IAEA/RCA光子線に対する線量計と サーベイ機器の校正に関するワークショップ

1995年11月

動力炉·核燃料開発事業団 東 海 事 業 所 本資料の全部または一部を複写・複製・転載する場合は、下記にお問い合わせください。

〒319-1184 茨城県那珂郡東海村大字村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課

Inquiries about copyright and reproduction should be addressed to: Technical Cooperation Section,
Technology Management Division,
Japan Nuclear Cycle Development Institute
4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1184
Japan

© 核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute) 2001

IAEA/RCA

光子線に対する線量計とサーベイ機器の校正に関するワークショップ

平成6年度

三上 智* 小嶋 昇* 百瀬 琢麿**

要旨

平成6年11月28日から12月2日にかけて開催されたIAEA/RCAに基づく「光子線に対する線量計とサーベイ機器の校正に関するワークショップ」において、標準校正場の品質保証(ガラス線量計による校正場の相互比較方法の提案)について発表機会を得た。また、動燃東海計測機器校正施設においてワークショップ参加者による基準校正場の設定およびサーベイメータの校正に関する実習を行った。

本書は、筆者らが行った発表、あるいは実習の概要を報告するものである。

安全管理部放射線管理第一課

^{**}安全管理部安全対策課

目 次

- 1.はじめに
- 2.ワークショップの概要
- 3.発表「標準校正場の品質保証:ガラス線量計による校正場の比較方法の提案」
- 4.計測技術実習
- 5.あとがき
- 資料1. 発表「標準校正場の品質保証:ガラス線量計による校正場の比較方法の提案」 発表要旨 発表原稿 発表OHP
- 資料2. 計測技術実習「サーベイメータの校正」 校正実習要領
- 別添1. 議事日程
- 別添2. 参加者一覧

1.はじめに

平成6年11月28日から12月2日にかけて、日本原子力研究所東海研究所(以下、原研)において国際原子力機関によるアジア地域原子力協力協定(IAEA/RCA)に基づく「光子線に対する線量計とサーベイ機器の校正に関するワークショップ」が開催された。日本からは原研保健物理部、動燃安全管理部が参加し、海外からはRCA加盟の近隣アジア諸国12か国、IAEA等から16名の参加があった。筆者らは2日目(11/29)の「国別報告セッション(Country Report Session)」における日本代表発表の場で、標準校正場の品質保証"ガラス線量計による校正場の相互比較方法の提案"について発表した。また、3日目(11/30)には動燃東海事業所計測機器校正施設において「計測技術実習(Technical Exercise)」として基準線量計による校正場の設定および電離箱型サーベイメータの校正実習を行った。以下に、ワークショップの概要について紹介する。

2.ワークショップの概要

本ワークショップは、個人線量計やサーベイ機器の校正に関して国際的に標準化された校正技術をRCA加盟の近隣アジア諸国に対して普及を図ることを目的としたものである。 ワークショップでは、原研の南氏、IAEAの Grifith氏らによるICRUで示されている放射線防護の実用計測線量(Operational Quantities)に関する特別講義、および参加国各国における実用計測線量の適用状況を含めた校正技術の現状の紹介等があった。さらに計測技術の実習として、動燃東海事業所の計測機器校正施設において電離箱型サーベイメータの校正実習を行った。

この他、ワークショップでは今後の具体的な計画として、各国の標準校正場および 個人線量計の相互比較を行うことが提案された。今回のワークショップおよび今後の 相互比較を通じて各国の校正技術の向上が期待される。

なお、本ワークショップの議事日程を別添1に、参加者一覧を別添2に示す。

3.発表「標準校正場の品質保証:ガラス線量計による校正場の比較方法 の提案!

ワークショップ2日目(11/29)の「国別報告セッション(Country Report Session)において発表した内容の概要を以下に示す。なお、発表要旨、発表原稿、およびOHP原稿を資料1.に収録した。

「標準校正場の品質保証:ガラス線量計による校正場の比較方法の提案 |

要約

標準校正場における基準線量の相互比較にガラス線量計を用いる方法が開発された。この方法を動燃の5事業所(東海事業所、大洗工学センター、もんじゅ建設所、ふげん発電所、人形峠事業所)の標準校正場の相互比較に適用した。その結果、全事業所で4%以内で一致した。従って、各事業所の標準校正場は適切な精度で維持されており、かつガラス線量計が校正場の照射精度のチェックに適用できることが示された。この方法はRCA加盟各国間での校正場の相互比較プログラムに利用し得るであろう。

はじめに

放射線防護のために線量評価の品質保証を図る目的で、線量計や放射線モニタの校 正を実施することは非常に重要である。校正場の基準線量値は国家標準につながるト レーサビリティ体系の中で電離箱型基準線量計を用いて評価されなければならない。

1992年に、電離箱型基準線量計を用いて動燃5事業所を対象とした基準照射線量値の相互比較を実施し、全事業所で3%以内で一致している。

このような相互比較試験は定期的に実施することが望まれるが、電離箱型基準線量計を用いる方法は、事業所間を輸送する際に基準線量計を破損する恐れがあることや評価に多くのマンパワーや時間を要することから定期的な実施には不向きである。そこで、より簡便な方法として、ガラス線量計を用いる方法が提案された。

ガラス線量計を用いた基準線量の相互比較

ガラス線量計を用いた簡便な相互比較方法が日本原子力研究所の努力により開発された。1993年から1994年にかけて動燃5事業所を対象に相互比較が試みられた。その結果は、全18の比較ポイントのうち2ポイント(3.7%、2.7%)を除いて2%以内のずれ(各事業所校正場の評価値とガラス線量計による測定値とのずれを偏差で評価した。)でよく一致した。

結論

ガラス線量計を用いた相互比較により校正場の基準照射線量値が簡便にかつ迅速に チェックできることがわかった。また、今回ガラス線量計の総合的な測定精度は1.5% まで高めることができた。ガラス線量計を用いる方法はRCA加盟各国間での相互比較に役立つものであろう。

4.計測技術実習

ワークショップ3日目(11/29)の「計測技術実習(Technical Exercise)」として基準線量計による校正場の設定および電離箱型サーベイメータの校正実習を行った。以下に、校正実習のテキストとして作成、使用した「校正実習要領」の概要を示す。なお、「校正実習要領」は資料2.に収録した。

「校正実習要領」

1.概要

実習では電離箱型基準線量計による基準照射線量の測定および評価を行い、次に基準照射線量値を基準 1 cm線量当量値に換算する。その後セシウム照射装置を使用して、置換法により電離箱型サーベイメータの校正を行う。

