蒸気発生器安全性総合試験装置（SWAT－3）
Run－4試験結果
－大リーク・ナトリウム－水反応試験(第9報)－

1979年6月

動力炉・核燃料開発事業団
複製又はこの資料の入手については、下記にお問い合わせ下さい。
〒311-13 茨城県東茨城郡大洗町成田町4002
動力炉・核燃料開発事業団 大洗工学センター
システム開発推進部　技術管理室

Inquiries about copyright and reproduction should be addressed to:
Technology Management Section, O-arai Engineering Center, Power Reactor
and Nuclear Fuel Development Corporation 4002, Narita O-arai-machi Higashi-
Ibaraki-gun, Ibaraki, 311-14, Japan

動力炉・核燃料開発事業団（Power Reactor and Nuclear Fuel Development
Corporation）
蒸気発生器安全性総合試験装置（SWAT－3）
Run－4 試験結果
－大リーク・ナトリウム－水反応試験（第9報）－

広 井 博*
佐 藤 稔*
田 辺 裕 美*
鈴 見 正 和*
吉 岡 直 樹**
畑 豊 夫***

要
旨

高速増殖原型炉「もんじゅ」蒸気発生器の大リーク・ナトリウム－水反応事故に対する安全設計データを得るため、動燃大洗工業センターより、SWAT－1 試験装置、SWAT－3 試験装置を用いて試験が行なわれている。

本報告書は SWAT－3 で実施された第4回大リーク・ナトリウム－水反応試験（Run－4）にて得られたデータをとりまとめたものである。

Run－4 で使用された内部構造物は、東芝／石川島播磨重工業㈱で設計製作されたものである。本試験の主目的は伝熱管コイル上部（液面下640mm）でのナトリウム－水反応現象の解明にある。

Run－4 の注水率は、9.0kg/secであり、これは iso-velocity model によれば、「もんじゅ」蒸気発生器伝熱管5本破断に相当する試験規模であった。

試験においては、圧力、歪、温度、液面、ポイド、配管反力、加速度、変位、流量等が計測された。初期スパイク圧力は注水点近傍で 1 4.7kg/㎠a であり、蒸発器内での準定常圧力の最大値は 5.4kg/㎠a であった。蒸発器放出系ラブチャートは注水開始後 0.536 sec に破壊し、放出系の動作は良好であった。伝熱管二次破断はなかった。

* 大洗工業センター蒸気発生器開発部蒸気発生器安全性試験室
** 現在 MAPI
*** 大洗工業センター蒸気発生器開発部
Test Results of Run-4 in Steam Generator Safety Test Facility (SWAT-3)

-Report No. 9; Large Leak Sodium-Water Reaction Test-

Hiroshi Hiroi*
Minoru Sato*
Hiromi Tanabe*
Masakazu Nishikimi*
Naoki Yoshioka**
Masao Hori***

Abstract

Large leak sodium-water reaction tests have been carried out using the SWAT-3 facility in PNC O-arai Engineering Center to obtain data on the safe design of the prototype LMFBR Monju's steam generator with reference to preventing large leak accident.

This report gives the results of SWAT-3 run-4 test.

The heat transfer tube bundle of the evaporator used in run-4 test was designed and manufactured by TOSHIBA/IHI.

Main purpose of this test is to clarify sodium-water reaction phenomena occurred in the upper coil region, that is, the place near by sodium surface.

Water was injected into the evaporator at the rate of 9.0 kg/sec, which corresponds to a test scale of 5 tube failure in an actual size system according to iso-velocity modeling.

Measurements were taken of pressure, strain, temperature, sodium level, void, thrust load, acceleration, displacement, flow rate, and so on.

Initial spike pressure was 14.7 kg/cm²a closest to the injection point, and the maximum quasi-steady pressure in the evaporator was 5.4 kg/cm²a. The rupture disc of the evaporator burst 0.536 sec. after water was injected, and the pressure relief system functioned well. No secondary tube failure was observed.

