4082E $\div 06$
11	7．40828 $\div 06$	6．7032E $\div 06$
12	$6.7032 \mathrm{C} \div 06$	$6.0653 \mathrm{~F} \div 06$
13	$6.06538 \div 05$	5．6881E $\div 06$
14	$5.48315 \div 06$	4． 955 ¢E\％0́
15	4．95595：06	$4.4933 E \div 06$
15	C． $49335 \div 05$	¢．0637E：06
17	¢． $0657 \mathrm{E} \div 05$	$3.6788 ¢ \div 06$
18	3． $57888 \div 06$	$3.32875 \div 06$
19	$3.32875 \div 05$	$3.01195 \div 06$
20	3．011c¢：05	2．7253E $\div 06$
21	2．72535：06	2．4660E -06
22	$2.45006 \div 06$	$2.23135 \div 06$
23	2．2313E：05	$2.0190 \% 06$
24	$2.0190 \mathrm{E} \div 05$	1．82585 -05
25	$1.82535 \div 05$	1． $65305 \div 65$
26	1． $65308 \div 06$	1．4957E\％06
27	1．4057Eㄷo6	1． $3534 \mathrm{E} \div 05$
23	$1.353 \times 5 \div 06$	1．2246E $\div 05$
29	1．23¢55\％05	1．10805 -06
30	1． 1080 ¢ -06	1．00265：06
31	1．0026e：05	9．07188 -05
32	9．07185：05	8．20855 $\div 05$
33	8－20855：05	7． $62745 \div 05$
34	7．42745－05	$5.72065 \div 05$
35	$6.7205 \div \div 05$	$6.08105 \div 05$
36	$6.08105 \div 05$	$5.5023 ¢ \div 05$
37	5．5023ここ05	¢．9787¢ -05
38	¢．9787E -05	4．50¢9E -05
39	C．50905－05	4．0762E $\div 05$
c．	$4.07625 \div 05$	3．68835 $\div 05$
41	3． $52335 \div 05$	$3.33735 \div 05$
42	3． 3 373E：05	3．0197E $\div 05$
43	3．0197E 05	2．732
4	$2.73245 \div 05$	2． $47248 \div 05$
45	2． $47245 \div 05$	2．2371E：05
45	2． $23715 \div 05$	2．0242E：05
47	2．0242E -05	1．83165：05
48	$1.8310 \mathrm{E} \div 05$	1． $6573 \mathrm{E} \div 05$
49	1．65735：05	1．4096を 05
50	1．4906\％ 05	1．3569\％$\div 05$

（Continued）
(cont'd)

Group	Up̣̂er	Lawer
51	1.35095 $\div 05$	1. $22775 \div 05$
52	T. 22J7E -CE	$1.11095 \div 05$
53	T-110cE:05	$8.6017 \mathrm{E} \div 04$
54	$8.60175 \div 04$	$6.73795 \div 04$
55	$6.7379 \mathrm{E} \div 04$	$5.2475 \mathrm{E} \div 04$
56	$5.2475 ¢ \div 04$	4. $0868 \mathrm{C} \div 04$
57	4.0858E $\div 0.4$	$3.1828 \div \div 04$
58	$3.1828 E \div 04$	$2.47885 \div 04$
59	$2.47802 \div 34$	1. $93050 \div 04$
-60.	1.9305E +04	1.50345-04
67	1.5034504	1.1709E -04
52	1. $17095 \div 04$	9.11888 $\div 03$
63	9.1183E $\div 03$	7.1017E $\div 03$
64	7.1017E\%03	5. 5308E $\div 03$
65	$5.5308 \varepsilon \div 03$	4.3075¢*03
66	4. 30745	$3.35455 \div 03$
67	$3.35455 \div 03$	$2.6126 E \div 03$
68	$\div 2.6125 ¢ \div 03$	$2.03475 \div 03$
69	$2.03475 \div 03$	1. 524be:03
70]. 58 ¢5E $\div 03$	T. $23416 \div 03$
71	$1.23416 \div 03$	$9.61125 \div 02$
72	$9.6112 \mathrm{C} \div 02$	$7.48525 \div 02$
73	7.4852F-02	5. $82955 \div 02$
74	$5.8295 E \div 02$	4.5400E $\div 02$
75	$4.51005 \div 02$	3. 5357E 02
76	$3.53575 \div 02$	$2.75365 \div 02$
77	$2.75365 \div 02$	$2.1445=02$
78	2. 1415502	$1.6702 \mathrm{~F} \div 02$
79	1.6762E:02	1.3007E $\div 02$
80	1.3007¢ $\div 02$	1.0130E -02
81	1.0130E -02	7. $8693 \mathrm{E} \div 01$
82	$7.88 \mathrm{c} 35 \div 01$	$6.1442 E \div 01$
83	6.14425-01	$4.78518 \div 01$
84	$\Leftrightarrow 7851 \mathrm{E} \div \mathrm{Cl}$	$3.72675 \div 01$
85	$3.72575 \div 01$	2.9023E -01
8 a	2. $00236 \div 01$	$2.2603 \mathrm{E} \div 01$
87	2. $26035 \div 01$	I. $7603 \mathrm{E} \div 01$
88	$1.76035 \div 01$	1.3710E -01
89	$1.37105 \div 01$	1.0677E 01
90	1. $06775 \div 01$	$8.31535 \div 00$
91	$8.31535 \div 00$	$5.4760=\div 00$
92	$6.4760 \varepsilon \div 00$	5.0435E $\div 00$
93	5.0¢35E $\div 00$	$3.92792 \div 00$
96	3.92795 -00	3. $35905 \div 00$
9	$3.05905 \div 00$	2.38295:00
- 96	$2.382 \div 5 \div 00$	$1.85545 \div 00$
97.	$1.85545 \div 00$	1. $4.4500 \div 00$
98	1.4.450E -00	1.1254E:00
99	1. $12545 \div 00$	$8.7642 \mathrm{E}-0.7$
100	$8.76425-01$	6.8 こ56E-01
101	6.82505-01	5. $5158 \mathrm{E}-01$
. 102	5.3158E-01	4.1399E-0?
103	$4.13995-01$	1. 0000E-03

Fig. 2-2 Fe-58 (n, gamma) cross-section curve and integrated one for RECENT and RESENDD codes

Case-1 Compression (energy limits conserved)

Case - 2 Expansion (energy limits conserved)

Case -3 Energy limits not conserved

$$
\begin{aligned}
& \mathrm{E}_{1} \quad \mathrm{i}=1 \quad \mathrm{E}_{2} \quad \mathrm{i}=2 \\
& \mathrm{~T}_{11}=\frac{\sigma_{1}}{\sigma_{1} \varphi_{1}^{\prime}}{\sigma_{1} \varphi_{1}^{\prime}+\sigma_{2} \varphi_{2}^{\prime}}_{\mathrm{E}_{3}} \\
& \left(\because \varphi_{1}^{\prime}=\int_{\mathrm{F}_{1}}^{\mathrm{E}_{2}} \varphi(\mathrm{E}) \mathrm{dE}, \quad \varphi_{2}^{\prime}=\int_{\mathrm{E}_{2}}^{\mathrm{F}_{2}} \varphi(\mathrm{E}) \mathrm{dE}\right)
\end{aligned}
$$

Fig. 2-3

Table 2－4 ライブラリー中に含まれる核反応括よび識別番号

X－sec I．D．No．	Reaction	備 考
1	${ }^{23} \mathrm{Na}(\mathrm{n}, \gamma)$	
2	${ }^{27} \mathrm{Al}$（ $\left.\mathrm{n}, \mathrm{p}\right)$	
3	${ }^{27} \mathrm{Al}$（ $\left.\mathrm{n}, \alpha\right)$	
4	${ }^{55} \mathrm{Mn}$（ $\mathrm{n}, 2 \mathrm{n}$ ）	
5	${ }^{59} \mathrm{Co}(\mathrm{n}, 2 \mathrm{n})$	
6	${ }^{59} \mathrm{Co}(\mathrm{n}, r)$	
7	${ }^{59} \mathrm{Co}(\mathrm{n}, \boldsymbol{\alpha}$ ）	
8	${ }^{237} \mathrm{~Np}(\mathrm{n}, \mathrm{f})$	
9	${ }^{197} \mathrm{Au}(\mathrm{n}, r)$	
10	${ }^{232} \mathrm{Th}(\mathrm{n}, \mathrm{f})$	
11	${ }^{232} \mathrm{Th}(\mathrm{n}, r)$	
12	${ }^{235} \mathrm{U}$（ $\left.\mathrm{n}, \mathrm{f}\right)$	
13	${ }^{238} \mathrm{U}$（ $\left.\mathrm{n}, \mathrm{f}\right)$	covarianceはCOVRXコード
14	${ }^{238} \mathrm{U}$（ $\left.\mathrm{n}, \mathrm{r}\right)$	を用いて処理したもの
（15）	$\left({ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})\right.$ ）	Library中には含まず
16	${ }^{6} \mathrm{Li}$（ n, α ）	
17	${ }^{10} \mathrm{~B} \quad(\mathrm{n}, \boldsymbol{\alpha})$	
18	${ }^{45} \mathrm{Sc}(\mathrm{n}, \gamma)$	
19	${ }^{46} \mathrm{Ti}$（ $\left.\mathrm{n}, \mathrm{p}\right)$	
20	${ }^{47} \mathrm{Ti}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$	
21	${ }^{47} \mathrm{Ti}$（ $\left.\mathrm{n}, \mathrm{p}\right)$	
22	${ }^{48} \mathrm{Ti}\left(\mathrm{n}, \mathrm{n}^{\prime} \mathrm{p}\right)$	
23	${ }^{48} \mathrm{Ti}(\mathrm{n}, \mathrm{p})$	
24	${ }^{54} \mathrm{Fe}(\mathrm{n}, \mathrm{p})$	
25	${ }^{56} \mathrm{Fe}$ ，（ n, p ）	
26	${ }^{58} \mathrm{Fe}(\mathrm{n}, \gamma)$	
27	${ }^{58} \mathrm{Ni}(\mathrm{n}, 2 \mathrm{n})$	
28	${ }^{58} \mathrm{Ni}$（ n, p ）	
29	${ }^{60} \mathrm{Ni}$（ n, p ）	
30	${ }^{63} \mathrm{Cu}(\mathrm{n}, \mathrm{r})$	
31	${ }^{63} \mathrm{Cu}(\mathrm{n}, \alpha)$	
32	${ }_{65}{ }^{6} \mathrm{Cu}(\mathrm{n}, 2 \mathrm{n})$	
33	${ }^{115} \mathrm{In}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$	
34	${ }^{115} \mathrm{In}(\mathrm{n}, r)$	
35	${ }^{127} \mathrm{I}$（ $\left.\mathrm{n}, 2 \mathrm{n}\right)$	
36	${ }^{32} \mathrm{~S}(\mathrm{n}, \mathrm{p})$	
37	${ }^{181} \mathrm{Ta}(\mathrm{n}, r)$	$\mathrm{ENDF} / \mathrm{B}-\mathrm{V}$
38	${ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$	\prime IRDF ${ }^{*}$