2.装置

- 1) 基準電離箱:ラドコン線量計(米国ビクトリーン社製) 計測部、500型 検出器、500-3型(330cc電離箱) 電子技術総合研究所にて校正
- 2) 電離箱型サーベイメータ:808DDE型(ネスコ社製)
- 3) γ 線照射装置: 137 Cs(1.11TBq)自動校正装置
- 4) 気圧計および温度計

3. 手順

A.基準照射線量値の評価

- (1) γ線照射装置と基準電離箱 (ラドコン線量計) のセット
- 1.線源·検出器間距離は1m。¹³⁷Cs(1.11TBg)線源を使用する。
- 2. ラドコン線量計の測定レンジを2にセットする。

(2) 測定

- 1.基準電離箱(ラドコン線量計)でバックグラウンドを測定する。 [測定時間300 秒。タイマーによる。]
- 2. 照射前に、照射室内の気圧及び気温を測定する。
- 3. 照射を実行し基準電離箱 (ラドコン線量計) により基準照射線量を測定する。[線源・検出器間距離が1mのとき測定時間60秒。1.5mのとき120秒。2mのとき180秒。タイマーによる。]

線量指示値は2回読み取る。(測定の前後)そして照射線量の測定値は次式による。 照射線量測定値=指示値(前)-指示値(後)

測定は3度繰り返す。

- 4.測定値の平均値を求める。 [Appendix 1·1のA参照]
- 5.3度目の測定終了後、照射室内の気温、気圧を再度測定する。そこで、気温、気圧の補正係数を求める。

(3) 環境条件補正係数

1. 気温及び気圧の補正は以下の通り。

環境条件補正係数 (F) = (273.15+T/273.15+22) ×1013.3/H ただし、T:気温 (℃)、H:気圧 (hPa) [Appendix 1-1および1-2の*1および *2参照]

- 2. 照射の前後に評価したそれぞれの補正係数から環境条件補正係数の平均値 (Fa) を求める。
- (4) 1mにおける基準照射線量
- 1.基準照射線量値(D) [Appendix 1-1および1-2の*3参照]
 - = (測定値の平均値) (バックグラウンド値)
 - ×環境条件補正係数の平均値(Fa)
 - ×電総研による校正定数(CF)
- 2. 基準照射線量率(Dr) [*4参照]
 - $= (D) \times (3600/60)$

- 3. 基準1cm線量当量率(De)[*5参照]
 - = (Dr) × (線量当量換算係数 (Appendix 5のTable7参照))
- (5) (1) から (4) までの手順を距離1.5mおよび2mについても同様に繰り返す。 [Appendix2および3参照]
- B.電離箱型サーベイメータの校正
 - (1) γ線照射装置と電離箱型サーベイメータのセット
 - 1.線源と電離箱間距離は1m。¹³⁷Cs (1.11TBg) 線源を使用する。
 - 2. 電離箱型サーベイメータのレンジを100mSv/hにセットする。
 - (2) 測定 [Appendix 4参照]
 - 1. 照射前にバックグラウンドを測定する。
 - 2. 照射を実施する。

指示値が安定したら指示値を読み取る(10回)

- (3) 校正定数の計算
- 1.校正定数は次式で与えられる。

校正定数=基準1cm線量当量率(De)/(測定値の平均値ーバックグラウンド)

- (4) 距離1.5m、2mについても同様に繰り返す。 [Appendix4参照]
- (5) レンジの校正定数

レンジの校正定数は3つの校正定数の平均値とする。

しかし、実際の校正作業においては各レンジの校正定数は最小2乗法により求める。

5.あとがき

今回の発表あるいは動燃での実習を通じて、動燃基準校正場(東海事業所計測機器校正施設)における基準場の設定方法、サーベイメータ類の校正方法を紹介し、動燃各事業所の標準校正場が適切な精度で維持されていることを各国からの参加者にアピールできたことと思う。

なお、動燃各事業所標準校正場の相互比較については日本保健物理学会第30回研 究発表会においても発表した。

発表

標準校正場の品質保証 -ガラス線量計による校正場の比較方法の提案-

発表要旨

Quality assurance of reference calibration field

Proposal of Reference Dose Value Intercomparison using RPL Glass Dosemeter

S. MIKAMI, T. MOMOSE
Health and Safety Division,
Tokai Works,
Power Reactor and Nuclear Fuel Development Corporation
4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki,
319-11, JAPAN

Abstract

The method for a reference dose value intercomparison of calibration field using radiophotoluminescence (RPL) glass dosemeters was provided. This method was applied to the intercomparison of the reference exposure value of gamma irradiation fields among the 5 calibration facilities of Power Reactor and Nuclear Fuel Development Corporation (PNC). The results showed a good agreement by as much as 4% of deviation. These prove that reference exposure values of each calibration facility have been maintained in a good accuracy. It was shown also that the RPL glass dosemeters could be applied to a check of exposure value of a calibration field. This method will be available for the intercomparison programme among the Regional Cooperative Agreement(RCA) member states.

Introduction

To assure a quality of dose evaluation for radiation protection, a calibration of dosemeters and monitoring equipments is very important. The reference dose value of calibration fields should be evaluated by using a standard ionization chamber which is calibrated on a traceability system to a primary standard.

National primary standards of radiation dose value have been established at the Electro-Technical Laboratory (ETL) in Japan. Five sites in PNC (Tokai Works, O-arai Engineering Center, Monju Construction Office, Fugen Nuclear Power Station, and Ningyo Toge Works) have each calibration facility. The reference dose of the calibration fields are measured by their standard ionization chamber at each site. Tokai Works and Fugen Power Station request the ETL to calibrate the standard ionization chambers (Victoreen 500 for detector, 550-3 for electrometer). The standard ionization chambers of other 3 sites (O-arai, Monju and Ningyo Toge Works) were calibrated at the calibration field of Tokai Works (Figure 1).

In 1992 the intercomparison for the reference exposure values of the calibration fields was made with 5 calibration facilities by means of the ionization

chambers. And all results show a good agreement by as much as 3%.

It was found that an intercomparison was a very effective method to check the accuracy of irradiation. So it is desirable to carry out the same kind of intercomparison periodically. However, the intercomparison using a standard ionization chambers is not convenient, because an ionization chamber is very sensitive to mechanical shocks and humidity, and also this method needs much man power and time. Then, the intercomparison of reference dose value using RPL glass dosemeter was proposed.