* Steam Generator Safety Section, Steam Generator Division, O-arai Engineering Center, PNC.
** Present affiliation; MAPI.
*** Steam Generator Division, O-arai Engineering Center, PNC.
SWAT-3 試験参加者

統括者 佐藤稔（蒸気発生器安全性試験室長）

注水試験担当
山田敏雄（蒸気発生器安全性試験室）
高橋憲二郎（
大高仁護（
佐々木和一（
渡辺智夫（
大内義弘*（

試験計画担当
広井博（蒸気発生器安全性試験室）
田辺裕美（
鈴見正和（
古岡直樹**（
田中信夫***（
堀雅夫（蒸気発生器開発部長代理）

* 現在 原研
** 現在 MAPI
*** 現在 大規模実験センター高濃度安全性試験室
June, 1979

Test Results of Run-4 in Steam Generator Safety Test Facility (SWAT-3)

—Report No. 9 ; Large Leak Sodium-Water Reaction Test—

Hiroshi Hiroi*
Minoru Sato*
Hiromi Tanabe*
Masakazu Nishikimi*
Naoki Yoshioka**
Masao Hori***

Abstract

Large leak sodium-water reaction tests have been carried out using the SWAT-3 facility in PNC 0-arai Engineering Center to obtain data on the safe design of the prototype LMFBR Monju's steam generator with reference to preventing large leak accident.

This report gives the results of SWAT-3 run-4 test.

The heat transfer tube bundle of the evaporator used in run-4 test was designed and manufactured by TOSHIBA/IHI.

Main purpose of this test is to clarify sodium-water reaction phenomena occurred in the upper coil region, that is, the place near by sodium surface.

Water was injected into the evaporator at the rate of 9.0 kg/sec, which corresponds to a test scale of 5 tube failure in an actual size system according to iso-velocity modeling.

Measurements were taken of pressure, strain, temperature, sodium level, void, thrust load, acceleration, displacement, flow rate, and so on.

Initial spike pressure was 14.7 kg/cm² a closest to the injection point, and the maximum quasi-steady pressure in the evaporator was 5.4 kg/cm² a. The rupture disc of the evaporator burst 0.536 sec. after water was injected, and the pressure relief system functioned well. No secondary tube failure was observed.

* Steam Generator Safety Section, Steam Generator Division, 0-arai Engineering Center, PNC.
** Present affiliation ; MAPI.
*** Steam Generator Division, 0-arai Engineering Center, PNC.
1. まえがき .. 1
2. 試験概要 .. 2
 2.1 試験装置 ... 2
 2.2 計測系 .. 2
 2.3 試験条件 ... 4
 2.3.1 蒸発器内部構造物型式 .. 4
 2.3.2 注水系 .. 6
 2.3.3 ナトリウム系 ... 7
 2.3.4 放出系 .. 7
 2.3.5 ドレーン系 ... 8
 2.3.6 純化系 .. 8
 2.4 試験経過 .. 9
 2.4.1 全体経過 ... 9
 2.4.2 試験運転経過 ... 10
3. 試験結果 .. 14
 3.1 注水率 .. 15
 3.2 初期スパイク圧力 ... 19
 3.3 圧力波伝播 ... 21
 3.4 準定常圧力 ... 22
 3.5 歪 .. 26
 3.6 温度 ... 29
 3.7 蒸発器内および二次系内の流動 .. 31
 3.8 放出系配管内の流動 .. 32
 3.9 放出系配管の運動 .. 33
 3.10 放出ナトリウム量 ... 34
 3.11 二次系配管の運動 ... 35
 3.12 水素ガス大気放出 .. 36
 3.13 伝熱管二次破断 ... 37
 3.14 ラブチャ板破裂状況 .. 38
4. その他の特記事項 ... 39
 4.1 溶接用ステンレス鋼棒によるウェステージ測定結果 39
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>収納容器大気放出弁の弁座部改造結果</td>
<td>41</td>
</tr>
<tr>
<td>5.</td>
<td>す び</td>
<td>43</td>
</tr>
<tr>
<td>6.</td>
<td>謝 辞</td>
<td>45</td>
</tr>
<tr>
<td>7.</td>
<td>参考文献</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Appendix 1. 計測点リスト</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Appendix 2. 試験時の Hour Log, Fast Scan Log</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Appendix 3. 注水試験計時結果</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Appendix 4. Run-4 主な準備作業経過</td>
<td>278</td>
</tr>
</tbody>
</table>
図表リスト

