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Diffusion Behaviour of Se in Compacted Sodium
Bentonite under Reducing Conditions

Haruo Sato™

ABSTRACT

In the performance assessment of geological disposal of high-level radioactive
waste in Japan, redox condition in deep geological environment is considered to
be reducing, and Se is one of the important redox sensitive elements. However,
no studies on diffusion of Se in bentonite under reducing conditions have been
reported yet. This paper describes the results of apparent diffusion coefficients
of Se in compacted sodium bentonite obtained as a function of bentonite
density under reducing conditions and discusses its diffusion behaviour.
Apparent diffusion coefficients of Se in compacted sodium bentonite, Kunigel
V1 (constituent montmorillonite 46 ~ 49wt%), were obtained in a range of dry
densities of bentonite, 800 ~ 1800 kg-m-3 under reducing conditions (Eh vs.
SHE -373~-363mV) at room temperature (23.6~23.7°C) by in-diffusion method.
All the experiments were carried out in an N2-atmospheric glove box (02 <
lppm) and the reducing conditions of the porewater were maintained by
continuous contact between compacted bentonite and reducing solution
including 5.7x10-4 M-Na;S,04 through a sintered metal filter. The Eh of
reducing solution was continuously monitored. Furthermore, a through-
diffusion experiment of NaS,04 was also carried out at a dry density, 1800
kg-m-3 in order to check the reducing condition of the porewater. The Eh in the
measurement cell was confirmed to be the same as that in the tracer cell. The
apparent diffusion coefficients of Se were in the range, 6.1x10-11 ~ 4,3x10-10
mZ-s-1 and showed a tendency of slight decrease with increasing dry density of
bentonite. The dominant species of Se in the porewater under reducing
conditions is predicted to be HSe-, and the apparent diffusion coefficients of
HSe~ in the bentonite were approximately the same as those of TcO4- taking the
same ionic charge. However, those for actinides in bentonite are known to be
quite low under oxidizing conditions, and they form dominant anionic
complexes in the porewater. Diffusion behaviour of actinides in bentonite
seems to be different from those of TcO4- and HSe-. Therefore, diffusion
behaviour of ions, forming a simple anion with the same charge in bentonite is
shown to be very similar.

* Geological Isolation Technology Section, Waste Technology Development
Division, Tokai Works, Power Reactor and Nuclear Fuel Development
Corporation, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-11 Japan-
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1. INTRODUCTION

Diffusion coefficients of key nuclides in compacted bentonite are listed up as
one of the important parameters required in the performance assessmsnt of
geological disposal of high-level radioactive waste in Japan. Many studies on
diffusion of nuclides in compacted bentonite have been reported, focused on
Na-typed bentonite to date (For example, Sato et al., 1993). However, almost all
the studies have been carried out under aerobic conditions, and redox condition
in deep geological environment has not been taken into account. The redox
condition in deep geological environment is considered to be reducing, and
elements being sensitive to the redox condition are presumed to be different
chemical behaviour from that under atmospheric conditions.

Selenium-79 is produced as a fission product in a power reactor and is one of
the important radionuclides for performance assessment because of its long half-
life of 6.5x104 yr. Selenium is a redox sensitive element, and it is well known
that the valence changes depending on redox condition. Moreover, for
chemical species of Se, it is known that Se forms anion when exisits as an ion in
solution, and that it is weak sorptive on bentonite has been clarified
experimentally (Shibutani et al., 1994).

We have obtained apparent diffusion coefficients of Se in comacted
bentonite in a range of densities of 400 ~ 1800 kg-m-3 using crude sodium
bentonite, Kunigel V1®, under anaerobic condition (O2: 2.5ppm)(Sato et al.,
1994a, 1994b, 1995). However, these studies were all conducted under
atmosphere controlled system, but not under reducing condition.

Selenium can chemically take Se(-II), (0), (IV) and (VI) as valence state, and
SeO32- species is predicted to be predominant under anaerobic conditions
(Ticknor at al., 1988). However, it is well known that HSe- species is
predominant under reducing conditions (Brookins, 1988; Ticknor, 1988). As

described above, some studies on diffusion of Se under anaerobic conditions
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have been reported, but no studies carried out under reducing conditions which
is considered to be deep geological environment have been reported yet.