＊International Reactor Dosimetry File

Original Data Set

Boxer Format, Symmetry Flag Off

a	b	b	0	c	d			
-2	-2	8	-4	8	-4	-2	5	-1

Boxer Format, Symmetry Flag On
a b
c d
$\begin{array}{lllll}-2 & -2 & 14 & -2 & -1\end{array}$

Fig. 2-5. Illustration of Boxer Format

Fig. 2-6 Example of NEUPAC-83 Cross Section Library

Appendix 2

2－1 ENDF／B－V Covariance File

こてでは，ENDF／B－V D Dosimetry Fileを取り上げ，共分散誤差ファイル，通常 Covariance File と呼ばれているものを中心に説明する。このCovariance Fileには，以下 で説明するFile 31，32，33があるが，現在のDosimetry Fileには，File 32 及び 33 しかな いため，これらについて説明を行なう。

File 32

てれはFile 2に納められている共鳴領域における共鳴パラメータの共分散誤差情報である。と れらの情報としては，共鳴エネルギー E_{r} の分散 $\left(\triangle \mathrm{E}_{\mathrm{r}}\right)^{2}$ ，中性子幅 Γ_{n} の分散 $\left(\triangle \Gamma_{\mathrm{n}}\right)^{2}$ ，ガン マ線放出幅 Γ_{γ} の分散 $\left(\triangle \Gamma_{\gamma}\right)^{2}$ ，核分裂幅 Γ_{f} の分散 $\left(\triangle \Gamma_{\mathrm{f}}\right)^{2}$ ，Γ_{n} と Γ_{γ} の共分散，Γ_{n} と Γ_{f} の共分散，Γ_{γ} と Γ_{f} の共分散等が各共鳴エネルギーに対して与えられている。ただし，各共鳴間の相関データは与えられていない。とれらの各共䳛に関するパラメータ間の共分散データはドップ ラー効果，自己遮蔽の不確定性解析あるいは共鳴㽬に比べ，非常に狭い群平均断面積の共分散誤差計算に有効である。但し，現在のデータはBreit－Wigner の一準位，多準位公式に対しての あのだけであり，まだ，データの質とあにまだ不十分であると考えられる。

File 33

このファイルには，File 3（microscopic cross section）に与えられているデータに関する共分散誤差が納められている。データとしては後述する様に，（a）群平均断面積の分散，（bいくつ かの近接グループ間の相関，（cれくつかのグループにわたる広い範囲での相関等がある。

次にとのFile 33 の構造について，簡単に説明する。 Table 2－1－1 にFile 33 の構造を示す。
File 33 は ENDF／B－V Dosimetry File の場合， 35 のsections から構成されておかり，各 sectionには物質番号（MAT）と反応コード（MT）により表わされる反応断面積について の共分散誤差データが与えられている。 1 つのsectionは，NL個のsub－sectionsから構成さ れており，各 sub－sectionはsub－section 内に指定されている（MAT 1，MT1）亡 section 内で指定されている（MAT，MT）により，次の二つの場合がある。
（1）MAT1がゼロの時は（MAT，MT）の反応断面積の共分散誤差が与えられる。
（2）（MAT 1，MT 1）が（MAT，MT）」違う場合は違った反応断面積の共分散誤差が与え られる。乙れは，いわゆる標準断面積を用い，相対測定により求められた反応断面積の場合 であり，反応断面積間の共分散，cross－correlation と呼ばれるもののデータベースであ る。

次に各 sub－sectionはいくつかのsub－sub－sections から構成されている。各 sub－sub －sectionにはsub－section の中にある共分散誤差行列の独立した成分が含まれている。言い換れば，sub－sectionの共分散誤差行列は，いろいろな sub－sub－sections に打けるデータ の総和から構成されているのである。各 sub－sub－sectionkは次に示す二つのタイプのデータ がある。
（1）NCータイプの sub－sub－section
これは，他の評価済断面積セットから（MAT，MT）の反応断面積の共分散誤差データを表わしたもので，前述した相対測定データを用いたものである。現在のFile33においては， データが不十分なため，${ }^{238} \mathrm{U}(\mathrm{n}, ~ \gamma)$ と ${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$ に関してのデータしか含まれていない。
（2）NIータイプの sub－sub－section
このタイプのデータは，LBといラフラッグによって，データが相対値か絶対値か，及びエ ネルギーの関数として，相関の種類が識別されている。LBには，0，1，2，3，4，あがあるが， ENDF／B－V Dosimetry Fileでは， $\mathrm{LB}=1,2,5$ のみから与えられているため，ことでは， これらのデータについて簡単に解説する。
（a）$L B=1$

$$
C_{O V}\left(X_{i}, Y_{j}\right)={ }_{K} P_{j ; K}^{i ; K} F_{X Y, K} \cdot X_{i} \cdot Y_{j}
$$

各エネルギー領域 E_{K} 内のみでの共分散を表わす。いわりゆる $\mathrm{E}_{\mathrm{K}}<\mathrm{E}_{\mathrm{i}}<\mathrm{E}_{\mathrm{K}^{+}}$と $\mathrm{E}_{\mathrm{K}}<\mathrm{E}_{\mathrm{j}}<$ $\mathrm{E}_{\mathrm{K}+1}$ の場合の E_{i} 及び E_{j} での共分散である。
（b） $\mathrm{LB}=2$

$$
C_{O V}\left(X_{i}, Y_{j}\right)={ }_{\kappa, \kappa^{\prime}} P_{j ; K^{\prime}}^{i ; \kappa}, F_{X Y, K} F_{X Y, K^{\prime}} X_{i} Y_{j}
$$

これは， $\mathrm{E}_{\mathrm{K}}<\mathrm{E}_{\mathrm{i}}<\mathrm{E}_{\mathrm{K}+1}$ と $\mathrm{E}_{\mathrm{K}^{\prime}}<\mathrm{E}_{\mathrm{j}}<\mathrm{E}_{\mathrm{K}^{\prime}+1}$ の場合のエネルギー E_{i} と E_{i} での断面積の共分散である。相対共分散は $\mathrm{F}_{\mathrm{K}} \times \mathrm{F}_{\mathrm{K}^{\prime}}$ で表わされる。
（c） $\mathrm{LB}=5$

$$
C_{O V}\left(X_{i}, Y_{j}\right)={ }_{\kappa, K^{\prime}} P_{j ; K^{\prime}}^{i ; K} F_{X Y} ; \kappa, \kappa^{\prime} X_{i} \cdot Y_{j}
$$

てれがエネルギー E_{i} と E_{j} の断面樍値の相対共分散行列 F_{XY} ；к， K^{\prime} の形て与えられている ものである。 LB $=5$ には，以下の 2 つのあのがある。
（i）$L S=0$ 非対称行列で，ENDF／Bのファイル33＜指定されているエネルギー点数

NE を用いて表わすると（NE－1）${ }^{2}$ 個の行列要素が与えられている。
（ii） $\mathrm{LS}=1$ 対称行列で，上三角要素のみで（ $\mathrm{NE}+(\mathrm{NE}-1) / 2)$ 個のデータが与えら れている。
ここで，X_{i} 及び Y_{j} は，それぞれ反応断面積 X及び Yのエネルギーi， j での値である。 $\mathrm{P}_{\mathrm{j}}^{\mathrm{i} ; ~} \mathrm{~K}^{\prime} \mathrm{K}^{\prime}$ は，エネルギー i がエネルギー範囲 $\mathrm{E}_{\mathrm{K}} \sim \mathrm{E}_{\mathrm{K}+1}$ 及びエネルギー j がエネルギー範囲 $\mathrm{E}_{\mathrm{K}^{\prime}} \sim \mathrm{E}_{\mathrm{K}^{\prime}+1}$ に ある時のみ 1 でそれ以外では 0 を示す。

2－2 共分散誤差処理プログラム＂COURX＂

本研究ではII－2でも述べられている様にENDF $/ \mathrm{B}-\mathrm{V}$ の Covariance File（File 33）の データより，任意のエネルギー群構造をあつ反応断面積の共分散誤差行列を作成するプログラム をCOVSIGコードを改良，作成した。

本 Appendixには，COVRXプログラムのフローチャートをFig．2－2－1に，入力データの説明及び例を Table 2－2－1 に示す。Table 2－2－2には，ENDF $/ \mathrm{B}-\mathrm{V}$ Dosimetry Fileに納 められている ${ }^{63} \mathrm{Cu}(\mathrm{n}, \alpha)$ 反応断面積の共分散侶差行列をCOVRXプログラムによりSAND一 IIコードで用いられるエネルギー群構造15群で解析した結果を示す。なお，COVRX プログラ ムのソースリストをあわせてのせる。

TABLE 2-1-1 STRUCTURE OF FILE 33 IN ENDF/B-V

Table 2-1-2. Relative covariance matrix components

FIG. 2-2-1 FLOW CHART OF COVRX PROGRAM

Table 2-2-1. Input Data for COVRX program
(Card input for subroutine STRUC)

1. NMAC (I3) ; Number of input energy points.
2. EMAC (5E12.5) ; Input energy structure (eV)
from low energy to high energy.

Example
16

$1.00000 \mathrm{E}-04$	$4.00000 \mathrm{E}-01$	$1.00000 \mathrm{E}+0 \mathrm{I}$	$1.00000 \mathrm{E}+04$	$1.00000 \mathrm{E}+05$
$6.00000 \mathrm{E}+05$	$1.40000 \mathrm{E}+06$	$2.20000 \mathrm{E}+06$	$3.00000 \mathrm{E}+06$	$4.00000 \mathrm{E}+06$
$5.00000 \mathrm{E}+06$	$6.00000 \mathrm{E}+06$	$8.00000 \mathrm{E}+06$	$1.10000 \mathrm{E}+07$	$1.30000 \mathrm{E}+07$

TABLE 2-2-2. COVRX output for ${ }^{63} \mathrm{Cu}(M A T=6435)$ Correlation Matrix

. $29063 \mathrm{E}+05$.62930E+02			0		107	6435		107					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	100	100	49	34	24	19	13	6	3
20	0	0	0	0	0	0	100	100	49	34	24	19	13	6	3
15	0	0	0	0	0	0	49	49	100	49	34	28	18	8	5
10	0	0	0	0	0	0	34	34	49	100	49	40	26	11	7
8	0	0	0	0	0	0	24	24	34	49	100	56	37	16	10
7	0	0	0	0	0	0	19	19	28	40	56	100	64	29	17
6	0	0	0	0	0	0	13	13	18	26	37	64	100	50	30
6	0	0	0	0	0	0	6	6	8	11	16	29	50	100	58
6	0	0	0	0	0	0	3	3	5	7	10	17	30	58	100