Fig. 2.1.1 立体概観図.. 49
Fig. 2.1.2 全体計画制御系統図... 51
Fig. 2.1.3 蒸発器.. 53
Fig. 2.1.4 過熱器.. 55
Fig. 2.1.5 反応生成物収納容器.. 57
Fig. 2.1.6 水加熱器.. 59
Fig. 2.1.7 中間熱交換器... 61
Fig. 2.3.1 注水系ラブチ+板 (RD501)................................... 62
Fig. 2.3.2 注水系ラブチ+板 (RD502)................................... 63
Fig. 2.3.3 ドレン配管組立図... 64
Fig. 3.1.1 Water Injection System..................................... 65
Fig. 3.1.2 注水配管圧力計... 67
Fig. 3.1.3 Pressure Transducer Locations in Water Injection Tube... 68
Fig. 3.1.4 注水管組立図.. 69
Fig. 3.1.5 History of Water Heater Condition........................... 70
Fig. 3.1.6(a)~(b) Measured Result of Turbine Meter.................. 71
Fig. 3.1.7(a)~(b) Drag Force in Water Injection Line................ 73
Fig. 3.1.8(a)~(c) Pressure Transient in Water Injection Pipe above RD501 75
Fig. 3.1.9(a)~(c) Pressure Transient in Water Injection Tube 78
Fig. 3.1.10(a)~(b) Pressure Distribution in Water Injection Pipe ... 81
Fig. 3.2.1 Pressure Transducer Locations in Evaporator (Run-4)...... 83
Fig. 3.2.2(a)~(c) Initial Spike Pressure at Pressure Tap in Evaporator... 84
Fig. 3.2.3 Initial Spike Pressure in Coil Region........................ 87
Fig. 3.2.4 Fine Structure of Pressure (P114, P115)..................... 88
Fig. 3.3.1 Secondary Loop Circuit in SWAT-3........................... 89
Fig. 3.3.2(a)~(c) Propagated Pressure.................................. 91
Fig. 3.3.3(a)~(c) Long Time Transient of Propagated Pressure 94
Fig. 3.4.1 压力測定器用導圧管... 97
Fig. 3.4.2(a)~(f) Quasi-Steady Pressure in Evaporator (0~2 sec)...... 98
Fig. 3.4.3(a)~(f) Quasi-Steady Pressure in Evaporator (0~6 sec)...... 104
Fig. 3.4.4(a)~(c) Quasi-Steady Pressure in Evaporator (0~30 sec)... 110
Fig. 3.4.5(a)~(c) Quasi-Steady Pressure in Superheater 113
Fig. 3.4.6(a)~(c) Quasi-Steady Pressure in I. H. X. 116
Fig. 3.4.7(a)~(e) Quasi-Steady Pressure in Secondary Piping (0~2 sec) 119
Fig. 3.4.8(a)~(e) Quasi-Steady Pressure in Secondary Piping (0~6 sec) 124
Fig. 3.4.9(a)–(d) Quasi-Steady Pressure in Secondary Piping (0-30 sec)........ 129
Fig. 3.4.10 Instrumentation Locations in Pressure Relief Line....................... 133
Fig. 3.4.11(a)–(c) Quasi-Steady Pressure in Pressure Relief Line................. 135
Fig. 3.5.1 Strain Gage Locations on Evaporator.. 138
Fig. 3.5.2(a)–(e) Strain of Evaporator Wall... 139
Fig. 3.5.3(a)–(d) Strain of Evaporator Wall owing to Quasi-Steady Pressure... 144
Fig. 3.5.4 Measuring Method of Gap Between Flanges................................ 148
Fig. 3.5.5(a)–(b) Strain of Base Plate Fixed Between Flanges.......................... 149
Fig. 3.6.1 T. C. Locations in Evaporator.. 151
Fig. 3.6.2(a)–(z) Temperature in Evaporator.. 153
Fig. 3.6.3(a)–(d) Temperature in Secondary Loop....................................... 179