This paper describes the results of apparent diffusion coefficients of Se in
compacted sodium bentonite obtained as a function of bentonite density under

reducing conditions and discusses its diffusion behaviour.
2. EXPERIMENTALS
2.1 Diffusion experiment

The experiments were carried out by in-diffusion method (Torstenfelt and
Allard, 1986). The experimental condition is shown in Table 1. Bentonite,
Kunigel V1, was dried at 110°C in an oven for over night and was packed into
acrylic diffusion columns to get densities of 800, 1400 and 1800 kg-m-3,
respectively. Figure 1 shows a schematic view of the diffusion column. Each
column has a hole with 20mm in diameter and 20mm thick, in which hole
bentonite sample is emplaced. In the packing of the bentonite, the samples of
1400 and 1800 kg-m-3 were compacted using a hydraulic press and a punching
tool (Sato et al., 1992).

The columns with bentonite were placed in the evacuation chamber of an
atmosphere controlled glove box and were evacuated oxygen gas sorbed on
the bentonite and it existed in the bentonite pore by exchanging with Nﬁ gas.
They were then put in the glove box purged with N, gas. The evacuation was
repeated 3 times. Next, doubly distilled water degassed by bubbling with
atmospheric gas of the glove box for over night was prepared. Moreover,
porewater lowered redox potential by adding a small amount of Na;S,04
(Sodium Hydrosulfite, Junsei Chemical C., Ltd.) to the degassed water was
prepared (5.7x10-4M-NazS,04). The columns with bentonite were then
immersed in this porewater to be saturated. Figure 2 shows a concept of the

immersion of the columns. The immersion was conducted for 4 weeks. The
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redox potential of the porewater was also monitored during the immersion and
was constantly maintained by adding reductant (Na,S,04) as appropriate. After
the bentonite was saturated with the porewater, a tracer solution was prepared
by diluting a 1000ppm-Se Standard Solution (Waco Pure Chemical Industries,
Ltd.) with aliquot of the porewater used in the immersion of bentonite. The pH
of the tracer solution lowered by dissolving of the Se Standard Solution, but
was adjusted by NaOH to become pH 7.0 which corresponds to the porewater
pH. This solution was then placed for a week for aging of precipitation and was
filtered with a 0.2um pore size filter in order to separate the precipitation from
the solurion. The concentration of Se in the tracer solution was determined to
be 100ppm (corresponding to 1.3x10-3M) from analysis with an ICP emission
spectroscopy (detection limit: 0.03ppm, corresponding to 3.8x10-7’M). A small
amount of this tracer solution (50pl) was pipetted on the surface of bentonite
specimen in each column, and a blind lid (bottom of thie column) was then shut
with bolts as shown in Figure 3. On the other hand, the top lid of the column
with hole remained as it was in order to come in contact with porewater
adjusted redox potential. Then porewater level was adjusted not to reach the
position of tracer pipetted. The experiments were run for 3, 6 and 10 days for
densities of 800, 1400 and 1800 kg-m-3, respectively.

After certain time period, the cylindrical core of bentonite was pushed out
with an extruding tool (digital position indicator) and cut into 2mm thick slices
with a cutter kmife as shown in Figure 4. Each slice was put in sample bottles
and put those out from glove box. Selenium was extracted from the bentonite
slices in a IM-HNOj3 solution with a liquid/solid ratio of 0.02 m3-kg-! for 3 days.
The extracted solutions were then filtered with a 0.2um pore size filter. The
concentrations of Se in the filtered solutions were analyzed with an ICP

emmision spectroscopy.
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2.2 Through-diffusion test of reductant through compacted bentonite

In the diffusion experiments under reducing conditions, the control of redox
potential of the porewater in bentonite during the immersion and diffusion
experiment was maintained by continuous contact between reducing solution
and compacted bentonite through a sintered metal filter. However, whether the
bentonite porewater was under reducing condition or not has not been
checked. In this mesurement, the conductivity of redox potential (permeativity
of reductant) was experimentally investigated through compacted bentonite in
order to know indirectly redox potential of the porewater.