Figure 1. The traceability system of gamma calibration field in PNC

RPL glass dosemeter

The Toshiba Type SC-1 RPL glass dosemeters were used for the reference dose value intercomparison of the calibration fields because of its excellent characteristics. The dosemeters are readout by means of a pulsed UV laser excitation. The structure and the external view of the dosemeter are shown in Figure 2 and Figure 3.

glass detector

Figure 2. The structure of the dosemeter

Figure 3. The external view of the dosimeter

The typical features of the RPL glass dosemeter are as follows. (1) Readingout can be done repeatedly. (2) Dispersion of sensitivity among the dosemeters is small. (3) Fading is small. (4) Fluorescence come from predose is subtracted automatically. (5) Dose imformation stored inside glass dosemeter can be erased by annealing, etc.

In our experience, some special techniques, such as the sensitivity correction for each dosemeter, were also considered to get the good performance of dose measurements of RPL glass dosemeter.

The main characteristics of the RPL glass dosemeter are shown in Table 1.

Table 1. Characteristics of the RPL glass dosemeter

-	8			
Item	Condition	Deviation		
energy dependence	200keV to ⁶⁰ Co	<±5%		
angular dependence	direction of 0° ±30°	< ± 1 %		
dose rate response	20mR/h to 1R/h	< ± 1 %		
deviation of readings	50mR <	±0.3%		

Reference dose value intercomparison using RPL glass dosemeter

The convenient intercomparison method using RPL glass dosemeters was provided with the effort of Japan Atomic Energy Research Institute (JAERI). In 1993 and 1994 the trial of intercomprison was made among 5 facilities of PNC.

The sources used for the intercomparison are ⁶⁰Co and ¹³⁷Cs. The activities of the sources are from 1.85GBq to 1.11TBq for ¹³⁷Cs and from 370MBq to 3.7TBq for ⁶⁰Co. Table 2 shows the sources' data used for the intercomprison.

The JAERI Tokai Institute sent the dosemeters, which was already annealed to erase the predose of a dosemeter, to the participant facilities. Then the irradiations to the dosemeters were carried out at each facility. The distances between source and dosemeter were 1 and 2 meters. In the intercomparison, 3 pieces of glass dosemeters were used at one point. The dosemeters irradiated at each facility were returned to JAERI with the data of the irradiated exposure value. After returning to JAERI, the dosemeters were read out. And the measured values were compared to the reference exposure dose values of each facility using the following equation:

Table 2. Gamma sources used for the intercomparison

Source		Distance	
nuclide	activity	source to detecter	
137Cs	1.11TBq	1m,2m	
	3.7GBq	1 m	
⁶⁰ Co	3.7GBq	1 m	
¹³⁷ Cs	1.11TBq	1m,2m	
	3.7GBq	1m	
⁶⁰ Co	3.7GBq	1 m	
¹³⁷ Cs	1.11TBq	1m,2m	
	7.4GBq	1 m	
⁶⁰ Со	370MBq	1 m	
¹³⁷ Cs	740GBq	1m,2m	
⁶⁰ Co	37GBq	1m,2m	
¹³⁷ Cs	2.59GBq	1 m	
⁶⁰ Co	1.85GBq	1 m	
	nuclide 137Cs 60Co 137Cs 60Co 137Cs 60Co 137Cs 60Co 137Cs	nuclide activity 137Cs 1.11TBq 3.7GBq 60Co 3.7GBq 137Cs 1.11TBq 3.7GBq 60Co 3.7GBq 137Cs 1.11TBq 7.4GBq 60Co 370MBq 137Cs 740GBq 60Co 37GBq	

Result

The results of the intercomparison among 5 sites of PNC for ¹³⁷Cs and ⁶⁰Co sources are shown in Table 3. The exposure value of each calibration facility showed the good agreement by as much as 2% of deviation, except 2 points which differed by 3.7% and 2.7%. For these 2 points, investigations of a cause why they differed more than 2% are required.

Conclusion

It was found that reference exposure dose value of a calibration field could be checked easily and quickly by the intercomparison using RPL glass dosemeter. The total accuracy for the measurment of exposure dose value is 1.5%. The method using RPL glass dosemeters will be useful for the intercomprison among the RCA member states.

Table 3. Result of the reference exposure value check

Site Nuclide	Nuclide	iclide Activity	Distance	Distance Exposure"	Measured Value	Measured
		(m)	(mR/h)	of glass dosemeter (mR/h)	Exposure	
	¹³⁷ Cs	1.11TBq	1.0	8100	8077	0.997
Tokai			2.0	2025	2025	1.000
		3.7GBq	1.0	25.43	25.64	1.008
	⁶⁰ Co	3.7GBq	1.0	15.62	15.71	1.006
	¹³⁷ Cs	1.11TBq	1.0	6602	6612	1.002
			2.0	1638	1577	0.963
O-arai		3.7GBq	1.0	28.5	28.25	0.991
	⁶⁰ Со	3.7GBq	1.0	45.2	45.3	1.002
	¹³⁷ Cs	1.11TBq	1.0	9647	9450	0.980
			2.0	2344	2317	0.988
Monju		7.4GBq	1.0	65.89	66.16	1.004
	⁶⁰ Co	370MBq	1.0	9.86	10.05	1.019
· · · · · · · · · · · · · · · · · · ·	¹³ Cs	740GBq	1.0	4882	4859	0.995
Fugen			2.0	1220	1205	0.988
	60Со	37GBq	1.0	654.8	661.9	1.011
			2.0	163.1	164.4	1.008
Ningyo	¹³′Cs	2.59GBq	1.0	21.15	21.72	1.027
Toge	⁶⁰ Со	1.85GBq	1.0	22.50	22.32	0.992

Reference Exposure dose value measured by ionization chamber at each facility

発表原稿

Quality assurance of reference calibration field

-Proposal of reference dose value intercomparison using RPL glass dosemeter-

1.Title

To assure a quality of dose evaluation for radiation protection, a calibration of dosemeters and monitoring equipments is very important.

For quality assurance on calibration of radiation monitoring instruments, the intercomparison using ionization chamber was carried out among the 5 calibration facilities of Power Reactor and Nuclear Fuel Development Corporation (PNC) in 1992 to 1993.

And in 1993 the convenient intercomparison method using Radiophotoluminescence (RPL) glass dosemeters was provided with the effort of Japan Atomic Energy Research Institute (JAERI).

Then we tried to apply this method to the intercomparison of reference exposure value of gamma irradiation fields among 5 facilities of PNC.

The results showed a good agreement within 4% among 5 facilities.

These prove that reference exposure values of each calibration facility have been maintained in a good accuracy, and also RPL glass dosemeter can be applied to this kind of intercomparison.

2.Contents of presentation

now, for the first thing, I am going to present the intercomparison in PNC using ionization chamber, and second, the intercomparison using RPL glass dosemeter.