Fig. 3.6.4(a)–(d) Temperature in Pressure Relief Line................................ 183
Fig. 3.6.5 Location of Thermocouples Added for Run-4 in Reactor
Product Tank.. 187
Fig. 3.6.6(a)–(c) Temperature in Reaction Product Tank................................. 188
Fig. 3.7.1 Shift of Sodium Level in Evaporator.. 191
Fig. 3.7.2 Void Detector Locations in Evaporator....................................... 192
Fig. 3.7.3(a)–(f) Void Behaviour in Evaporator.. 193
Fig. 3.7.4 Sodium Flow in Evaporator... 199
Fig. 3.7.5(a)–(b) Acceleration of Internals in Evaporator............................. 200
Fig. 3.7.6 Flow Rate in Secondary Loop (F101).. 202
Fig. 3.8.1 Sodium Front Velocity in Pressure Relief Line.............................. 203
Fig. 3.8.2 Void Fraction in Pressure Relief Line from the Densitometer......... 204
Fig. 3.8.3 Sodium Void Detector Locations in Pressure Relief Pipe............... 205
Fig. 3.8.4(a)–(b) Sodium Void in Pressure Relief Line................................ 206
Fig. 3.8.5 Drag Force in Pressure Relief Piping of Evaporator..................... 208
Fig. 3.9.1 The Location of Load Cells, Acceleration Sensors and
Strange Gages in Pressure Relief Line.. 209
Fig. 3.9.2(a)–(d) Thrust Load on Pressure Relief Piping............................... 210
Fig. 3.9.3 放出系加速度計の測定方法... 215
Fig. 3.9.4(a)–(c) Acceleration at Pressure Relief Piping............................... 217
Fig. 3.9.5 Strains on Pressure Relief Piping.. 220
Fig. 3.11.1 Acceleration Sensor and Displacement Sensor Locations
in Secondary Loop.. 221
Fig. 3.11.2 加速度計の測定方法... 222
Fig. 3.11.3 変位計の測定方法... 222
Fig. 3.11.4(a)~(j) Acceleration at Secondary Loop (A1001-A1010) 223
Fig. 3.11.5(a)~(b) Displacement at Secondary Loop (A1011, A1012) 233
Fig. 3.12.1 水素ガス大気放出（写真） .. 235
Fig. 3.13.1 Pressure Transient of Pressurized Tubes 237
Fig. 3.14.1 RD601 破裂状況（写真） 239
Fig. 3.14.2 RD603 破裂状況（写真） 239
Fig. 4.1.1 ウェステージ用ターゲットの配置図 241
Fig. 4.1.2 試験前の寸法測定結果 ... 242
Fig. 4.1.3 寸法測定要領 ... 242
Fig. 4.1.4 寸法測定結果 ... 243
Fig. 4.2.1 大気放出弁 ... 245
Fig. 4.2.2 弁座部改造図 ... 247
Fig. 4.2.3 注水試験後の弁座部（写真） 249
Fig. 5.1 Outline of Pressure Transient in Evaporator 251
Table 2.1.1 実験計測のまとめ（Run－4） ... 3
Table 2.3.1 試験条件のまとめ ... 47
Table 2.3.2 内部構造物仕様（Run－4） .. 5
Table 2.3.3 伝熱管長さ（Run－4） .. 5
Table 2.3.4 注水系ラブチャ板仕様 ... 6
Table 2.3.5 注水配管内温度 ... 6
Table 2.3.6 放出系ラブチャ板仕様 ... 7
Table 2.4.1 Run－4 全体経過 ... 9
Table 2.4.2 Run－4 試験運転経過の概略 .. 13
Table 3.1.1 注水配管系の仕様 .. 15
Table 3.1.2 破断に伴なう減圧波のデータ ... 17
Table 3.2.1 初期スパイク圧力のまとめ ... 20
Table 3.4.1 RD601 破裂時圧力データのまとめ 23
Table 3.4.2 各機器での準定常圧力 ... 25
Table 3.5.1 E V胴壁厚の測定結果のまとめ .. 27
Table 3.10.1 注水試験前後の液位 .. 34
Table 3.13.1 加圧伝熱管圧力 ... 37
Table 3.14.1 放出系ラブチャ板破裂データ ... 38
Table 3.14.2 注水系ラブチャ板破裂データ ... 38
Table 4.1.1 ウェステージ測定用に使用した溶接用ステンレス鋼棒の仕様 39
1. まえがき