The experiment was carried out by through-diffusion method (Kita et al.,
1989; Park et al., 1991) in experimental condition shown in Table 2. Figure 5
shows a schematic view of acrylic diffusion cell. Bentonite, Kunigel V1, was
dried at 110°C for over night and was packed into sample holder of the
diffusion cell to get a density of 1800 kg-m-3. The size of sample is 20mm in
diameter and Smm thick. The diffusion cell with bentonite was also evacuated
oxygen gas sorbed on the bentonite and it existed in the bentonite pore in the
evacuation chamber in the same way as diffusion experiment of Se. They were
then put in the glove box. Degassed doubly distilled water was also prepared in
the same way as in-diffusion experiments. This degassed water was injected
with a volume of 100ml into both a tracer and a measurement cell of diffusion
cell shown in Figure 5 in order to saturate bentonite. The saturation was
conducted under vacuum conditions (several tens of torr) to accelerate for 2
weeks. After the saturation of bentonite, a small amount of reductant, an
NazS,04 powder was added into the tracer cell to become a concentration of
5.7x10-3M, and the conductivity test of redox potential was started. During the
experiment, Eh vs. SCE values of the solutions in both cells were measured as a
function of time using an ORP electrode (Toa Electronics Ltd., saturated calomel
electrode (SCE) PTS-5011C) by a pH meter (Toa Electronics Ltd., HM-30S). At

the same time, temperature of the solutions was also measured with an accuracy
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of £0.5°C in order to calculate Eh vs. SHE (Standard Hydrogen Electrode)

values.

3. RESULTS AND DISCUSSION

3.1 Through-diffusion test of reductant through compacted bentonite

Figure 6 shows the changes in Eh vs. SCE of solutions in both cells of
diffusion cell as a function of time, and Figure 7 shows the changes in Eh vs.
SHE as a function of time. Since electrode used for the measurement of redox
potential in this experiment was a saturated calomel electrode (SCE), the
measured values were converted to Eh vs. SHE values based on equation
proposed by Ostwald; Eh=0RP+0.2415-0.00079(T-25) (Tajima, 1986). Where
Eh is the Eh vs. SHE (V), ORP is the Eh vs. SCE (V) and T is the temperature
0.

As shown in Figure 7, the Eh vs. SHE of solution in the measurement cell
began to lower after several tens of minutes and became approximately the same
value as that of solution in the tracer cell after 3 days. The experiment was
continued for 9 days, and a little rise in the Eh was found with increasing time.
This probable reason is the decrease in reducing capacity of reductant, and it is
presumed that reducing condition is able to be maintained by adding reductant
as appropriate. Since the change in redox potential in rneasurement cell occurs
through bentonite porewater, redox potential of the porewater is also
considered to lower. From this experiment, redox potential adjusted out of
compacted bentonite is considered to become equal to that of the porewater of

compacted bentonite after about 3 days for a sample of Smm in thickness.
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3.2 Recovery of Se from bentonite

The recovery of Se from bentonite specimen was estimated based on the
total amount of tracer (5.0x10-2 kg) introduced a diffusion experiment and the
accumulated quantities of Se extractea from each bentonite slice. The
recoveries were 76 ~ 100% and were quite acceptable. Therefore, it is judged
that correction of recovery in concentration profile of Se in bentonite is not

needed.
3.3 Change in temperature

Since diffusion experiments were carried out in an atmosphere controlled
glove box which cannot control temperature, the temperature in the glove box
was monitored during the experiments. Figure 8 shows the change in
temperature as a function of time in the glove box. As shown in Figure 8, the
temperature in the glove box during the experiments was relatively stable at

about 24°C throughout the saturation of bentonite and diffusion experiments.
3.4 Change in redox potential of porewater

Figure 9 shows the change in Eh vs. SCE of the porewater of bentonite as a
function of time coming in contact during the saturation of bentonite and
diffusion experiments. As Figure 9 shows, the Eh vs. SCE was stable at around
-600mV (corresponding to about -350mV vs. SHE) throughout all the
experiments. Therefore, it is presumed that reducing condition was being

maintained.
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3.5 Apparent diffusion coefficient

Figures 10 ~ 12 show concentration profiles of Se in compacted bentonite
in the direction of the depth from the surface of bentonite specimen (diffusion
source), on which tracer solution was pipetted for each density and those as a
function of square of distance from the diffusion source. As shown in Figures,
remarkably high concentration was not found near the diffusion source. In
actual, no precipitation of Se was found on the surface of bentonite specimen
when tracer solution was pipetted. From this, apparent diffusion coefficient was
calculated by the analytical solution in a thin layer source.