-Intercomparison using ionization chamber-

3.Traceability system of gamma calibration field in PNC

I'll show you the traceability system of gamma calibration fields in PNC.

Japanese national primery standards of radiation dose value have been established at Electro-Technical Laboratory (ETL).

And PNC Tokai Works and Fugen Power Station ask the ETL to calibrate their standard ionization chambers.

And PNC Tokai Works calibrate the standard ionization chambers of O-arai Engineering Center, Monju Construction Office, and Ningyo-Toge Works.

So, all monitoring equipments and dosemeters being used in PNC are keeping traceability to national standard of ETL.

4.Introduction of standard ionization chamber

This is the standard ionization chamber possessed in PNC. This is a model of Victoreen 550-3 for detector, and Victoreen 500 for electrometer.

And mercury thermometer and foltan-type mercury barometer are used for measuring ambient air condition in irradiation room.

A true exposure value is given by this equation.

5.Gamma sources used for the intercomparison

For intercomparison, we used 2 kinds of gamma source, Cs-137 and Co-60. And maximum of activity of the source is 1.11TBq, and minimum is a 1.85GBq.

6.Method of intercomparison and measurement

This shows the exposure values at each facility was measured by Tokai's standard ionization chamber.

And these exposure values measured by Tokai's standard chamber are compared to the values which were evaluated at each facility by itself.

The comparison was quantified as a deviation, by using this equation.

-Result of Intercomparison (summary)-

I'll show you some of the results.

I can say that the reference exposure values of every calibration facility in PNC have been maintained in a good accuracy within 3% of deviation.

7.Result of intercomparison (Cs high)

This is for the Cs source that have relatively high dose rate.

8.Result of intercomparison (Cs low)

This is for the Cs source that have relatively low dose rate.

9.Result of intercomparison (Co)

This is for the Co source.

10.Result of Intercomparison using ionization chamber (include Probrems)

The reference exposure values of each calibration facility in PNC have been maintained in a good accuracy within 3% of deviation.

And an intercomparison is a very effective method to check the accuracy of irradiation.

But at the same time, we came to know that it is not convenient to make a use of ionization chamber for an intercomparison.

Because an ionization chamber is very sensitive to mechanical shocks and humidity, so it is not suitable to send the ionization chamber in a distance, by trains or car.

And also this method needs much man power and time.

So more convenient method was required for making this kind of intercomparison continuously.

Then, we tried to make a use of the RPL glass dosemeter for an intercomparison.

-Intercomparison using RPL glass dosemeter-

11.Introduction of RPL glass dosimetry system

We used the Tosiba Type SC-1 RPL glass dosemeter for the reference dose value intercomparison of the calibration fields.

The RPL glass dosemeters are readout by means of a pulsed Ultraviolet radiation's laser excitation.

The reason why we select the RPL glass dosemeter is because RPL glass dosemeter have excellent features and characteristics.

The typical features are to read out can be done repeatedly, dispersion of sensitivity among the dosemeters is small, the fading is negligible, and so on.

And the total accuracy for the measurement of exposure value is 1.5 %.

12.Characteristics of RPL glass dosemeter

[Read OHP]

13.Gamma sources used for the intercomparison

The same sources were used in this intercomparison as using ionization chamber.

14. Method of Intercomparison and evaluation of doses

I'll show you the method of intercomparison,

First, as the preparing of the test, RPL glass dosemeters were annealed to erase the predose at JAERI.

Then, dosemeters were sent to each facility. and next, they were exposed to gamma rays at each facility.

When irradiations were done, the distances between source and dosemeter were 1 and 2 meters, and 3 pieces of glass dosemeters were used at one point.

And, after irradiation, each facility sent the dosemeters back to JAERI with data of the irradiated exposure value.

After returning to JAERI, the exposed dose values were readout from dosemeters and the measured values were compared to the reference exposure dose values of each facility.

15.Method of dose evaluation

The comparison of these 2 values was quantified, by this equation.

-Result of intercomparison (summary)-

I'll show some of the results.

The result of the intercomparison among 5 facilities of PNC was that the exposure values of the calibration facilities showed the good agreement by as much as 2% except 2 points of irradiation.

16.Result of intercomparison (Cs high)

This is for the Cs source that have relatively high dose rate.

17.Result of intercomparison (Сs юш)

This is for the Cs source that have relatively low dose rate.

18.Result of intercomparison (Co)

This is for the Co source.

19.Result of intercomparison using RPL glass dosemeter

By the intercomparison using RPL glass dosemeters, the exposure value of each calibration facility showed the good agreement within 2% of deviation.

And it was found that reference exposure dose value of a calibration fields can be checked easily and quickly, by the RPL glass dosemeters.

At last, I think this convenient method of intercomparison using RPL glass dosemeter will be very usefull, and a result of an intercomparison must contribute to a quality assurance and a tech pic $\frac{1}{1000}$ TN8410 $\frac{1}{95}$ of calibration, among the RCA member states.

Thank you.

発表 O H P

Quality Assurance of Reference Calibration Field

Proposal of Reference Dose Value Intercomparison using RPL Glass Dosemeter

S.Mikami, T.Momose

Health and Safety Division

Tokai Works

Power Reactor and Nuclear Fuel Development Corporation

Contents

- 1. Intercomparison using Standard Ionization Chambers
 - 2. Intercomparison using RPL glass Dosemeters

Traceability system of gamma calibration fields in PNC

Standard Ionization Chamber

photos of standard chamber

Standard Ionization chamber

detector: Victoreen 550-3 (330cc) electrometer: Victoreen 500 calibrated on 20, july,1990

Thermometer mercury thermometer

Barometer foltan-type mercury barometer

exposure value exposure value [R] = mean value of measurement [R] x Ftp x CF

Ftp: correction factor for temperature and air pressure CF: calibration factor given by ETL

Gamma sources used for the intercomparison

Cito	· Sou	ırce
Site	nuclide	activity
Tokai	¹³⁷ Cs	1.11TBq 3.7GBq
	⁶⁰ Co	3.7GBq
0	¹³⁷ Cs	1.11TBq 3.7GBq
O-arai	⁶⁰ Co	3.7GBq
Monju	¹³⁷ ℃s	1.11TBq 7.4GBq
	⁶⁰ Co	370MBq
Fugen	¹³⁷ Cs	740GBq
rugen	⁶⁰ Co	37GBq
Ningyo Toge	¹³⁷ Cs	2.59GBq
	⁶⁰ Co	1.85GBq

Measure exposure value at each facility by Tokai's standard chamber

Evaluation

Result of intercomparison (1.11TBq and 740GBq of 137 Cs)

using Ionization Chamber

Result of intercomparison (3.7GBq and 7.4GBq and 2.59GBq of $^{137}Cs)\,$

using Ionization Chamber

Result of intercomparison
(3.7GBq and 370MBq and 37GBq and 1.85GBq of ⁶⁰ Co)
using Ionization Chamber

Result of Intercomparison using Standard Ionization Chamber

- 1. the reference exposure values of each calibration facility have been maintained in a good accuracy (deviation is less than 3%).
- 2. An intercomparison is a very effective method to check the accuracy of irradiation.
- 3.Intercomparison using Standard Ionization Chamber is not convenient.