SOURCE LIST OF COVRX PROGRAM


```
gcgmg5ag c
```



```
สตสตส!ig
#g\ETE52g
ygegcesg
gaggge\a
gg\rgeje
```



```
GTg9557g C
ต๓ตGEE=g
```



```
פ%ตgg71g
आตgตย7<g c
まGリตな7シ毛
gco5g7!0 C
ตฮย๐ต75g
ต๓g%g75g
gegagifa
สgg"g78g
ตตตтg7c』
ตตตวต%๖g
ஏøघణg%1g
g๗!gต325
```



```
ตggeg8<E
リロตgJa5『
```



```
g\\llbracketbabag C
0490689%
```



```
フตgags1a
```



```
GのตgGEミgC
##GgGc\gc
\9ggre5a
0gggac6at
๗รตตตร7g
yถดФgэ80 C
09घリgege
&9%Ggege C
ตต%g191%
EgG6162%
GGGGIg3a
9!%リ\g<%
आตgg1g5%
E¢GGIG6|
gロg%1g70
g%สgIT50
%GgTIGSg
๓gcgilga
6スデ\II%
```



```
9ยg\1:3日C
gaggilicc
#GgT1150 C
ตGสGIISE
gT%G117%
2%5g1188
ตสตgIISg
0gTgl2すg
Gg%g121g
005g]こ2g
ต๕g%123g
GGEG12\leq0
ロgcalz5a
Eggg126%
```



```
g\c\pi1280
&g%2I295
9gg6]25g
%ggGi31. 
ひตgต1きで
2gag1330
909013!0
7Gggi350
c

```

c
c*
SUSROUTIME STPUC
suSfoJtrme smeuc

```



```

DIMENSION A(< \J, 2פg)
c

```

```

g=3D(7,sa) rafnc
88 EODMAT(エ゙う)
NQ4DC\A= MMAC-1
c
READ(T.85) (E\#ALC(I),I=1,NMAC)
8F FODMET(5E12.5)
E:{дC(NMас)-2.5E+g7
6E EEAD(6,11,END=111) DOM
11 FORMAT(AI).
GO TO 77
77 GEAD(6.,12) ZA, EWP,MnT1,MT1,MAT,MT
YIRITE(4,13)
13 FORMAT(';-------------------------------------*)
WPITE(S,12) ZA,AWR, NAT1,MT1,MRT,MT
12 EOpmat(2:1,2,5,㿟)
C
C**\&Hm= NOMBER OE ENERGT DOIMTS IN ENDE/B EILE *******
C
\square=AD(6,15) KE
1g EOREAT(I5)

```

```

C
C****** EMERGY STRUCTURE IN ENDE/B EILE *******
READ(5.,25) (E(I),I=1,NE)
MTM=NE-1
2g दорMAT(8E1ष.3)
C
C=***** COVARIANCE DATA IE EmDE/B FILE ********
DO SE I=1,NEM
READ(6, 2G) (COV(I,J),J=1,NEM)
3G WOITE(2,22) (COV(主,J),J=1,NEM)
K=1
I=1
DO 50 Ј=1园昭
EET\#N(J)=AMIN1(ECK), Eanc(I))

```

```

 TE(EETJN(J)/E\{C(I)-ET-g.gogeg) I=I+1.
    ```

```

 5日 *2PETN=J
    ```

```

C
C***x** ERINN IS TEE EINEST STRUCTUEE OE E AND FMAC ******.
FGITE(立,23) (ERTUG(I),I=1,NPEPJN)
28 FOPMAT(EE1G_3)
NDEM=NPETJN-1
ZK=1
DO 2\sigmaG K=1,NPE:-
LE=1

```

```

 DO 2ZG Iन1,NFEH ...
    ```

```

 CFINM(K,上)=\operatorname{cov(KK,LT!)}
 2Zg COnTtwos
 W2ITE(2,Z2) (CEISN(Z,L),L=1,MPES)
 22 EODMAT(BE!G.3)
 2gg CONTINUE
 CON
 DO EJ I=I, MixCC
 7a スーKく1
    ```

```

 6g NTMT(T)=K-1
 NGITE(2,1G) (NINT(I),I~1, M(MAC)
    ```


```

のG[だミ9も
g丁601:9も
9GGg1<10
0g[gI\&2g
Ggrai<3g
g@f0!<tg
GEGJI<5g
gGgJI!6!
GE5J1\&70
gGG\#I<8%
60501<cg
GリGGIEGG
GEgG151f
gGGG1526
๒リGGI53g
0|g!I5 56
EKGリI550
\#\#6GI56@

```

```

ggEG158E
ब6!g159g
0|GG!5%6
g@gg1510
ggggl520
GG%G1E30
๙%JGIE SD
G๓Gリ155@
gTg\1660
gggg1575
『もすG1E8g
6g%gI69g
0%%\1756
リøG氏1*15
ตgघ\1%2G
g%%g173G
Tggg17!0
g%%g175』
6GEg176a
g%gS177G
6GG9178g
06|%175G
9%日日180G
G\#GT1810

```

```

ロヒぁgIcスg
GGGIC3gC
\#g%alosac
99gaIg56 C
オตすGIC66
の日g曰i¢70
0¢%%158g
\&なgG!c9%

```

```

GTyG2%1%
gのなぁてあこも
85द5<6%%
G9%2g<g
す!Gもですこの
まますGこち6も
\pi504257g

```



```

DO OG I=1, matacz

```
DO OG I=1, matacz
1gg C:18C(I.J)=g.g
1gg C:18C(I.J)=g.g
    Gg CONTINGE
    Gg CONTINGE
        J=1
        J=1
        #O 11# K=1, MDEM
        #O 11# K=1, MDEM
        IF(K.IE.NINT(I)) GO TO 1IJ
        IF(K.IE.NINT(I)) GO TO 1IJ
        I=1
        I=1
        DO Lこ` I=1, NDEES
```

 DO Lこ` I=1, NDEES
    ```




```

 Cwnc(I,J)=C*{AC(I,U) чOE=CEEGN(K,工)
    ```
        Cwnc(I,J)=C*{AC(I,U) чOE=CEEGN(K,工)
        IF(L,EQ.NINT(I+1)) I=T+1
        IF(L,EQ.NINT(I+1)) I=T+1
    12G CONTIEUE
    12G CONTIEUE
        IE(K.EO.NINT(J+I)) J=J+1
        IE(K.EO.NINT(J+I)) J=J+1
    11g COSTINGE
    11g COSTINGE
        DO 3EG I=I, NHADC:1
        DO 3EG I=I, NHADC:1
        DO 31. J=1, NuMCC&
```

 DO 31. J=1, NuMCC&
    ```






```

 #g CONTTMUE
    ```
    #g CONTTMUE
        DO <g| I=1, N:1PC:自
        DO <g| I=1, N:1PC:自
        SDこV(I) =SQPT( C*IAC(I,I))*1gG.g
        SDこV(I) =SQPT( C*IAC(I,I))*1gG.g
        IDEV(I)=IFrX(SDEV(I)+G.5)
        IDEV(I)=IFrX(SDEV(I)+G.5)
        DO <IG I=I,NMAC:I
        DO <IG I=I,NMAC:I
        DO < < J J=1, NMRC:I
        DO < < J J=1, NMRC:I
        A(I,J)=SDEV(I)=SDEV(J)
        A(I,J)=SDEV(I)=SDEV(J)
        IE(A(I,J) EO.G.g) GO TO 2
        IE(A(I,J) EO.G.g) GO TO 2
        COR(I,J)=1.gत+G6\pmCMAC(I,J)/R(I,J)
        COR(I,J)=1.gत+G6\pmCMAC(I,J)/R(I,J)
        EO TO 3
        EO TO 3
        COR(I;J)=$.ar
        COR(I;J)=$.ar
        3 TCOR(I,J)=TETX(COR(I,J) +G_5)
        3 TCOR(I,J)=TETX(COR(I,J) +G_5)
<2g CONTIKGE
<2g CONTIKGE
&1E CONTINOE
&1E CONTINOE
    DO <II I=1,NMACCM
    DO <II I=1,NMACCM
    WRITE( &, <<5). IDEV(I)
    WRITE( &, <<5). IDEV(I)
    WRITE(&,st6) (ICOR(I,J),J=I,NO4BCN)
    WRITE(&,st6) (ICOR(I,J),J=I,NO4BCN)
    \leqslant11 CONTTHUE
    \leqslant11 CONTTHUE
    <s5 FORE{2T( 2GI5)
    <s5 FORE{2T( 2GI5)
    446 FOF:4дT( 3gTL)
    446 FOF:4дT( 3gTL)
        GO TO 66
        GO TO 66
    111 RENIND 4
    111 RENIND 4
        RETGRN
        RETGRN
        END
        END
            SJBFOUTINE SUSMC(NC)
            SJBFOUTINE SUSMC(NC)
        SUEROUTINE SUBMC(NC)
        SUEROUTINE SUBMC(NC)
        DIMEASION C(205),X(255)
        DIMEASION C(205),X(255)
        DO 10 I=I,NC
        DO 10 I=I,NC
        足直D(1,.15) ETV
        足直D(1,.15) ETV
    15 FOEMAT(#3K,III)
    15 FOEMAT(#3K,III)
        FEgD(1,3%) NCI
        FEgD(1,3%) NCI
    3G FGRMAT(55X,Il1)
    3G FGRMAT(55X,Il1)
        IE(NCI.EO.可) GO TO 1g
```

 IE(NCI.EO.可) GO TO 1g
    ```