Diffusion equation for one-dimensional non-steady state is given by the
following equation based on Fick's second law (Torstenfelt et al., 1985;
Muurinen et al., 1985).

d C(t, X) =Daa-? C(t, X)

dt oX? M

Where C(t, X) is the concentration of Se per unit volume of bentonite (kg-m-3), t
is the time (s), X is the distance from the diffusion source (m) and Da is the
apparent diffusion coefficient (m2-s1).

For one-dimensional diffusion of a planar source consisting of a limited

amount of substance in a cylinder of infinite length, the analytical solution of
equation (1) is derived based on initial and boundary conditions as follows
(Crank, 1975).
Initial condition
Ct,X)=0,t=0,X>0
Boundary condition
Ct,X)=0,t>0,X =0
M = oJ?C(t, X)dX

0

ot X)=— ex —XZJ @
= Trbat P\ 4Dat
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Where M is the total amount of tracer (Se) per unit area of bentonite specimen
(kg-m-2).

From equation (2), taking log C(t, X) and X2 as the vertical and the
horizontal axes, respectively, the slope , —1/(4Dat) gives apparent diffusion
coefficient from the relation with time. The apparent diffusion coefficients were
obtained from the linear least-squares fit to the plot. Table 3 shows the
obtained apparent diffusion coefficients of Se in compacted bentonite, and
Figure 13 shows a dependence of apparent diffusion coefficient on dry density
of bentonite. As shown in Figure 13, though it is not remarkable, the apparent
diffusion coefficients of Se showed a tendency of decrease with increasing dry
density of bentonite. The dominant species of Se in the porewater was
predicted to be HSe- by Eh-pH diagrams (Brookins, 1988; Ticknor et al., 1988)
around pH 8 ~ 9 which is considered to correspond to pH (Sasaki et al., 1995) of
the porewater. The apparent diffusion coefficients obtained in this study have a
little higher than those of SeO32- obtained under anaerobic conditions and were
approximately the same values as those of TcO4 having an ionic charge of —1.
Shibutani et al. (Shibutani et al., 1992, 1994) have carried out studies on
sorption of Se032- on bentonite under anaerobic conditions and have reported
that little or no sorption was found on bentonite in a wide pH range. Since it is
shown that Se forms anion when exists as an ion in solution, Se is presumed to
be weak sorptive on bentonite. It is well known that Tc also takes dominantly
TcOy4 in a wide pH range under atmospheric conditions (Brookins, 1988).
Besides, since it is known that distribution coefficient of TcO4- on bentonite is
generally low (Brandberg and Skagius, 1991), the fact supports that apparent
diffusion coefficients of TcO4 were the highest values next to those of HTO
which is a non-sorbing nuclide on bentonite. To the contrary, actinides such as
Np, Am and Pu are considered to form dominantly anions in the porewater of
bentonite under oxidizing conditions, but distribution coefficients of these
nuclides on bentonite are generally high, and apparent diffusion coefficients of

these nuclides in compacted bentonite are also quite low (Sato et al., 1992,
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1993). However, chemical behaviour of actinides is complicated, and these
nuclides form some anionic complexes in bentonite porewater as well as form a
small rate of cations. Therefore, these nuclides would be retarded by the
combination of sorption on bentonite, anion-exclusion and molecular filtration
(McKinley and Hadermann, 1984) caused by a formation of large complexes
(Sato et al., 1992, 1993). Thus diffusion behaviour of these nuclides .in
bentonite seems to be different from those of TcO4 and HSe"~. From this, ions
forming a simple anion with the same charge in bentonite porewater are
predicted to be similar apparent diffusion coefficients in the same conditions.
The surface of bentonite particle is generally known to be negatively charged
(Sato et al., 1992) around pH 8 ~ 9. Therefore, that apparent diffusion
coefficients of HSe- in compacted bentonite showed a little higher than those of
Se032- would be due to the difference in the effect of anion-exclusion
(McKinley and Hadermann, 1984) in compacted bentonite caused by the