Because

- * Ionization chamber is very sensitive to mechanical shocks and humidity.
- * This method needs much man power and time.

RPL glass dosimetry system

photos of glass dosimetry system

detector

Toshiba Glass Co. Ltd.

Type SC-1 (phosphate glass)

Reader

Type FGD-20 (UV laser excitation)

Typical features

Reading out can be done repeatedly Small dispersion of sensitivity among dosemeters Negligible fading and so on.

Characteristics of the RPL glass dosemeter

ltem	Condition	Deviation
energy dependence	200keV to 60Co	< 5%
angular dependence	direction of 0° ±30°	° <1%
dose rate response	20mR/h to 1R/h	<1%
deviation of readings	50mR<	0.3%

Gamma sources used for the intercomparison

0:1	Sou	ırce
Site	nuclide	activity
Tokai	¹³⁷ Cs	1.11TBq 3.7GBq
	⁶⁰ Co	3.7GBq
	137 _{Cs}	1.11TBq 3.7GBq
O-arai	⁶⁰ Co	3.7GBq
Monju	137 _{Cs}	1.11TBq 7.4GBq
, -	⁶⁰ Co	370MBq
	¹³⁷ Cs	740GBq
Fugen	⁶⁰ Co	37GBq
Ningyo Toge	¹³⁷ Cs	2.59GBq
	⁶⁰ Co	1.85GBq

Method (2)

Method of evaluation

Exposure dose value at each facility [A]

compared

Measured exposure dose value by glass dosemeter [B]

Deviation (%) =
$$\frac{[B] - [A]}{[A]}$$
 x 100

Result of intercomparison (1.11TBq and 740GBq of 137 Cs)

using RPL glass dosemeter

 $Result\ of\ intercomparison$ ($3.7GBq\ and\ 7.4GBq\ and\ 2.59GBq\ of\ ^{137}Cs)$

using RPL glass dosemeter

Result of intercomparison

(3.7GBq and 370MBq and 37GBq and 1.85GBq of $\,^{60}$ Co)

using RPL glass dosemeter

Result of Intercomparison using RPL glass dosemeter

The exposure value of each calibration facility in PNC showed the good agreement by as much as 2%.

Knowledge on Use of RPL glass dosemeter

Reference exposure dose value of a calibration field can be checked easily and quickly.

The total accuracy for the measurement of exposure value is 1.5%.

計測技術実習

「サーベイメータの校正」

校正実習要領

SCHEDULE 30, November, 1994

PNC			
Health	and	Safety	Division

1. Introduction of Calibration facility	(13:30-13:35)
2. Introduction of Exercise	(13:35-13:50)
3. Measurement of standard dose by standard ionization chambe	er (13:50-14:35)
4. Calibration of survey meter	(14:35-14:45)
5. Discussion	(14:45-15:00)

Exercise

on

Calibration of Ionization Chamber Survey Meter

S.Mikami
Health and Safety Division
Tokai Works
Power Reactor and Nuclear Fuel Development Corporation

IAEA/RCA Workshop
on
Calibration of Dosemeters and Survey Instruments for Photons

November 28th - December 2nd, 1994

1. Introduction

To assure a quality of dose evaluation for radiation protection, a calibration of dosemeters and monitoring instruments is very important. The reference exposure value of calibration fields should be evaluated by using a standard ionization chamber which is calibrated in a traceability system to a primary standard.

In this exercise, The reference exposure value will be measured and evaluated by the standard ionization chamber. And the reference exposure value will be covert to a reference 1cm dose equivalent value by using conversion factor. Then, an ionization chamber survey meter will be calibrated by alternating method, using ¹³⁷Cs gamma irradiator.

2. Apparatus

- 1) Standard chamber: Radocon dosemeter (Victoreen Co.Ltd.)

 model 500 for electrometer

 model 500-3 for detector (Ionization chamber)(330cc)

 calibrated by Electro-Technical Laboratory (ETL).
- 2)Ionization chamber type survey meter: model 808DDE (NESCO Co.Ltd.)
- 3)¹³⁷Cs gamma irradiator : ¹³⁷Cs (1.11TBq) automatic calibration system
- 4)Barometer and Thermometer

3. Procedure

- A. Evaluation of reference exposure dose value
- (1) Set up the gamma irradiator and the standard chamber(Radocon dosemeter)
 - 1. The distance between source and chamber is 1m. The ¹³⁷Cs (1.11TBq) source is selected.
 - 2. Set the range of Radocon dosemeter at 2nd range.

(2) Measurement

- 1. Back ground value is measured by the standard chamber (Radocon dosemeter). [measuring time is 300 seconds that is set by a timer]
- 2. Before irradiation, The air pressure and temperature in the irradiation room are measured.
- 3. Irradiation is done, and reference exposure dose values are measured by the Radocon dosemeter. [measuring time is 60 seconds for 1m (120sec.for1.5m, and 180sec.for 2m) that is set by timer]

The indication of dose values are read twice, when beginning and finish of measurement. And measurement of exposure dose are given as follows;

measurement of exposure dose = indicated value (beginning) - indicated value (finish)

The measurement is repeated 3 times.

- 4. The average of measured value is calculated.[(A) of Appendix 1-1]
- 5. After the 3rd measurement, the air pressure and temperature in the irradiation room are measured, again.

Then the correction factor of air pressure and temperature are evaluated.

- (3) Correction factor of environmental conditions
 - 1. Correction of air pressure and temperature are as follows.

Correction factor of environmental conditions (F)

$$= \underbrace{273.15 + T}_{273.15 + 22} \quad x \quad \underbrace{1013.3}_{H}$$

where, T: Temperature(°C)

H: Air pressure (hpa)

[see *1,*2 of Appendix 1-1 and 1-2]

2. Average correction factor for environmental conditions (Fa) is calculated by two of correction factors that are evaluated before and after of irradiations to Radocon dosemeter.