```

 !g. EOPMAT(SEI1%!)
    ```
    !g. EOPMAT(SEI1%!)
    IG CONTINUE
    IG CONTINUE
        EETJPN
        EETJPN
        FND
```

 FND
    ```

ตgTT2T5g C

 ตตの日でです ตตGロズきも ตgrgzisg ตஏぁ日こ15 5

 आ与上ब218g ตอย日215ஏ チロロ6ス2ラ9 ตgygてス1g


 g5リg2z59 65ஏの226ぁ g5yevi27． घ！5g225 9656229g
 gஏgGZ

 ตตgの23 4 बgפ0235曰
 GEgG237ש 95062386

 ตตヒリスさ1す ตす๙52！2 リ๓9あさ GGE \(5<\leqslant \leqslant \sigma\) 5リリアス 〔5由ササリ2 6 6
 ぁたりの2 58 リต \(992 \div 90\) リ965259日
 9537252の日リすgて53g

 ตgโた256g ตありなく57日 ตgפ日Z586 ほ日gEて5cg घ曰すリス650上リリg2elg Gリオŋ2 2 す gGoGzs 2 5T5す2 5 －

 5ஏGすこ 76 5リजa2万8す 900025S5
 す！gबス719
 ตコロgス73日 6gGg27〕オ ஏgすこ275ஏ שதのロ276ロ リリตg277g ตย日ぁえ78の ตG』す279日
 ஏ๒ஏg2810 ศgGg282B

SUSPOUTINE SUSNI（NT）
SULROUTTNE SUBMI（NI）
 \(\stackrel{5}{4}\)

DIMENEION XR 32gஏ）

E！（1）＝1．E－E5
E1（2）＝2． \(2+g 7\)
PI（1，1）－g．g
E1（1，2）\(-6 . \pi\)
\(F I(2,1)=G . \pi\)
EI \((2,2)=9.9\)
ㄹํNTM 5
NITANI
3 NT＝NI－1
EEAD（1，1）ET，LR，NEO，NP
1 EOPMAT（22X，डIII）
WPITE（5，I）LT，LB，NPO，NP
IEGIB．EQ．1．OR．ES．EQ．21 EO TO 23
IE（IB－Eの＋5）GJ TO Z4
FRITE（2，27）
27 FORHATG：I LB NE． 1,2 OR 5i？ STOD
23 2ERD（1，1E）（E2（I），E2（I，I），I＝1，ND）

11 EORMAT（ GE13．5）

EO TO 333
\(2 \leqslant\) IS \(=\) IT
\(\mathrm{NT}=\mathrm{NDO}\)
\(\mathrm{ME} \mathrm{E}=\mathrm{NP}\)
NE \(=\mathrm{NT}-\mathrm{NE}\)

WRITE（5，11）（X（I），I＝1，MT）
DO \(32 I=1\) ，NE
\(E Z(I)=X(I)\)
CONTINUE
\(\mathbf{R}=\mathbf{L}\)
\(\mathrm{L}=1\)




IE（ERTJN（I）．GE．1．gegegs＋6T）GO TO S゙g NDETJN＝I
〔お NDETオN＝NPEINN＋1

51 FODMAT（8EIV．3）
DO 6Ш．．I＝1，NPEIUN－
6E EI（I）＝EETUN（I）
IE（NI．NE－5）GO TO• 3
NI＝NET
品的工思 5
DO 1IG I＝1，NPEIUN
DO 195 J＝1，NDEIJN

E1（T，T）\(=5\)
11g COSTIND：
15G NI＝NI－1

IE（土今．EO－5）GO TO O9

co TO 159
99 T．S＝T．T
\(\mathrm{NT}=\mathrm{NTO}\)
\(\mathrm{NF}=\mathrm{inT}-\mathrm{NE}\)

IE（LS．EQ．1）GO TO 77
DO 61 I＝I，NE
61 El（I） X （I）
MFMONE－I
\(J=N E\)

ตอร528この
ต \(9 \boxed{025: J ~}\)

 Eggaze ตตตต2389 ตตยg239ロ ตตยg2g๓g ตร9โ2919
 8リ902930日GEG29ड日 ตยリ5295g ตยすG2950 ตgg 297 9 5ย55298日 ตตஏ52g9
 ตตรปアต1g ตอgโ3 925

 ตg9g3e5g ตรฮฮ3ฮ6ฮ
 TgTg 986 ITge3geg
 รูgロア119 gボg 129 ตたたJ313
 65963159 घย9อ3169的祘 3179 ตのgg 189 ตฮgต319ย
 ตรตg32Iロ － 0 gis 229 8Gg9325日 コตตg \(2 \leq\) g ตตอย325 ต980325日 9ตตgア2Tg ตgges 28 g

 gegas？1g
 ต ต ตg？3 560๊3 3 5 ตสすリアコ5ロ
 6499337
 ตตตตミミรロ ตโ962 495 ต9ตa3
 ตโリอ3 ตg \(93 \leq \frac{4}{4}\)
 gTy
 T5G93 36 9าTร5！9g ตตยg 5ag ggogz 10
```

 DO 后 I=1,MEM
 DO E! IK=1,NEW
 J=~
 6\& EI(I,IN)=\(J)
6% CONTIRUE
GO TO 19g
77 DO 21 I=1,N己
2l El(I)=X(I)
M듀:\=NE-1
J-NE
pO 22 I=1,NEM
DO 1\& IK=I,NE:S
J=J+1
FI(I,T\Omega)=X(J)
EI(IK,I)=EI(I,IK)
CONTINGE
KE=1
DO 3\piat I=2,NP
\#FTJEE=G
NSJBE=NSUBE+I
KF-KE+1
IF(EETJN(KE)/El(I) .I't.g.gosegg) GO TO 31G
IMIM=T-1
KF要=立五-1
KHMTN=EE-NSJSH
KV=1
DO 32G J=Z,NP
NSUBV=g
NSUBV=NSUBV+1
KV=KV+1

```

```

 JMINM-T-1
 KV\=KV-1
 KVMIN*K\\NSGEV
 #O 345 IE=KEATN, KEM
 DO 35# IE\Sigma=KV:IIN; KVLI
 IF(LB.EQ.2) GO TOO 352
    ```

```

 GO TO 350
    ```

```

35\sigma COHTENGE
34g CONTINUE
3<g CONTINUE
3णG COHTIEUE
360 NED=NPETJN-I.
DO IGG F=1,NEP
I6G WRITE(2,18J) (FPIJN(I,J),T=1,NEM)
18G FORHRT(8EIG.3)
IE(NT-NE.G) GO TO 15E
WRITE(6,5) NNPミサNN
5 FOR\&42T(壬5)
WRITE(6,189) (EETUN(I),I=I,NE\#TGM)
DO 25G I=1,NEP
WRITE(S,IgG) (EETTM(I,J),J=I,MED)

```


```

 IR(B(T,J).LT.1.E-1G) EO TO 888
    ```

```

 GO TO osS
 888 EZ(I,J)ni.g
S59 EZ(I,J)-EC(I,J)
21g CONTINOE
<56 CONTINUE
DO 2l.1 I=1,NEP

```

```

211 CONTIEGUE
Z30 EORF!MT(IGE5.3)
RETURN
END

```

\section*{第III章 新しいドシメトリー手法の検討•調查}

\section*{III－1 フルーエンスモニター \({ }^{93} \mathrm{Nb}\left(\mathbf{n}, \mathbf{n}^{\prime}\right)^{93 \mathrm{~m}} \mathrm{Nb}\) の反応の研究現況}

\section*{1．緒言}
\({ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right){ }^{93 \mathrm{~m}} \mathrm{Nb}\) 反応を用いたドシメータは，半減期が約13年と長いので長期積算型モニ ターになるとと，又，しかもその中性子反応断面積の閾値が低く \(0.1 \sim 1 \mathrm{MeV}\) 領域の中性子にも感度を有している（ \({ }^{237} \mathrm{~Np}(\mathrm{n}\) ，f）断面積に似ているが，これより更に低エネルギーに感度を有す る。又 \({ }^{103} \mathrm{Rh}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{103 \mathrm{~m}} \mathrm{Rh}\) とは極めてよく似ている。但し Rh ードシメータの半減期は56分と極めて早い）という特長があるので，材料照射試験用ドシメータとして極めて望ましい性質を有 している。
但し，この Nb －ドシメータについては，見在，核データ（断面積，半減期など）がや ゝ不確定なとと，放射化量測定が 20 KeV の X 線計数になるので誤差が入り易いとと，特に Ta 不純物混入により生ずるX線が照射後，かなりの間 BG として効くことなどの難点を有しており，現在更にドシメータとして開発中のものという位置づけになり，その現状サーベイを行なった。

2．PTBにおける研究例（Cf -252 に対する平均断面積測定）
準備した \({ }^{93 \mathrm{~m}} \mathrm{Nb}\) 放射線計測器は図－1 の通りであり，高純度 Ge 検出器（直径 16.6 mm ，厚さ 5 mm ）の前に，コリメータをつけて，散乱線 1 が Geそ入るのを防ぎ且つ Ge の末端効果（Fig． 1のPath 2）を防ぐようにしている。測定データの例をFig． 2 に示した。又，との測定系の光電ピーク効率を各種標準線源で求めた結果をFig． 3 に示す。なお，用いた標準線源のうち \({ }^{57} \mathrm{Co}\) （ 14.4 KeV ）と \({ }^{241} \mathrm{Am}\) の \(\mathrm{X}_{\mathrm{L}}\) 線は他のデータと異なるような値を示したので同図から省いてある とのととである。又，空気謂， Be 窓及び Au 電極層での吸収補正及び Ge の K －X 線 Escape効果の補正を行なうとての効率は殆んど入射エネルギーに依らなくなる（GeがBlack detectoric なるから）ので，これをFig． 3 にplot してある。

この測定系の \(\mathrm{Nb}-\mathrm{KX}\) X線の測定効率について，Nb 䈹厚及び線源一検出器きょり d を変えた場合の変化についてFig． 4 と 5 に示した。ての結果，\({ }^{93 \mathrm{~m}} \mathrm{Nb}\) からのK—X 線放出確率は0．107土 0.003 と求められた。ての誤差の内訳は計数上の統計誤差 \(0.3 \%\) ，検出効率が \(2.5 \%\) ，標準 \({ }^{93} \mathrm{Nb}\) 線碩強度の誤差が \(1.3 \%\) である。
以上の準備の後，PTBの標準中性子源Cf－252（中性子発生量 \(2.3 \times 10^{8} \mathrm{n} / \mathrm{sec}\) ）により \({ }^{115} \mathrm{In}\left(\mathrm{n}, \mathrm{n}^{\prime}\right){ }^{115 \mathrm{~m}} \mathrm{I} \mathrm{n}\) 反応をモニターとして \({ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right){ }^{93 \mathrm{~m}} \mathrm{Nb}\) 反応の平均断面積を測定して いる。（照射量は 40 日で \(1.2 \times 10^{14} \mathrm{n} / \mathrm{cm}^{2}\) ）な杖， Nb の金属䈃は直径 10 mm ，厚さ \(28 \mu \mathrm{~m}\) で


Fig. 1 Detector arrangement in the standard geometry


Fig. 2 Pulse height spectrum of Nb Foil 5 obtained with the Ge detector after 80000 s .


Fig. 3 Corrected efficiency curve for the standard geometry


Fig. 4 Variation of the detection probability with the foil diameter d. Foil-detector distance 5 mm , detector diameter 16.6 mm . Numbered points referred to in the text.


Fig. 5 Variation of the detection probability with the foil-detector distance a. Foil diameter 10 mm , detector diameter 16.6 mm .