高速増殖原型炉「もんじゅ」の蒸気発生器系の大リーク・ナトリウム－水反応に対する安全設計法の確立のため、動軸洗工学センターにおいて、大リーク・ナトリウム－水反応試験装置（SWAT－1）および蒸気発生器安全性総合試験装置（SWAT－3）を用いて、一連の注水試験が行われつつある。本報告書はSWAT－3装置において実施された第4回大リーク・ナトリウム－水反応試験（Run－4）にて得られたオリジナルデータを取りまとめたものである。

Run－4用蒸発器内部構造物は、1976年3月から東芝／石川島播磨重工業（IHI）によって製作が開始され、1976年12月竣工を完了した。その後、動軸の手で準備作業が行われ、1977年3月18日、注水試験が実施された。

実施された注水試験規模は、注水率3.0 kg/secであり、これはIso－velocity modelにより換算すれば実機SGにおいて伝熱管5本破断に相当するものである。

本試験の主目的は、これまで実施された3回の試験（Run－1～Run－3）の注水位置が伝熱管コイル下部であったのに対して、伝熱管コイル上部におけるNa－水反応現象の解明にある。

（注水位置はナトリウム液面下640mmであった）従って、注水位置以外の試験条件はほぼRun－3と同様である。

注水試験後、反応生成物は蒸発器出口配管に沈降させ、一度冷却した後サンプリングし、凝固点測定、化学分析が実施された。引続いて内部構造物検査が1977年8月まで継続して実施され、一連のRun－4試験に関する作業が完了した。

Run－4試験としては、これら一連の作業の集大成であるが、本報告書はその一の注水試験に重点が置かれている。また、全体としてオリジナルデータ集的なものとした。これは、動軸で行われている大リーク解析コード開発にコード検証用試験データを提供するとともに、試験結果を記録し整理する目的からである。

本書に記載した内容は、2章では試験条件を明確にするため、試験経過を含めて記述し、3章では試験結果を各現象別に節を設けた。4章では、3章で述べることのできなかった試験結果を各記事項として記録し、5章では以上を概観してむすびとした。

注水試験結果以外の現象、例えば、大リーク・ナトリウム－水反応試験後の状態、蒸発器洗浄の経験、蒸発器内部および内部構造物の検査結果等に関しては別報告書を参照されたい。

附記* 「もんじゅ」蒸発器伝熱管上部一本破断（定格時）の水リーク率は約7kg/secであり、寸法比は約2である。
（T社の体系を参考とした）Iso－velocity modelによれば、\(q_{\text{SWAT}} / D_{\text{SWAT}} = \pi \cdot q_{\text{MINU}} / D_{\text{MINU}} \) である。 （q:注水率，D:直径，n:伝熱管本数）