(4) Reference exposure dose (D) at 1m

- 1. Reference exposure dose (D) [see *3 of Appendix 1-1 and 1-2]
 - = (average value of measurements) (back ground)
 - x average correction factor for environmental conditions (Fa)
 - x calibration factor given by ETL (CF)
- 2. Reference exposure dose rate (Dr) [see *4] = (D) x {3600 / 60}
- 3. Reference 1cm dose equivalent rate (De) [see *5] = (Dr) x { dose equivalent conversion factor (see table 7 of Appendix 5)}
- (5) Same procedure as from (1) to (4) carried out for distance of 1.5m and 2m.[see Appendix 2 and 3]

B. Calibration of ionization chamber type survey meter

- (1) Set up the gamma irradiator and the ionization chamber survey meter.
 - 1. The distance between source and chamber is 1m. The ¹³⁷Cs (1.11TBq) source is selected.
 - 2. Set the range of I.C. survey meter at that of x 100mSv/h.
- (2) Measurement [see Appendix 4]
 - 1. Back ground is measured, before irradiation.
 - 2. Irradiation is carried out.

 After indications got stable, readings of indication is done.(10 times)
- (3) Calculation of calibration factor
 - 1. Calibration factor is given by following equation.

Calibration factor = Reference 1cm dose equivalent rate (De)

Average value of measurement - Back ground

(4) Same procedure are carried out at the distance of 1.5m and 2m. [see Appendix 4]

(5) Calibration factor of the range

Calibration factor of the range is obtained as a average value of the three calibration factors.

But, in the case of actual calibration, calibration factor of the each range is obtained by the least squares fitting.

		Correc	tion for enviro	nmental condi	tions		Back Ground	l value (B.	G) (mR)				
		Temperature (T)	Air pressure	Correction factor (F)	Average of Correction		Indicatio	on (mR)	Measurment	Measuring time	Calibration factor	Reference	Reference dose
Activity Distance	(°C)	(hPa) Before		factor - (Fa)	Range	START	STOP	value (STOP)— (START)	(sec)	(OF)	dose (D) (mR)	(Dr) (mR/h)	
				See * 1	*1 +*2 2							See * 3	See * 4
1, 11TBq	1.0		After			2				- 60	1, 015		Dose equivalen rate 1) (De) (mSv/l
				See * 2									See * 5
į							Average of mesurement	value (A)	(A)				

¹⁾ Reference 1cm dose equivalent rate

Correction factor

(F) =
$$\frac{273.15 + T}{273.15 + 22} \times \frac{1013.3}{H} = \frac{273.15 + (}{273.15 + 22} \times \frac{1013.3}{(}) = ($$

* 2

Correction factor

$$(F) = \frac{273.15 + T}{273.15 + 22} \times \frac{1013.3}{H} = \frac{273.15 + ()}{273.15 + 22} \times \frac{1013.3}{()} = ($$

*3

1

Reference dose (D) =
$$(A) - (B, G) \times (Fa) \times (CF) = (() - ()) \times (1015) = ($$

) [mR]

* 4

Reference dose rate
$$(Dr) = (D) \times \frac{3600}{60} = () \times \frac{3600}{60} = ($$

$$) \times \frac{3600}{60} = ($$

) [mR/h]

***** 5

Reference 1cm dose equivalent rate
$$(De) = (Dr) \times (1cm dose equivalent conversion factor) = () $\times ($) = ($$

		Correct	tion for enviro	nmental condi	tions	Back Ground value (B.			G) (nR)				
		Temperature (T)	Air pressure	Correction factor (F)	Average of Correction	Doors	Indicatio	n (nR)	Measurment value	Measuring time	Calibration factor	Reference dose	Reference dose
Activity Distance	Distance (m)	(°C)	(hPa) Before	factor (Fa)	Range	START	STOP	(STOP) — (START)	(sec)	(OF)	(D) (R)	(Dr) (π?/h)	
				See * 1	*1 +*2 							See *3	See * 4
1, 11TBq	1.5		After			2				120	1, 015		Dose equivalentrate 1) (De) (mSv/1
	į			See * 2									See * 5
							Average of mesurement	value (A)	(A)				

¹⁾ Reference 1cm dose equivalent rate

Correction factor

$$(F) = \frac{273, 15 + T}{273, 15 + 22} \times \frac{1013, 3}{H} = \frac{273, 15 + (}{273, 15 + 22} \times \frac{1013, 3}{} = ($$

* 2

Correction factor

$$(F) = \frac{273.15 + T}{273.15 + 22} \times \frac{1013.3}{H} = \frac{273.15 + ()}{273.15 + 22} \times \frac{1013.3}{()} = ($$

* 3

Reference dose

(D) =
$$((A) - (B, G)) \times (Fa) \times (CF) = (() - ()) \times () \times (1.015) = ($$

$$) \times (1.015) = ($$

) [mR]

* 4

Reference dose rate
$$(Dr) = (D) \times \frac{3600}{120} = () \times \frac{3600}{120} = ($$

***** 5

Reference low dose equivalent rate
$$(De) = (Dr) \times (low dose equivalent conversion factor) = () $\times () = (Dr) \times (Dr) \times () = (Dr) \times (Dr) \times$$$

$$\times$$
 () = (

		Correct	tion for enviro	nmental condi	tions		Back Ground	lvalue (B.	G) (mR)				
		Temperature (T)	(H)	Correction factor (F)	Average of Correction		Indicatio	on (mR)	Measurment	Measuring	Calibration	Reference	Reference dose
Activity	Distance (m)	(°C)	(hPa) Before		factor (Fa)	Range	START	STOP	value (STOP) — (START)	time (sec)	factor (CF)	dose (D) (mR)	rate (Dr) (mR/h)
				See * 1	*1 +*2 =							See * 3	See * 4
1, 11TBq	2.0		Af ter		-	. 2				180	1, 015		Dose equivalent rate 1) (De) (mSv/h)
	•	٠.		See * 2									See * 5
		:	:				Average of mesurement	value (A)	(A)				

¹⁾ Reference lam dose equivalent rate

- **4**0

(F) =
$$\frac{273.15 + T}{273.15 + 22} \times \frac{1013.3}{H} = \frac{273.15 + (}{273.15 + 22} \times \frac{1013.3}{(}) = ($$

$$(F) = \frac{273.15 + T}{273.15 + 22} \times \frac{1013.3}{H} = \frac{273.15 + ()}{273.15 + 22} \times \frac{1013.3}{()} = ($$