Fig. 6. Cross section for the activation of \({ }^{93} \mathrm{Nb}\) proposed by (1) Hegediis 19 and (2) Strohmaier et al. \({ }^{18}\). Averaging these cross sections over fission neutron spectra (see text) one obtains:
fission spectrum
\(\bar{\sigma}_{1}\)
\(\bar{\sigma}_{2}\)
\({ }^{235} \mathrm{~J}\)
\({ }^{252}\) Cf
97 mb
99 mb
162 mb

Table 1. Emission probabilities for \(93 \mathrm{Nb} \mathrm{m}_{\mathrm{K}}\)-radiation
\begin{tabular}{ll}
\(\mathrm{P}_{\mathrm{K}}\) & \(=0.107 \pm 0.003\) \\
\(\mathrm{P}_{\mathrm{K} \beta} / \mathrm{p}_{\mathrm{K} \alpha}\) & \(=0.195 \pm 0.001\) \\
\(\mathrm{P}_{\mathrm{K} \alpha}\) & \(=0.0892 \pm 0.0025\) \\
\(\mathrm{P}_{\mathrm{K} \beta}\) & \(=0.0174 \pm 0.0005\) \\
\end{tabular}

Table 2. Uncertainty determination for the cross section
\begin{tabular}{lc} 
Source of Uncertainty & \begin{tabular}{c} 
Rel.Std.Dev. \\
in \(\%\)
\end{tabular} \\
\hline Count rate of Foil 5 & 3.0 \\
Count rate of standard & 0.5 \\
Activity of standard & 1.3 \\
Sample-detector distance & 0.8 \\
Self-absorption & 3.3 \\
93 Nb half-life & 3.1 \\
Indium cross section & 2.5 \\
Indium activity & 2.5 \\
Syst. uncertainty of & 2.0 \\
flux determination at & \\
Nb foil position & 7.0 \\
\hline Total & \\
\hline
\end{tabular}

Table 3. Fission spectrum-averaged cross sections for \({ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\dagger}\right)^{9}{ }^{\mathbf{N b}}{ }^{\mathrm{m}}\)
\begin{tabular}{c} 
Reference \begin{tabular}{c} 
Cross Section \\
(mb)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llll} 
& & \\
Hegedüs & 1971 & 19 & \(155 \pm 55\) \\
Kobayashi & 1979 & 24 & \(164 \pm 12^{+}\) \\
Strohmaier & 1980 & 18 & \(158 \pm 16^{+}\) \\
Sakurai & 1981 & 25 & \(177 \pm 40\) \\
Present work & & \(149 \pm 10\)
\end{tabular}

\footnotetext{
+ Uncertainty does not include contributions from \(\lambda\) and \(\mathrm{p}_{\mathrm{K}}\).
}

ありTa 不純物は \(180 \mu \mathrm{~g} / \mathrm{g}\) 含まれているが熱及び熱外中性子かないので Ta の効果は無視でき るとしている。照射後 16.6 KeV の \(\mathrm{K}_{\alpha}-\mathrm{X}\) 線を計数し図4，5の補正を行なってReaction－Rate を求めた。なお，との \(28 \mu \mathrm{~m}\) の箔は \(0.1 \mu \mathrm{~m}\) の箔纪比べ self－absorption 補正が 1.32 だけ必要 であった。又，箔の直径効果を補正し点線源にすると補正 1.082 が必要であり，これらの補正後，標準 \({ }^{93 \mathrm{~m}} \mathrm{Nb}\) 線源との相対測定により生成 \({ }^{93 \mathrm{~m}} \mathrm{Nb}\) 量を定めている。

ことで decay 定数は \(\lambda=1.1861 \times 10^{-4} /\) day（半減期 16 年）を用い，Reaction－rate \(R=\) \(5.5 \times 10^{18} / \mathrm{sec}\) が求まり，とれをIn䈹で求めた中性子束 \(\Phi=3.7 \times 10^{7} \mathrm{n} / \mathrm{cm}^{2} \cdot \sec\) て割って，平均断面積 \(\bar{\sigma}=\kappa / \phi=149 \mathrm{mb}\) が求められた。この不確定性は，Table 2 に示した評価から，約 7 \(\%\)（1 \(1 \sigma\) ）と考えられている。

この平均断面積測定データを基に，従来2種類のかなり大きな相違のある微分断面積（Fig． 6参照）の検討を行なったところ，大きい方の値（ \(\bar{\sigma}_{2}\) ，Strohmaier の評価値）により近くなった。又，Cf－252に対する平均断面積について，他の文献値との比較を行なったものがTable 3であ り，誤差範囲内では，凡その一致を示している。以上が，PTBグループの研究データである。 （文献 W．G．Alberts et．al．，＂Measurements with the Niobium Neutron Fluence Detector at the PTB＂Proceedings of the Fourth ASTM－EURATOM Symposium on Reactor Dosimetry（NBS，1982），NUREG／CP－ 0029 Vol．1， p 433 （1982））

\section*{3．Tourwé（Mol）らの研究}

Tourwéらは \(\mathrm{Nb}-93 \mathrm{~m}\) の放射能計測につき検討している。 Nb 試料としては，従来，薄い箔 （ X －ray自己吸収の補正が必要）又は Nb deposit 法が用いられている。後者は Ta － 182 の不純物を減らすくとが出来，自己吸収補正あかなり少なくできる。depositされたNb 量は，Nb －95 又は Ta － 182 をトレーサにして定量される。
これに対しTouré らは，トレーサ不要の薄いNb－depositを作る方法を開発している。この方法は，
（1） Nb 箔又はワイヤを \(0.3 \sim 0.5 \mathrm{~m} \ell\) の HF （ \(49.1 \%\) ）と一緒に，ポリエ于容器に入れる。
（2）ゆっくりと \(\mathrm{HNO}_{3}(60 \%)\) を数滴入れると Nb が溶ける。このとき，硝酸系の煙が発生する。
（3）蒸留水を加えて \(2 \mathrm{~m} \ell\) 程度にする。この \(2 \mathrm{~m} \ell\) の値はそれ程厳密でなくてもよいし，
Activityに応じて決めればよい。
（4）これを蒸発を防ぐため口の小さいポリエチビンに入れる。
（5）この溶液中の Nb 襄度 C は
\[
\mathrm{C}=\mathrm{G} /(\mathrm{G} 2-\mathrm{G} 1)
\]

但し，GはNbの重量（1－15mg），G1は空ビンの重さ，G2はビンと溶波全体の重さである。
（6）このビンから溶液を数滴（Activity に応じ2－4滴）を口紙（直径 \(10-13 \mathrm{~mm}\) ，厚さ～8
\(\mathrm{mg} / \mathrm{cm}^{2}\) ）に落とす。
（7）プラスチィックでカバーした \(\mathrm{A} \ell\) 箔でとのロ紙ホールダーを作る。 HF により \(\mathrm{A} \ell\) が溶ける のを防ぐためプラスチックを使う。
（8）試料中の Nb 量は（G4－G3）\(\times \mathrm{C}\) である。但し，G3，G4 はロ紙へ落とす前と後のビン の重量である。
（9） \(1-2 \mathrm{hr}\) 乾燥し，薄いプラスチックをロ紙面に貼り，ロ紙が歪まない樣にする。以上の方法で約 \(300 \mu \mathrm{~g} / \mathrm{cm}^{2}\) の Nb －deposit が5枚程作られる。
以上の方法で作った Nb －thin depositにつき，各種自己吸収， Ta － 182 ， \(\mathrm{Nb}-95\) による妨害又， Nb が deposit の外側に多目に存在する効果などを評価し， Si （ Li ）検出器より 5 cm 離 して計数すれば \(1 \%\) 以下の correction であるととが分った。又，この試料作製について再現性 も \(1 \%\) 以下であり，20日間放置しても計数値に変化を示さなかったとしている。 Si （ Li ）検出器の効率較正は，前述のPTB で確立された方法を用いている。参考のために，標準線源につき表一 1 に示した。
以上の試料作製， \(\mathrm{Nb}-93 \mathrm{~m}\) 計数法を用いて，小型 PWR の BR－3炉（ 40.9 MWth ）の reflector部で 1.5 年照射し計数した。 \(\mathrm{Nb}-93 \mathrm{~m}\) の \(\mathrm{T}_{1 / 2}=16.4\) 年， \(\mathrm{P}_{\mathrm{x}}=0.116\)（ \(=\mathrm{Nb}-93 \mathrm{~m}\) の \(\mathrm{K}-\mathrm{X}\) 線放出等）の定数を用いた。同時に \(\mathrm{Fe}(\mathrm{n}, \mathrm{p})\) モニターを照射し，その比の形でデータ をまとめ表－2に示す。な枌，計算値は，Hegedüs（1971）の断面積を用い，3種のスペクト ル計算値（2次元除去年令掋散コード（23群，1965）， 1 次元 Sn 法（40群， 1977 及び 1979） により求めたもの）を平均して使用した。（とのスペクトルによる Nb －activity の差は \(7 \%\) 程度）。 Fe （ \(\mathrm{n}, \mathrm{p}\) ）についてはENDF／B－Nの断面積を使用したが，Fabry（IAEA208－ 1978，Vol．1，233）に示されている bias factor 0.967 を使用した。

High flux reactor BR－2（ 80 MWth ）のcore でも同じように実験した。（照射は3週間） このときのスペクトル計算は一次元 Sn 法（ 40 群）であり BR－3と同じコードである。表－3 で測定された放射能比の不確定性は約 \(7 \% ~(\mathrm{Nb}-93 \mathrm{~m}\) の計数 \(2 \%, \mathrm{Si}(\mathrm{Li})\) の較正 \(5 \%, \mathrm{~K}-\) X 線放出率 \(3 \%\) ，半減期 \(3 \%\) 以下，及び \(\mathrm{Fe}(\mathrm{n}, \mathrm{p})\) の放射能 \(3 \%\) ）と評価している。 \(\mathrm{C} / \mathrm{M}\) 比 が \(24-30 \%\) 異なっているが，てれはNb（ \(\mathrm{n}, \mathrm{n}^{\prime}\) ）断面樍の不確定性の上限でもある。Hegeduis のNb（ \(\mathrm{n}, \mathrm{n}^{\prime}\) ）断面積が少なすぎるのではないかということは，W．H．TaylorがSGHWR fuel channelで行なった実験にもあるのでとの点の検討が必要とまとめている。
（文献 H．Tourwé，N，Maene，＂Fast Neutron Fluence Measurements with the \(\mathrm{Nb}-93\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \mathrm{Nb}-93 \mathrm{~m}\) Reaction and the Application to long－term Irradiations＂EUR－6813 EN－FR（1980）Vol．II．，p 1245）

Table 1: Nuclear data used for the calibration of the \(\mathrm{Si}(\mathrm{Li})\) detector
\begin{tabular}{|c|c|l|c|}
\hline Isotope & Half-life & \multicolumn{1}{|c|}{\begin{tabular}{c} 
E \\
\((\mathrm{keV})\)
\end{tabular}} & \begin{tabular}{c} 
Emission probability \\
\((\%)\)
\end{tabular} \\
\hline Am-241 & 432 y. & \begin{tabular}{l}
\(13.76 / 13.94\) \\
\(15.9-18.6\) \\
\(20.1-22.2\) \\
26.35
\end{tabular} & \begin{tabular}{c}
13.2 \\
\end{tabular} \\
\hline Pd-103 & 16.96 d. & \begin{tabular}{l}
19.2 \\
\(20.07 / 20.2\) \\
22.7
\end{tabular} & \begin{tabular}{l}
4.9 \\
2.4
\end{tabular} \\
\hline Co-57 & 272 d. & 14.41 & 7.0 \\
\hline
\end{tabular}

Table 2: Comparison of measured and calculated reaction rates in BR3 and BR2
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Location} & \multicolumn{2}{|l|}{\(\mathrm{Nb}-93\left(\mathrm{n}, \mathrm{n}^{\prime}\right)\) reaction rate Fe-54(n,p) reaction rate} & \multirow[t]{2}{*}{C/M} \\
\hline & Calculated C & Measured M & \\
\hline BR3-reflector & 1.33 & \(1.89 \pm 0.13\) & \(0.70 \pm 0.05\). \\
\hline BR2-core & 1.71 & \(2.25 \pm 0.16\) & \(0.76 \pm 0.05\) \\
\hline
\end{tabular}