difference of ionic charge between both species.
4. CONCLUSIONS

(1) Apparent diffusion coefficients of Se in compacted sodium bentonite,
Kunigel V1, were obtained in a range of dry densities of 800 ~ 1800 kg-m-3
under reducing conditions (Eh vs. SHE -373 ~ -363mV) at room
temperature (23.6~23.7°C) by in-diffusion method. All the experiments
were carried out in an Nj-atmospheric glove box (O; < 1ppm), and the
reducing conditions of the porewater were maintained by continuous
contact between compacted bentonite and reducing solution including
5.7x10-4M-Na;,S,04 through a sintered metal filter. The redox potential of
the reducing solution was continuously monitored. Furthermore, a through-
diffusion experiment of Na;S,04 was also carried out at a dry density of
1800 kg-m-3 in order to check the redox potential of the porewater. The

redox potential in the measurement cell was confirmed to be the same as that

_10_
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in the tracer cell. The apparent diffusion coefficients of Se were in the range,
6.1x10-11 ~ 4.3x10-10 m2-s-! and showed a tendency of slight decrease with
increasing dry density of bentonite.

(2) The dominant species of Se in the porewater of bentonite under reducing
conditions is predicted to be HSe", and the apparent diffusion coefficients of
HSe- in the bentonite were approximately the same as those of TcOg4- taking
the same ionic charge. However, those for actinides in bentonite are known
to be quite low under oxidizing conditions, and they form dominant anionic
complexes in the porewater. Diffusion behaviour for actinides in bentonite
seems to be different from those of TcO4 and HSe-. Therefore, diffusion
behaviour of ions, forming a simple anion with the same charge in bentonite

is shown to be very similar.
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Table 1 Experimental condition in diffusion

Bentonite Kunigel V1(Kunimine Industries Co. Ltd.)
Dry density 800, 1400, 1800(kg m-3)
Method In-diffusion method

Initial porewater degassed doubly distilled water
+ reducing agent(Na2S204): 5.7x10™*M

Atmosphere under atmosphere controlled condition
(N2-atmosphere, O2 < 1ppm)

Temperature temperature in glove box (20~25C)

Tracer SeO2 solution(1.3x10 3 M Se02)
Producibility n=2
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Table 2 Experimental condition in conductivity test of
redox potential in compacted bentonite

Bentonite Kunigel V1(Kunimine Industries Co. Ltd.)

Dry density 1800(kg m-3 )

Method Through-diffusion method
Initial porewater degassed doubly distilled water
Reductant N2a25204(5.7x1073 M)
Atmosphere under atmosphere controlled condition
(N2-atmophere, O2< 1ppm)
Temperature temperature in glove box(20~257C)

Producibility n=1
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Table 3 Obtained apparent diffusion coefficients

Dry density Temperature gy, s SHE(mV) Da(mZ2s-1)

(kg m-3) (C)
4.3x10-10
800 23.610.1 -
3.6x0 373 171010
2.2x10-10
1400 23.6t0.1 -368 5.5 1.6x10-10
2.3x10-10

7=x0. -363+1.1
1800 23.7+0.3 3631 6.1x10-11
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Figure 1 Schematic view of diffusion column
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Figure 2 Concept of immersion of diffusion columns with bentonite
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Figure 3 Concept of diffusion experiment
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Analysis: ICP emission spectroscopy
Detection limit: 0.03(ppm)(3.8x10-7M)

Figure 4 Slice of bentonite and extraction of tracer
from the bentonite slice
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Figure 5 Schematic view of diffusion cell
for bentonite experiment
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Figure 6 Changes in Eh vs. SCE of solutions in both

cells of diffusion cell as a function of time
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Figure 7 Changes in Eh vs. SHE of solutions in both
cells of diffusion cell as a function of time
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Figure 8 Change in temperature as a function of time

in atmosphere controlled glove box
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Figure 9 Change in Eh vs. SCE of porewater as a function of time
coming in contact during the saturation of bentonite and

diffusion experiment

Redox potential(mV) vs. SCE
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Figure 10 Concentration profiles of Se in compacted bentonite as

functions of distance (upper Figure) and square of distance
from diffusion source (lower Figure) for a density of 800 kg m™
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Figure 11 Concentration profiles of Se in compacted bentonite as
functions of distance (upper Figure) and square of distance

from %iffusion source (lower Figure) for a density of 1400
kg m-
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Figure 12 Concentration profiles of Se in compacted bentonite as
functions of distance (upper Figure) and square of distance
from c%iffusion source (lower Figure) for a density of 1800
kg m-
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Figure 13 Apparent diffusion coefficients for nuclides
and elements as a function of dry density of
bentonite obtained to date
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