-1-
2. 試験概要

2.1 試験装置

試験装置はこれまでとほぼ同一である。Fig. 2.1.1およびFig. 2.1.2に装置全体の立体図、系統図を示した。また、蒸発器（EV）、過熱器（SH）、反応生成物収納容器（RT）、水加熱器（WH）、中間熱交換器（IHX）をFig. 2.1.3～Fig. 2.1.7に示した。個々の機器、装置全体の仕様については別報告書を参照されたい。

蒸発器用の伝熱管束（内部構造物）は、ナトリウム－水反応に伴う損傷・変形を注水試験により確認するため、新設された。使用された蒸発器内部構造物は東芝／IHIによって設計・製作されたものであり、構造・寸法は同メーカーの「もんじゅ」設計に基づくものである。（詳細は2.3.1節を参照されたい。）

SWAT-3試験装置全体は、蒸発器に内部構造物を挿入後、Run-3試験後解体された箇所が復旧され、作動試験、各種検査（PT, RT）が実施され、最終的には耐圧試験（ガス圧で8kg/cm²G）で健全性が確認された。（これらの準備作業経過はAppendix 4にまとめた。）

これらの作業で変更した主な点は次のとおりである。

(1) 蒸発器の中間開は新規に製作。（従来と同一仕様）
(2) EVドレンの改造（ドレン弁V301の移動）
(3) EVバイパスドレンラインを新設（Run-3までSHのドレン弁であったV302を移動しバイパスラインに使用）
(4) SHドレンラインの改造（ドレン弁はV351となる）

2.2 計測系

計測器および計測方法はこれまでの3回の試験とはほぼ同様であるが、主な変更点は次のとおりである。

(1) EV内部の熱電対、抵抗式ナトリウムパイド計の計測位置、計測点数が変更。
(2) 注水伝熱管内の圧力測定（PK5001～PK5004）を新規に追加した。
(3) EV内部構造物の加速度測定（AK1101, AK1102）を新規に追加した。
(4) 放出系配管に抵抗式ナトリウムパイド計（V6001～V6012）を新規に追加した。
(5) フランジギャップ測定用歪ゲージを2点増設した。
(6) 二次系配管の加速度計の計測位置を変更した。
(7) 放出系配管の加速度測定（A6001～A6009）を新規に追加した。
(8) EVナトリウム液面計の計測位置を変更し、RTナトリウム液面計を廃止した。
(9) 大気放出弁のパネ部に温度測定点を新規に追加した（測定は失敗した）。

-2-
収納容器内部温度測定用熱電対（T6041～T6047）を新規に追加した。
なお、個々の計測点位置、計測結果は合わせて3章で記述される。また、Appendix1に各計測Tagの測定対象、計測位置、計測器型式、収録機種をまとめている。
Run-4実験計測のまとめをTable2.1.1に示す。計測項目は圧力、歪、温度、液面、ボイド、配管支点反力、加速度・変位、流量、ラブチ板破壊時期の9種類であり、E V S H等の各機器・配管系に設置されている。計測点数は全部で257点であった。

<table>
<thead>
<tr>
<th>計測項目</th>
<th>EV</th>
<th>SH</th>
<th>IHX</th>
<th>RT</th>
<th>二次系管配管</th>
<th>放出系管配管</th>
<th>WH</th>
<th>水系管配管</th>
<th>その他</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>圧力</td>
<td>15+1</td>
<td>2+1</td>
<td>2</td>
<td>1+1</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>3+4</td>
<td>加圧伝熱管</td>
<td>5</td>
</tr>
<tr>
<td>歪</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>フランジギャップ</td>
<td>4</td>
</tr>
<tr>
<td>温度</td>
<td>59</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>14</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>遠止弁</td>
<td>2</td>
</tr>
<tr>
<td>液面</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>ボイド</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>反力</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>加速度・変位</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>流量</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1+3</td>
<td>5</td>
</tr>
<tr>
<td>ラブチ板破壊</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

全計測数 257

注 1) 運転制御用計器 2) 接触式液面検知器 3) ドラッグ式流量計 4) 抵抗式ナトリウムボイド計 5) θ線ボイド率計 6) タービン流量計 7) 伝熱管数