4． \(\mathrm{EBR}-\) II \(\mathrm{C} \mathrm{BR}-2\) でのNbドシメトリー相互比較
参加機関を表－1に示した。 \(\mathrm{BR}-2\) での Nb 箔は \(20 \mu \mathrm{~m}\) 以下で \(4 \mathrm{ppm} \sim 586 \mathrm{ppm}\) の Ta 不純物を含んでいる。又 \(\mathrm{EBR}-\mathbb{I}\) での Nb 箔も \(20 \mu \mathrm{~m}\) 以下にしたが，これらはすべて照射中に破損 した。そしてPowder 状の香のが回収されたのでてれを対象にした。（なお照射量は5．1×10～
 れはなかった。）

Nb 量の重さの測定結果について表 -2 に示す。計数は殆んどが Si （Li）検出器で \(\mathrm{K}_{\alpha}\) と \(\mathrm{K}_{\beta}\) の ピークを加える方式であった。但しP4は高純度 Ge（低エネルギー用）を，P2はSi（Li）以外 に液体シンチを用いた。又，P6は \(\mathrm{K}_{\alpha}\) と \(\mathrm{K}_{\beta}\) を分けて計数した。計数用試料作製は， HF 及び \(\mathrm{HNO}_{3}\) K溶かす方法が使われた。とれを表一 3 にまとめた。又， \(\mathrm{Si}(\mathrm{Li})\) 検出器の較正用標準線源を表－4にまとめた。なお，P2は液シンで決めた \(\mathrm{Nb}-93 \mathrm{~m}\) depositを用いて Si （Li）で の計数を行ない，P3はMTR型炉内で作ったStandard Fluence Sourceを用いて1MeV以上 \(\sigma\) fission equivalent fluence の形で求めている。

蛍光効率を考慮したKX 線放出率を表－5に，そしてActirity 結果をまとめて表－6に示し た。又，すべての機関が共通に測っているBR2ノ－15のデータで各機関の値を規格化した尚のが表－7であり，これには各機関固有のSystematic error は除かれている。この様にすると約2 \％以内で一致することが分る。各機関で行なった不確定性解析結果を表 -8 に示す。 \(\mathrm{Si}(\mathrm{Li})\) 検出器の効率決定が最あ不確定であると上が分る。

以上の比較結果より分ることとして述べているのは
（1）照射 Nb を HF と \(\mathrm{HNO}_{3}\) で溶かす方法はかなり普及しているとと。
（2）その際にNbの容量はpycnometer 法がよいてと。
（3）Foil 計数法は low Taの pure Nb で蛍光効率について correctrin factorがよく調べられ ている時のみ信用できる。
（4） \(\mathrm{Nb}-93 \mathrm{~m}\) Activity error は殆んど \(\mathrm{Si}(\mathrm{Li})\) 検出器の効率較正用のSourceの不確定性に依っている。
（5）この相互比較でのReaction－rate の精度は約 \(2.5 \%\) であり，routine Nb dosimetryでも Activity \(4 \%\) Reaction rate \(6 \%\) 精度は実現可能であるとまとめている。
（文献，H．Tourwe＇et．al．，＂Niobium Dosimetry Inter－comparison in the EBR II and BR \(2^{\prime \prime}\) ，NUREG \(/\) CP 0029，Vol．1，p 401 （1982））

Table 1. Reaction rate and/or activity measurements were performed by seven different laboratories:
- Atomic Energy Establishment, Winfrith, United Kingdom
- Central Bureau for Nuclear Measurements, Geel, Belgium
- Centre d'Etudes Nucléaires, Grenoble, France
- Energieonderzoek Centrum, Petten, Nederland
- GKSS Forschungszentrum, Geesthacht, Germany
- Kraftwerk Union, Erlangen, Germany
- Studiecentrum voor Kernenergie, Mol, Belgium

TABLE 2. GEIGRT VERIFICATION OF THE NG DOSIMETERS


TABLE 3. CHARACTERIBTICS OF THE THIN BOURCE DEPOBITS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & SOURGE THICKHESS & NOHBER OF DEPOSITS PER DOSITETER & BACK IRC & FROMT COVER & GEIGHP DETEBAIMATIOH & UACEATATHTY OH DEPOSIT HEIOHT (2) \\
\hline 91 & HAX. \(60 \mu \mathrm{~B} \mathrm{ca}\) & 2 & COPPBR & ADHESIVE POLYETHYLEAE FILH & PYCNOHETER METHOD (1) & \(0.5 \$\) \\
\hline P2 & & 3 & VYNS COATED GLASS DIBCS & & PYCNONETYR METHOD (1) & 0.03 \$ \\
\hline P5 & Hax. 950 нg cm \({ }^{-2}\) & 2-5 & GLABS & PLASTIC FOIL & \({ }^{94} \mathrm{Mb}\) aCTIVITY MEASURSMENT OH Ge(Li) & 1.5 \% \\
\hline P6 & max. \(30 \mu \mathrm{~B}\) & 12 & & & PIPET & 0.7 \% \\
\hline P7 & MAX. 70 \#g cm \({ }^{-2}\) & \(5-10\) & ALDAINIUA & PLASTIC & PYCNOAETEE METHOD ( \(\dagger\) ) & 0.6 \% \\
\hline
\end{tabular}
(1) PYCHOMETER METHOD : THE PYCNOMETER IS GEIGHTED OR A HTCROZALANCE BETORB AND AFTER TEE DRORS
(2) THE LARGEST EMCOUNTERED ONCEHTAIHTY IS quOTED

TABLE 4. Si(Li) DETECTOR CALIBRATION
\begin{tabular}{|c|c|c|c|}
\hline PARTICIPANT & \begin{tabular}{l}
IsOTOPE \\
(१)
\end{tabular} & \begin{tabular}{l}
RadIation entrgy \\
(EMISBION PROBABILITI IN \%)
\end{tabular} & cal Ibration UNCERTA INTY (10) \\
\hline P1 & \[
A=-249 \text { (DE) }
\]
\[
C d-109 \text { (DE) }
\] & \[
\begin{aligned}
& 17.9(.86 \pm .03) ; 13.9(13.2 \pm .35) ; \\
& 17.8(19.25 \pm .6) ; 20.8(4.85 \pm .2) ; \\
& 26.35(2.4 \pm .1) \\
& 22.1(84.4 \pm 3.0) ; 25.0(17.8 \pm .7)
\end{aligned}
\] & \(3 \%\) \\
\hline P2 & Nb-93m ( DE ) & 16.6 + 18.6 (not applicable) & 1\% \\
\hline P3 & \[
\begin{aligned}
& \mathrm{Nb}-93 \mathrm{~m} \text { (P) } \\
& \mathrm{Nb}-93 \mathrm{~m} \text { (RF) }
\end{aligned}
\] & \[
\begin{aligned}
& 16.6+18.6(11.6) \\
& 16.6 \text { (not applicable) }
\end{aligned}
\] & \\
\hline P4 & \[
\begin{aligned}
& A m-241(P) \\
& \text { Co-57 (F) }
\end{aligned}
\] & \[
\begin{aligned}
& 26.35(2.40 \pm .05) \\
& 14.41(9.54 \pm-13)
\end{aligned}
\] & \(3 \%\) \\
\hline P5 & \[
\begin{aligned}
& \mathrm{Nb}-93 \mathrm{~m} \text { (DI) } \\
& \mathrm{Y}-88 \text { (DE) }
\end{aligned}
\] & \[
\begin{aligned}
& 16.6+18.6(12.0) \\
& 14.14+15.86(61.6)
\end{aligned}
\] & 28 \\
\hline P6 & \[
\begin{aligned}
& \mathrm{Br}-85(\mathrm{DE}) ; ~ \\
& \mathrm{Co}-57(\mathrm{DE}) ; \mathrm{Ho}(\mathrm{DE}) \\
& \mathrm{Bh}-103 \mathrm{DE}(\mathrm{DE})
\end{aligned}
\] & & \(5 \%\) \\
\hline P7 & \[
A w-241 \text { (P) }
\]
Co-57 (P) & \[
\begin{aligned}
& 13.76-13.94(43.2 \pm .3) ; 15.9-18.6(19.2 \pm .4) \\
& 20.1-22.2(4.9 \pm .2) ; 26.35(2.40 \pm .05) \\
& 14.42(9.54 \pm .13)
\end{aligned}
\] & \(5 \%\) \\
\hline
\end{tabular}
(1) DE = DEPOSITS; \(P=\) haterial betaren polyethyleat foils; di \(=\) disce;
mf e reference fluence sotrce

TABLE 5. DECAY SCHEME PARAMETERS OF Nb-93m
\begin{tabular}{|c|c|cc|}
\hline PARTICIPANT & \begin{tabular}{c} 
Nb-93п HALF-LIFE \\
(TEAR)
\end{tabular} & Nb X-RAY EMISSION PROBABILITY \\
\hline P1 & \(15.9 \pm 0.6\) & \(\mathrm{~K}(\mathrm{X})\) & \(0.116 \pm 0.004\) \\
P2 & \(16.0 \pm 0.5\) & \(\mathrm{~K}(\mathrm{X})\) & \(0.116 \pm 0.004\) \\
P3 & \(16.4 \pm 0.4\) & \(\mathrm{~K}(\mathrm{X})\) & \(0.188 \pm 0.002\) \\
P4 & \(16.4 \pm 0.4\) & \(\mathrm{~K}(\mathrm{X})\) & \(0.116 \pm 0.004\) \\
P5 & 15.0 & \(\mathrm{~K}(\mathrm{X})\) & \(0.116 \pm 0.004\) \\
P6 & \(13.6 \pm 0.3\) & \(\mathrm{~K}_{\alpha}\) & 0.12 \\
P7 & \(16.4 \pm 0.4\) & \(\mathrm{~K}(\mathrm{X})\) & \((0.116 \pm 0.004) \times(0.841 \pm 0.002)\) \\
\hline
\end{tabular}