*3

Reference dose

(D) =
$$((A) - (B, G)) \times (Fa) \times (CF) = (() - ()) \times () \times (1.015) = ($$

$$\times$$
 (1,015) = (

*4

Reference dose rate
$$(Dr) = (D) \times \frac{3600}{180} = () \times \frac{3600}{180} = ($$

$$) \times \frac{3600}{180} = ($$

$$\times$$
 () = (

Reference 1cm dose equivalent rate [*5 of Table. 1] (

) —B.	G ()				
	* 1	Take 10	seconds	between	readings	of	indication

Table. 5 Result of calibration of I.C. survey meter (at1.5m)

Average (

Back Ground val	ue (B. 0	G)					<u> </u>			,
* Number of measurment	1	2	3	4	5	6	7	8	9	1 0
Value of readings (mSv/h)										
				Reference 1cm	m dose equiva	lent rate [‡5 of Table.2	2] () = ()
Average (mSv/h)		Calibration	factor= -	Average	(—В. G ()			· · ·

* 1 Take 10 seconds between readings of indication

42

Back Ground value (B. G)

1

Calibration factor = -

'Number of

Value of readings

Average

measurment

(mSv/h)

(mSv/h)

Back Ground val	ue (B. G)	-							
'Number of measurment	1	2	3	4	5	6	7	8	9	1 0
Value of readings (mSv/h)										
Average		Calibuatia		Reference 1cm	dose equiva	lent rate [‡5 of Table.3] ()	
Average (mSv/h)		Calibratio	n factor= —	Average	()	—В. G ()		= ()

* 1 Take 10 seconds between readings of indication

$$\frac{\text{at1m}}{\text{Average of calibration factor}} = \frac{\text{at1.5m}}{\text{(}} \quad \text{) + (} \quad \text{)} + \text{(} \quad \text{)}$$

43

· Table 7	1-cm dos	e equiva	le	nt conversion factor
Phonton energy or effective energy	1-cm dosa ed conversion i	uivalent actor (1)		Conversion factor from the air absorbed dose (2)
ЖеV	Sv/(C·kg-	1) {mSv/R}		(reference) Sv/Gy
0.010	0.350	{ 0.090	1	0.010
0.015	9.17	{ 2.37)	0.271
0.020	20.3	{ 5.25	}	0.601
0.025	29.3	{ 7.56)	0.866
0.030	36.8	(9.50	}	1.09
0.035	43.2	(11.2	3	1.28
0.040	48.5	{12.5)	1.43
0_045 .	52.4	(13.5	1	1.55
0.050	55.1	{14.2	}	1.63
0.060	59.1	15.2	}	1.74
0.070	59.6	{15.4	}	1.76
0.080	58.7	{15.1	j	1.73
0.090.	57.2	{14.8	- }	1.70
0.10	55.7	{14.4	}	1.65
0.12	53.0	{13.7	}	1.57
0.15	50.3	{13.0	}	1.49
0.20	46.7	{12.0·	}	1.38
0.30	44.4	{11.5	}	1.31
0.40	42.6	{11.0	}	1.25
0.50	41.2	{10.6	}	1. 21
0.60	40.3	-{10.4	}	1. 19
0.662	40.0	{10.3	}	1.18
0.80	39.3	{10.1	}	1.16
1.0	38.7	{10.0	}	1. 14
1.25	38.4	{ 9.91	}	1.14
1.5	38.3	{ 9.88	}	1. 13
2. 0	38.3	(9.87	}	1.13
3.0	38.1	{ 9.82	}	1.12
4.0	37.7	{ 9.71	}	1.11
5.0	37.5	9.67	}	1.11
6. 0	37.3	(9.62	}	1.10
8.0	36.8	(9.50	}	1.09
10	36.8	{ 9.50	}	1.09

Notes: (1) A conversion factor from an exposure in free space.

Radioisotopes, etc. or by the interpolation.

Remarks: When y-ray or X-ray energies required are not available, the dose equivalent conversion factor is obtained by interpolation.

⁽²⁾ An air absorbed dose in free space with charged-particle equilibrium. The conversion factor is from attached Table 4 in a notification of the low concerning prevention from Radiation Hazards due to Radioisotopes, etc. or by the interpolation.

議事日程

IAEA/RCA Workshop

on

Calibration of Dosimeters & Survey Instruments for Photons

at

Tokai Research Establishment Japan Atomic Energy Research Institute

AGENDA

MONDAY November 28 [Conference Room No.7]

11:30 - 12:00

OPENING SESSION

Chairperson: S. Kobayashi (NIRS: RCA National Coordinator of Japan)

1. Opening Address R.V. Griffith (IAEA)

2. Welcome Address

1) S. Machida (MOFA)

2) S. Yamazaki (STA)

3. Introducing of Workshop Director

Workshop Director K. Bingo (JAERI)
Deputy Director N. Sakurai (PNC)

4. Welcome Address by Workshop Director

K. Bingo

5. Introducing of Participants

6. Information from Secretariat

H. Murakami

12:00 - 13:30

LUNCH

SPECIAL LECTURE SESSION

13:30 - 17:15

13:30 - 14:15

Chairperson: K.Bingo

Foundations on Gamma- and X-ray Monitoring Instruments
T.Watanabe

14:15 - 15:05

Chairperson: N.Sakurai

Computation of Dosimetric Quantities in External Radiation Protection Y.Yamaguchi

15:05 - 15:40 COFFEE BREAK

15:40 - 16:20

Chairperson: R.V.Griffith

Dissemination of Exposure Standard and the Irradiation Field on ICRU Operational Quantities (A Suggestion of Practical Calibration for Operational Quantities)

K.Minami

16:20 - 17:10

Chairperson: B.Foote

Work of the ICRU and ICRP-ICRU Joint Task Group in Specifying Operational Quantities for Radiation Protection

R.V. Griffith

17:30 Move to Akogi-club

18:00 -19:30 **RECEPTION**

TUESDAY November 29 [Conference Room No.7]

COUNTRY REPORT SESSION I

Chairperson: G.Ramanathan

9:25 - 9:45 BANGLADESH

9:45 - 10:05 CHINA

10:10 - 10:45 **COFFEE BREAK**

Chairperson: W.Wanitsuksombat

10:45 - 11:05 INDIA

11:05 - 11:35 INDONESIA

11:35 - 11:50 JAPAN

12:00 - 13:30 LUNCH

COUNTRY REPORT SESSION II

Chairperson: S.S.Ahmad

13:30 - 13:50 KOREA

13:50 - 14:10 MALAYSIA

14:10 - 14:30 MONGOLIA

14:30 - 14:50 NEW ZEALAND

14:50 - 15:20 COFFEE BREAK

Chairperson: M.Begum

15:20 - 15:40 PAKISTAN

15:40 - 16:10 PHILIPPINES (2 persons)

16:10 - 16:30 THAILAND

16:30 - 17:00 VIETNAM (2 persons)

17:00 - 17:20 DISCUSSION

WEDNESDAY November 30 [Conference Room No.7]

DISCUSSION SESSION I: Overall Discussion for Instruments Calibration

9:15 - 10:40 Calibration of Radiation Protection Instruments in Asia & Pacific Region

- Present Status and Future Subjects; What's necessary for upgrading?