これららのうち選れ現象に対しては、横河ヒューレット・パッカード製デジタル型高速データ収録装置（HP2116C）に収録され、選れ現象に対してはアナログ型データレコーダーが用いられた。

HP2116Cには入力側に80Hzのローパスフィルターが設けられていて、サンプリングタイムは8,000data/secである。線収録チャンネル数は128スなので、1個あたりのデータに関しては62.5data/secのサンプリング値となっている。

使用されたデータレコーダーの機種は以下のとおりである。

<table>
<thead>
<tr>
<th>T E A C製</th>
<th>R-570</th>
<th>2台</th>
<th>応答周波数</th>
<th>10KHz (30 ips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-280</td>
<td>3台</td>
<td></td>
<td></td>
<td>10KHz (30 ips)</td>
</tr>
</tbody>
</table>

T E A C製 R-275 1台 応答周波数 10KHz (30 ips)
R-260 1台 10KHz (30 ips)
R-510 1台 10KHz (60 ips)
ANALOG-7 1台 10KHz (30 ips)
AMPEX製 FR-1300 1台 20KHz (60 ips)
FR-1800 1台 10KHz (30 ips)
FR-2000 2台 10KHz (30 ips)

本報告書に収められたプロッター図のうちデータレコーダでアナログ収録されたものは、収録時の1/16の速度に落として再生され、HP2116CでA-D変換されてプロットされたものである。従って、プロッター図は上記の周波数特性と異なっており、実際にで128KHz (80Hz×16) のローパス、8K data/sec でサンプリングされたものに相当する。（データレコーダーの再生時は16チャンネルで行うのペーパー21個あたり、data/secである。実時間に対しては80000×16=8K data/sec となる。）

試験装置は直接計算機制御（DDC）されているので、以上の実験計画のほかに運転計装の各データが計算機（横河電機製、YODIC100）に収録されている。サンプリング・タイムにより3種類の収録形式があり、1時間ごとに予熱温度、バルブの開閉等装置全体の状態を記録するHour Log、任意のデータ（ただし、24点）を1分ごとに記録するMinute Log、注水試験時に0.5秒ごとに記録するFast Scan Log（ただし、30点）がある。本報告書では試験時のHour Log、Fast Scan Logの一部をAppendix2に示した。

2.3 試 験 條 件

本節ではRun-4の試験条件について、蒸発器内部構造物型式、注水系、ナトリウム系、放出系、ドレン系、純化系の順で述べる。またその主要条件をTable 2.3.1にまとめた。試験時の装置状態を示すHour Log、Fast Scan LogをAppendix2に添付したので参照された。

2.3.1 蒸発器内部構造物型式

試験では蒸発器に注水されるが、蒸発器の容器は従来と同じであり、伝熱管束（内部構造物）のみRun-4用に新規に製作された。設計・製作はRun-1〜Run-3と同じく東芝の石川島播磨財団によって、同社の「もんじゅ」設計に基づくものである。

内部構造物をFig.2.1.3に示す。

内部構造物の仕様はRun-3と同一であり、注水位置だけが異なる。（Run-3製作前に同社の伝熱管配列の変更があったので、Run-1とRun-2は同一構造、Run-3とRun-4が同一構造になっている。）

伝熱管材、管径、配列、管支持構造は同社の「もんじゅ」設計と同一である。
主な内部構造物仕様をTable 2.3.2に、また各層の伝熱管長をTable 2.3.3に示した。

Table 2.3.2 内部構造物仕様 (Run-4)