TABLE 6. \({ }^{93 \mathrm{~m}_{\mathrm{Nb}}}\) ACTIVITIES ( \(\mathrm{Bq} \mathrm{g}^{-1}\), END OF IRRADIATION)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline REACTOR & \begin{tabular}{l}
LEVEL \\
(ca)
\end{tabular} & ABE Uinfrith & \[
\begin{aligned}
& \text { CBMA } \\
& \text { Geol }
\end{aligned}
\] & \[
\begin{gathered}
\text { CEN } \\
\text { Grenoble }
\end{gathered}
\] & \[
\begin{gathered}
\text { ECN } \\
\text { Petton }
\end{gathered}
\] & \[
\begin{gathered}
\text { OKBS } \\
\text { Geosthecht }
\end{gathered}
\] & \[
\begin{gathered}
\text { K甘d } \\
\text { Erlangen }
\end{gathered}
\] & \[
\begin{gathered}
\text { SCK/CEN } \\
\text { Hol }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
EBR II \\
EBR II \\
EBR 11
\end{tabular} & \[
\begin{gathered}
0 \\
-1.2 \\
-37.8
\end{gathered}
\] & \(\begin{array}{lll}2.89 & 10^{9} \\ 2.48 & 10\end{array}\) & \(\begin{array}{lll}3.01 & 10 \\ 2.67 & 10\end{array}\) & & & \(2.9210^{9}\) & \(3.26 \quad 109\) & \[
\begin{array}{ll}
2.89 & 10^{9} \\
2.88 & 10^{9} \\
2.57 & 10^{8}
\end{array}
\] \\
\hline BR2
BR2
BR2 & +5
-5
-15 & \[
\begin{array}{cc}
7.77 & 10^{8} \\
7.45 & 10^{8}
\end{array}
\] & \[
\begin{aligned}
& 7.86 \quad 10^{8} \\
& 7.70 \quad 10^{8}
\end{aligned}
\] & \[
\begin{aligned}
& 7.8510^{8} \\
& 7.9910^{8} \\
& 7.54 \\
& 10^{8}
\end{aligned}
\] & \[
\left.\begin{aligned}
& 8.1610^{8} \\
& 8.21 \\
& 10^{8} \\
& 8.03 \\
& 10^{8}
\end{aligned} \right\rvert\,
\] & \[
\begin{aligned}
& 8.1510^{8} \\
& 7.54 \quad 10^{8}
\end{aligned}
\] & \[
\begin{aligned}
& 8.44 \quad 10^{8} \\
& 8.38 \quad 10^{8}
\end{aligned}
\] & \[
\begin{array}{ll}
7.84 & 10^{8} \\
7.90 & 10^{8} \\
7.65 & 10^{8}
\end{array}
\] \\
\hline
\end{tabular}

TABLE 7. "BEST" ACTIVITIES OF THE DIFFERENT EBR II AND BR2 SAMPLES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{REACTOR} & \multirow[b]{2}{*}{LEVEL
(ca)} & \multicolumn{9}{|c|}{activity relative to that of sample bre/-15} & \multirow[t]{2}{*}{ACTIVITI OT Thi SAMPLES OH TES BASIB AGT. BR2/-15
\[
7.76 \quad 10^{8} \mathrm{~Bq} \mathrm{~g}{ }^{-1}
\]} & \multirow[t]{2}{*}{OVERALE UNCERTAIATI} \\
\hline & & \[
\begin{gathered}
\text { ABF: } \\
\text { Hinfrith }
\end{gathered}
\] & CBent & \[
\begin{gathered}
\text { CEAR } \\
\text { Grenoble }
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
\text { ECA } \\
\text { Potten }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { GESS } \\
\text { Goesthacht }
\end{gathered}
\] & \[
\begin{gathered}
\text { KwJ } \\
\text { Erlangen }
\end{gathered}
\] & \[
\left|\begin{array}{c}
\mathrm{BCK} / \mathrm{CEN} \\
\mathrm{Hol}
\end{array}\right|
\] & HEAA & UNCERTAIMTY (1) & & \\
\hline \[
\begin{array}{ll}
\text { EBR II } \\
\text { EBR II } \\
\text { EBR II }
\end{array}
\] & 0
-1.2
-37.8 & & & & & 3.87 & 3.89 & \[
\begin{aligned}
& 3.78 \\
& 3.76 \\
& 0.336
\end{aligned}
\] & 3.85
3.85
0.339 & 0.9 \$
\(1.2 \$\)
1.3 \% & \[
\begin{array}{ll}
2.99 & 10^{9} \\
2.99 \quad 10^{9} \\
2.63 \quad 10^{8}
\end{array}
\] & \[
\begin{aligned}
& 4.8 \mathrm{z} \\
& 2.0 \% \\
& 2.1 \mathrm{~g}
\end{aligned}
\] \\
\hline BR2
BR2
日R2 & +5
-5
-15 & 1.04
1.00 & 1.02
1.00 & 1.04
1.06
1.00 & 1.02
1.02
1.00 & 1.08
1.00 & 1.04
1.00 & 1.02
1.03
1.00 & 1.03
4.04
1.00 & \(1.0 \$ 8\)
\(0.8 \$ 8\) & \[
\begin{aligned}
& 7.9910^{8} \\
& 8.07 \\
& 10^{8} \\
& 7.76 \quad 10^{8}
\end{aligned}
\] & 1.9 g
1.8 s
\(1.6 \mathrm{\$}\) \\
\hline
\end{tabular}
(1) uncratainty =
\(\sqrt{\frac{\Sigma\left(x_{1}-\mu\right)^{2}}{n(n-1)}}\)

TABLE 8. UNCERTAINTIES IN \% THAT CONTRIBUTE TO THE TOTAL UNCERTAINTY ON THE Nb-93m ACTIVITY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TIPE (1) & P1 & P2 & P5 & P6 & P7 & achitvable accuracies at PRESENT FOR Gi (Li) MEASUREHENTS \\
\hline WEIGHT OF THE DOSTHETER (R) & & 0.03 & 0.3 & 0.6 & 0.5 & 0.5 \\
\hline HEIOHT OF THE DEPOSIT (R) & 0.5 & 0.03 & 1.5 & 0.7 & 0.6 & 0.6 \\
\hline STATISTICAL (R) & 0.5 & 0.2 & 0.2 & 0.9 & 0.5 & 0.5 \\
\hline Nb X-RAY absorption in depobit, FILTER PAPER, ... & 0.1 & REGL. & 0.5 & & 0.1 & 0.1 \\
\hline CALIERATIOH OF COUNTINA DEVICE (S) & 3 & 1 & 2 & 5 & 5 & 3 \\
\hline GEOMETRY CORRECTION (S) & & Hecil. & & & 0.2 & 0.2 \\
\hline FLUORESCENCE (S) & NELL. & NEGL. & 0.2 & & 0.1 & 0.1 \\
\hline [LYQUID SCINTILLATION (S)] & & [1] & & & & \\
\hline
\end{tabular}
(1) \(\mathrm{f}:\) RaNDOM g : SYStEhatic


Fig. 1 Comparison of the measured \(\mathrm{Nb}-93 \mathrm{~m}\) activities.

\section*{5．国内での研究など}

PTBのFission－spectrum Averaged Cross－sectionの参考値に引用されている様に，国内にても小林（KUR），桜井（JAERI）らが，この \({ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)\) 反応のドシメータとしての研究を行なっている。ことでは，主として，桜井の仕事を報告する。
まず Nb－wire（ 0.020 中，純度 \(99.833 \%\) ，Reactor Experiments 社より購入）の不純物り ストを表－1 そ示す。とのNb－wire 1.6 mg と鉄ドシメータ～1 mgをJMTRのJ－12孔で3サ イクル照射し，412日 coolingして， \(110 \mathrm{~cm}^{3}\) の \(\mathrm{Ge}(\mathrm{Li})\) で計数したデータを図－1に示す。

Mylar 膜上にての Nb －wireを栝き， HF と \(\mathrm{HNO}_{3}\) を数滴落下して溶かしたものを \(200 \mathrm{~mm}^{2}\) \(\times 7 \mathrm{~mm}\) の高純度 Ge 検出器で計ったデータを図一2に示す。これにより，Ta の不純物がやゝ影響するが \(\mathrm{Nb}-93 \mathrm{~m}\) 計数が出来るとしている。なお，半減期及び分岐率等はTable of Isotopes
（7版，1978）の値， \(\mathrm{T}_{\mathrm{y}_{2}}=13.6\) 年， \(\mathrm{P}_{\mathrm{KX}}=0.116\) を用いている。
この測定結果を基に，Hegeduis の断面積（図－3）を用いて，積分中性子束を求めたのが表 -2 である。なお，Hegeduis は \(\mathrm{T}_{\mathrm{y}_{2}}=11.4\) 年， \(\mathrm{P}_{\mathrm{KX}}=0.122\) の値を用いて断面積を求めているの で，今回
\[
\sigma=\frac{13.6}{0.116} \times \frac{0.122}{11.4} \sigma \text { (Hegedüs) }=1.25 \sigma \text { (Hegeduis) }
\]

と 1.25 倍して用いている。又，とのとき， \(\mathrm{E}_{\mathrm{th}}=0.1 \mathrm{MeV}, \sigma_{\text {eff }}=75.2 \mathrm{mb}\) になり， \(\mathrm{E}_{\mathrm{th}}=0.18\) \(\mathrm{MeV}, ~ \sigma_{\text {eff }}=84.7 \mathrm{mb}\) になった。（但し，JMTR のspectrumに対して）
表一2より，Nbドシメータより求めた積分中性子束は，Feドシメータに比べ \(23 \%\) 程大きい， つまり Hegedus の断面積は約 \(20 \%\) 少なすぎるのではないかとも考えられるが最終的には， \(\mathrm{T}_{1 / 2}\) ， \(\mathrm{P}_{\mathrm{KX}}\) ，\(\sigma\) の誤差などを考えて積分中性子束は約 \(30 \%\) の精度だから両者は誤差範囲内で一致して いるとまとめている。
（文献，K．Sakurai，＂Measurement of Nentron Fluence Above 0.1 MeV with the Dosimeter \({ }^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right){ }^{93 \mathrm{~m}} \mathrm{Nb}\)＂，Nuclear Technology Vol．57，p 436 （1982））


Fig. 1. Gamma-ray spectrum of \({ }^{182} \mathrm{Ta}\) in the niobium dosimeter after 412 days of cooling time


Fig. 2. The \(K X\)-ray spectrum of \({ }^{93 m^{N b}}\) after 415 days cooling time

TABLE I
Impurities of Niobium Wire*
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Impurity } & \begin{tabular}{c} 
Weight \\
Percent
\end{tabular} & Impurity & \begin{tabular}{c} 
Weight \\
Percent
\end{tabular} \\
\hline Carbon & 0.001 & Manganese & 0.005 \\
Oxygen & 0.003 & Calcium & 0.001 \\
Nitrogen & 0.006 & Aluminum & 0.001 \\
Hydrogen & 0.0005 & Copper & 0.001 \\
Tantalum & 0.045 & Tin & 0.001 \\
Tungsten & 0.010 & Chromium & 0.005 \\
Zirconium & 0.020 & Vanadium & 0.010 \\
Molybdenum & 0.010 & Cobalt & 0.002 \\
Titanium & 0.010 & Hafnium & 0.010 \\
Iron & 0.005 & Cadmium & 0.005 \\
Nickel & 0.005 & Lead & 0.005 \\
Silicon & 0.005 & & \\
\hline
\end{tabular}

TABLE II
Neutron Fluence Above 0.1 and 0.183 MeV Monitored with the Dosimeters \({ }^{93} \mathrm{Nb}\left(n, n^{\prime}\right){ }^{93 m} \mathrm{Nb}\) and \({ }^{54} \mathrm{Fe}(n, p)^{54} \mathrm{Mn}\), and Neutron Fluence Above 0.183 MeV

Calculated for JMTR Core
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Method } & \begin{tabular}{c}
\(>0.183 \mathrm{MeV}\) \\
\(\left(\mathrm{n} / \mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{c}
\(>0.1 \mathrm{MeV}\) \\
\(\left(\mathrm{n} / \mathrm{cm}^{2}\right)\)
\end{tabular} \\
\hline JMTR calculation & \(2.21 \times 10^{20}\) & --- \\
\({ }^{54} \mathrm{Fe}(n, p)^{54} \mathrm{Mn}\) & \(2.12 \times 10^{20}\) & \(2.46 \times 10^{20}\) \\
\({ }^{93} \mathrm{Nb}\left(n, n^{\prime}\right)^{93 m} \mathrm{Nb}\) & \(2.61 \times 10^{20}\) & \(3.03 \times 10^{20}\) \\
\hline
\end{tabular}


Fig. \(3 \mathrm{~A}^{93} \mathrm{Nb}\left(\mathrm{n}, \mathrm{n}^{1}\right)^{9{ }^{3 m} \mathrm{Nb}}\) cross-section curve determined by Hegedüs (Ref. 7).