Chairperson: R.V.Griffith

10:40 - 11:00 COFFEE BREAK

11:00 - 12:00 TECHNICAL DEMONSTRATION

12:00 - 13:15 LUNCH

13:15 Move to PNC

13:30 - 15:00 TECHNICAL EXERCISE

PNC TN8410 95-319

THURSDAY December 1 [Conference Room No.8]

DISCUSSION SESSION II: Quality Assurance for Individual Monitoring

9:15 - 10:15

Chairperson: B.Foote

PROPOSAL PRESENTATION: IAEA/RCA Personal Dosimetry Intercomparison, Phase 2 R.V.Griffith

10:15 - 10:45 COFFEE BREAK

10:45 - 12:00 Comments from Participants & Discussion

Chairperson: R.V.Griffith

12:00 - 13:30 LUNCH

13:30 - 15:00 Discussion

Chairperson: R.V.Griffith

15:00 - 15:30 COFFEE BREAK

15:30 - 17:00 Discussion and Conclusion

Chairperson: R.V.Griffith

17:00 - 17:15 CLOSING SESSION

Chairperson: S.Kobayashi

1. Closing Remarks: N.Sakurai

2. Closing: R.V.Griffith

<>< PHOTOGRAPH : Conference Room No.7 >>>

17:30 Move to PNC Restaurant

17:45 - 19:30 DINNER PARTY

FRIDAY December 2

TECHNICAL TOUR

TO: Electro-Technical Laboratory (Primary Standard Laboratory of Japan)

別添2.

参加者一覧

Participants' List for IAEA/RCA Workshop

Participants:

Ms. Mahfuza BEGUM Health Physics Division Atomic Energy Centre P.O.Box 164, Ramna Dhaka 1000 BANGLADESH

Mr. ZHANG Qingli China Institute of Radiation Protection P.O.Box 120 Taiyuan Shanxi Province 030006 CHINA

Mr. Ganesan RAMANATHAN Radiation Standards Section Bhabha Atomic Research Centre Trombay, Bombay 400085 INDIA

Mr. Susetyo TRIJOKO PSPKR BATAN Jl. Cinere Pasar Jumat P.O.Box 7043 JKSKL Jakarta Salatan INDONESIA

Mr. Bong-Hwan KIM
Health Physics Department
Korea Atomic Energy Research Institute
P.O.Box 105, Yuseong-gu
Taejon 305-600
KOREA

Mr. Abd.Aziz bin MHD.RAMLI Nuclear Energy Unit Ministry of Science, Technology and the Environment PUSPATI Complex, Bangi 43000 Kajang SELANGOR DARUL EHSAN MALAYSIA Mr. Dashyn SHADRAABAL
Central Environmental Research Laboratory
Ministry of Environment and Nature
Ulan Bator - 52
MONGOLIA

Mr. Syed Salman AHMAD Health Physics Division PINSTECH P.O.Nilore Islamabad PAKISTAN

Ms. Arlean ALAMARES
Philippine Nuclear Research Institute
Commonwealth Avenue
P.O.Box 231
DILIMAN 3004, Quezon city
PHILIPPINES

Ms. Nieva LINGATONG
Radiation Health Service
Department of Health
San Lazaro Compound, Rizal Ave.
Sta. Cruz
Manila
PHILIPPINES

* Mr. Hikkaduwa L. ANIL RANJITH [Not come] Atomic Energy Authority 696, 1/1 Galle Road Colombo 3 SRI LANKA

Ms. Warapon WANITSUKSOMBUT
Office of Atomic Energy for Peace
Chatuchak
BANGKOK 10900
THAILAND

Mr. DANG Thanh Luong
Radiation Dosimetry Laboratory
Centre of Radiation Protection
Vietnam National Atomic Energy Commission
59 Ly Thuong Kiet Street
Hanoi
VIETNAM

Mr. PHO Duc Toan
Vietnam National Atomic Energy Commission
59 Ly Thuong Kiet Street
Hanoi
VIETNAM

Others; Lecturers & Technical Advisor:

* Mr. Neville J. HARGRAVE Australian Radiation Laboratory Lower Plenty Road, Yallambie Victoria 3085 AUSTRALIA [Not come]

Mr. Brian FOOTE
National Radiation Laboratory
108 Victoria Street,
P.O.Box 25099
Christchurch
NEW ZEALAND

Mr. Richard V. GRIFFITH
Division of Nuclear Safety
International Atomic Energy Agency
Wagramerstrasse 5, P.O.Box 100
A-1400 Vienna
AUSTRIA

Observer:

Mr. Si-Young CHANG
Health Physics Department
Korea Atomic Energy Research Institute
P.O.Box 105 Yusong
KOREA

Japanese:

MOFA Mr. Shinya MACHIDA

STA Mr. Shigeru YAMAZAKI

NIRS Mr. Sadayoshi KOBAYASHI

JAERI Mr. Kazuyoshi BINGO

Mr. Kentaro MINAMI Mr. Shigeru KUMAZAWA Mr. Hiroyuki MURAKAMI Mr. Yasuhiro YAMAGUCHI

Mr. Shigeru SHIMIZU

Mr. Yoshihiro Oi

Mr. Michio YOSHIZAWA Mr. Fumiaki TAKAHASHI

Mr. Tetsuya OISHI Mr. Mikio FUJII

Mr. Teruaki NAGANUMA Mr. Masao OHSAWA Mr. Kenji OGAWA Ms. Tomoko MAEJIMA Ms. Masae SEKINE

PNC Mr. Naoyuki SAKURAI

Mr. Tamotsu NOMURA
Mr. Mitsunori SUZUKI
Mr. Kenjiro MIYABE
Mr. Tomohiro ASANO
Mr. Takumaro MOMOSE
Mr. Noboru KOJIMA
Mr. Satoshi MIKAMI
Ms. Kumi INABA

Mr. Norio TSUJIMURA Mr. Noriaki ENDO Mr. Hiroyuki NAGAI Mr. Takahiro OTSUKA Ms. Fumiko SUNADA

Lecturer:

Mr. Tamaki WATANABE