\section*{III－2 Damage－monitor の研究調査}

現在，原子炬構造材の照射健全性評価を目的とした原子炬サーベイランス試験では，炉内線量評価に関し，放射化箔，ワイヤを使用するRadiometric－method（RM），固体飛跡検出器 （SSTR），ヘリウムの生成量から評価する Helium—Accumulation－Fluence－Monitor （HAFM）の 3 種類の方法による実験的評価を実施，検討している。とれらの実験から得られ る全中性子束及び \(1 \mathrm{MeV以上の}\) 積分中性子束が，構造材の中性子照射効果を評価する上での指標 として用いられている。しかし，近年，材料の中性子照射効果の相関指標として，中性子スペク トルの効果も含めた形で評侕可能であるdpa（displacement per atom）の採用が重要視され てきている。そとで現在，原子炉圧力容器村の中性子損傷評価のため，鉄のdpaモニターとして種々のDamage－monitor が開発されている。とのDamage－monitor は，従来のRM， SSTR，HAFMに比ベ，中性子エネルギー領域約 \(0.01 \sim 0.5 \mathrm{MeV}\) の中速領域に感度をもつため， フルエンス・モニターとしても有効であるという特徵をもつ。このDamage－monitor の候補と しては，Quartz，Sapphire，Tungsten，Graphite，Si－diode 等が挙げられているが，ま だ，照射中における欠陥のアニーリング，温度倲存性等の種々の不明な点が残されており，理論的，実験的研究が，今進められているというのか現状である。

本研究では，このDamage－monitorの候補として挙げられているもののうち，Sapphireに ついて調査したので報告する。

一般的に，高速中性子の照射により受ける材料の最終的損傷段階とは次に述べるような因子に より支配される。

1．中性子エネルギースペクトル
2．中性子フルエンス
3．照射温度
4．材料の化学的成分
5．中性子線量率
dpa 測定検出器として今回とりあげたSapphire（single crystal \(\alpha-A \ell_{2} \mathrm{O}_{3}\) ）は以下で述べ る様に，物理的，化学的性質の点から適していると考えられる。

Sapphire は適当な価格で高純度のものが得られる。さらに非常に硬く（ダイアモンドを10と した場合，モール・スケールで硬さ9），機械的にも強く，䢃開面がない。摩いた表面は真哇中 での加熱， \(1500^{\circ} \mathrm{C}\) までの温度で大気中での酸化，還元に影響を受けないため，化学的性質変化 はほとんどない。アルミニゥム，酸素は中性子照射に対しては安定した元素である。又，炬内中性子に対しての捕獲断面積が非常に小さく，試験片は \(10^{20} \mathrm{n} / \mathrm{cm}^{2}\) までの数日間の照射であれで，手によっても安全に扱う事が可能である。この様な点からも原子炉内の苛酷な環境下における検出器としては理想的材料であると考えられる。

Sapphire の放射線損傷の挙動には特筆すべき点がある。DoranとGraves によれば，鉄とア ルミニゥムはよく似たdpa 断面積（Fig．3－3－1）をもつ。そして，はじき出し損傷により生成 される欠陥のほとんどは，適温では動かないという事実が明らかにされている。又，カラー・セ ンターを引き起てす放射線の等時アニーリングは，ほとんどのセンターがFーセンターを除けば \(250^{\circ} \mathrm{C}\) 以下では安定である。 \(\mathrm{A} \ell\) の vacancy－center（ V －center）はより安定で， \(400^{\circ} \mathrm{C}\) 以上 に達するまでアニールは始まらず， \(1100^{\circ} \mathrm{C}\) で完全にアニールか終了する。さらに 1 dpa 以下の damage doseに対しては，点欠陥は \(500^{\circ} \mathrm{C}\) 以下では集合しないという事実が，電子顕微鏡での観察結果より得られている。

続いて Damage－monitor の測定技術について述べる。アルミニウムの vacancy あるいは interstitial の存在を検出する方法としてはいくつかのものがある。そのうちの1つとして，X線による格子バラメータ測定がある。てれは，酸化物あるいは高純度サファイアの場合の放射線損傷で広く用いられている。てれは， \(10^{17} \mathrm{n} / \mathrm{cm}^{2}\) 以上の照射での放射線損傷で高精度測定が可能 である。但し，ての測定法は， \(200^{\circ} \mathrm{C}\) 以上の温度に対し，非常に敏感である酸素の sublatticeの変化化击影響されるという欠点がある。

次に本研究で調查したOptical spectroscopyについて述べる。これはアルミニウムか数種類 の V－centerを持っており， 1 つの broad absorption band（ V －band）でオーバーラップし，集まっているV－centerを検出するあのである。とれは，摩いたSapphire blockの optical absorption spectraをCary 14 dual beamのspectrophotometer により測定する。 1 例と して，後述するPells 他が行なった実験結果の optical absorption spectraをFig．3－3－2 に示す。横軸は波長で㮆軸はoptical density \(\log _{10}\)（ \(\mathrm{I}_{\mathrm{o}} / \mathrm{I}\) ）である。 \(\mathrm{I}_{\mathrm{o}}\) は入射光強度， I が測定光強度である。試験片は中性子照射後，ステンレス缶からとり出され，吸収スペクトルの再測定の前に optical equilibriumに達するまで，2～3週間日光にさらしておく。又，カラーセン ターが飽和するように，約 1 Mrad の X 線照射を行なう。
次に，Harwellの Pells 他が行なった Sapphire damage－monitor の実験について説明す る。とれは， \(2 \times 3 \times 10 \mathrm{~mm}\) の直方体ブロックSapphireをアルミニウム・ホイルでつつみ，ステ ンレス缶に封入し，HERALD Swimming Pool Reactor 及びORNLのPool－Side－

Facility（PSF）で \(3 \times 10^{16} \sim 2 \times 10^{19} \mathrm{n} / \mathrm{cm}^{2}(>1 \mathrm{MeV})\) の照射実験である。照射温度は \(60^{\circ} \mathrm{C}\) ， \(250^{\circ} \mathrm{C}\) ，及び \(290^{\circ} \mathrm{C}\) である。Fig． \(3-3-2\) に \(250^{\circ} \mathrm{C}\) で照射されたSapphire の吸収スペクトルを示す。又，Fig．3－3－3に高速中性子フルエンスの関数として，X線照射を行なったものと行な わない試験片の 600 nm での optical densityを示す。Fig．3－3－4にはPSF での実験結果を示 す。Fig．3－3－3 の結果は，同じゅ性子スペクトル場における李ので，Fig．3－3－4の結果は，達ったスペクトル場による結果である。両者の結果から，responseはnon－linearである事が わかる。Fig．3－3－5には，dpa を指標として用いた場合の結果を示す。Fig．3－3－3 におね るデータのばらつきの原因としては，中性子線量測定によるものとアルミニウムのV—centerの

フェーディングによる光学的測定のあのが考えられる。
Optical spectroscopy の精度について述べる。 spectrophotometerの精度及び再現性は， \(10^{17} \mathrm{n} / \mathrm{cm}^{2}\) の中性子線量に対し，\(\sim 5 \%, ~ 10^{19} \mathrm{n} / \mathrm{cm}\) でく \(1 \%\) である。又，optical absorption value は，試験片の厚さの誤差に比例する。もしってのoptical measurementのみが僙差を支配するとすれば，てのsapphire damage－monitor は， \(2 \times 10^{19} \mathrm{n} / \mathrm{cm}^{2}\) で士 \(1.5 \%, 10^{17} \mathrm{n} / \mathrm{cm}^{2}\) で土4．5 \％の精度が得られる。又，optical pass lengthを 2 mm から 10 mm な増すと， \(10^{17} \mathrm{n}\) \(/ \mathrm{cm}^{2}\) 以上の中性子線量では \(1 \%\) 以下になると予想される。

結論として，以上述べてきた事より，SapphireのDamage－Monitorとしての特性は，軽水炬のサーベイランス試験には，適用可能である事がわかる。今後，照射温度 \(400^{\circ} \mathrm{C}\) 以上での試験 を行ない，高速炉サーベイランス用のDamage－Monitorとしての特性評価が必要であると考え る。


Fig. 3-3-1 DISPLACEMENT DAMAGE CROSS SECTIONS FOR IRON AND ALUMINIUM IN \(\alpha\)-ALUMINA (DORAN AND GRAVES)


Fig. 3-3-2 OPTICAL DENSITY/WAVELENGTH FOR AN IRRADIATED SAPPHIRE SPECIMEN


Fig. 3-3-3 Neutron fluence \(\left(E_{n}>1 \mathrm{MeV}\right)\left(n / \mathrm{cm}^{2}\right)\)


Fig. 3-3-4 Neutron fluence \(\left(E_{n}>1 \mathrm{MeV}\right)\left(\mathrm{n} / \mathrm{cm}^{2}\right)\)


Fig. 3-3-5 OPTICAL DENSITY/DISPLACEMENTS PER ATOM IN SAPPHIRE

\section*{II－3 末とめ及び今後の課題}
\(\mathrm{Nb}-93\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \mathrm{Nb}-93 \mathrm{~m}\) ドシメータの現状及びサファイヤを用いた Damage－Monitor に ついて調査した結果，
（1） Nb －ドシメータについては，常陽自身を用いて実用化のための研究を行ない，特に HF＋ \(\mathrm{HNO}_{3}\) 溶解法がルーチン処理をするためにどの程度簡略化できるかを不純物の観点から実際に チェックしていくてとが望まれよう。
（2）サファイヤを用いたDamage monitor については， \(400^{\circ} \mathrm{C}\) 以下では利用可能であるが，高速炉内温度条件にて適用可能であるかどうかについての特性評価が必要である。又，との開発を含めDamage monitorについては HEDLの動向に注目すべきである。
（3）Helium Accumulation Fluence Monitor（HAFM）については，今回詳細なレビュー は省いたが，常陽における適用性を確認し特性量の測定のためにその導入を計るととが望まし い。一つの方法として，DOE－HEDLを通して，又はRockwell—International 社に直接，依頼してみることも可能である。（てれはRockwell－International 社に直接問合せた結果で あり，先方は多いに乗り気であった。）
以上。```