<table>
<thead>
<tr>
<th>場所・製作メーカー</th>
<th>東芝/IHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>伝熱管型式</td>
<td>ヘリカルコイル型</td>
</tr>
<tr>
<td>伝熱管材料</td>
<td>STBA24 (ASME SA387 GrD)</td>
</tr>
<tr>
<td>伝熱管径</td>
<td>25.4φ×3.2t</td>
</tr>
<tr>
<td>伝熱管配列</td>
<td>40×45 (軸方向×径方向)</td>
</tr>
<tr>
<td>伝熱管層数</td>
<td>9層</td>
</tr>
<tr>
<td>加圧伝熱管</td>
<td>1～5層</td>
</tr>
<tr>
<td>注水位置</td>
<td>5層目、FL.5460</td>
</tr>
<tr>
<td>伝熱管支持構造</td>
<td>各層ごとが支持架構に固定</td>
</tr>
<tr>
<td>内筒径</td>
<td>355.6φ×11.1t</td>
</tr>
<tr>
<td>シュラウド径</td>
<td>1190×9t</td>
</tr>
</tbody>
</table>

Table 2.3.3 伝熱管長さ (Run-4)

<table>
<thead>
<tr>
<th>層数</th>
<th>巻き上げ角度</th>
<th>伝熱管長さ</th>
<th>本数</th>
<th>有効巻数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3°36'</td>
<td>96320 m</td>
<td>2</td>
<td>37.5</td>
</tr>
<tr>
<td>2</td>
<td>2°57'</td>
<td>117.870</td>
<td>2</td>
<td>37.5</td>
</tr>
<tr>
<td>3</td>
<td>3°45'</td>
<td>139.377</td>
<td>3</td>
<td>25.0</td>
</tr>
<tr>
<td>4</td>
<td>3°15'</td>
<td>160.735</td>
<td>3</td>
<td>25.0</td>
</tr>
<tr>
<td>5</td>
<td>3°49'</td>
<td>136.737+45.444</td>
<td>3+1</td>
<td>18.75</td>
</tr>
<tr>
<td>6</td>
<td>3°25'</td>
<td>201.576</td>
<td>4</td>
<td>18.75</td>
</tr>
<tr>
<td>7</td>
<td>3°51'</td>
<td>222.920</td>
<td>5</td>
<td>15.0</td>
</tr>
<tr>
<td>8</td>
<td>3°31'</td>
<td>244.100</td>
<td>5</td>
<td>15.0</td>
</tr>
<tr>
<td>9</td>
<td>3°53'</td>
<td>265.452</td>
<td>6</td>
<td>12.5</td>
</tr>
</tbody>
</table>

合計: 1630.531 34

注: 1) 有効伝熱管長さ (3,000 分)の計算値である。また、多数本の合計値である。
2) 注水管である。
2.3.2 注水系

水加熱器で加熱された高温・高圧水は注水弁（V502）が開けられると注水配管を通し、途中に設けられたラブチャ板（RD501）を破り、蒸発器内のヘッダーでコイル側とダウンカマー側に分岐され、コイル部（5層目、90°方向、FL.5460）に設けられたラブチャ板（RD502）を破ってナトリウム中に噴出される。（Fig.3.1参照）試験直前まではV502より下流は、伝熱管内残留ガスが注水に先立ってナトリウム中に噴出するのを防ぐため真空引きされている。

ラブチャ板は2ヶ所に設けられているが、それぞれの仕様を下表に示す。

<table>
<thead>
<tr>
<th>Table 2.3.4 注水系ラブチャ板仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>R D 5 0 1</td>
</tr>
<tr>
<td>質ーカ</td>
</tr>
<tr>
<td>型式</td>
</tr>
<tr>
<td>ディスク径</td>
</tr>
<tr>
<td>ディスク材質</td>
</tr>
<tr>
<td>設計破裂圧力</td>
</tr>
<tr>
<td>設計温度</td>
</tr>
<tr>
<td>シール方法</td>
</tr>
<tr>
<td>ホルダー材質</td>
</tr>
</tbody>
</table>

RD501, RD502の形状をFig.23.1, Fig.23.2に示した。また、破壊圧力に関しては3.14節を参照されたい。

試験開始前の水加熱器条件は圧力（P511）：15.5kg/cm²a，温度（T511）：306°C，充填水量約390kgであった。注水弁V502の上流側注水配管内は水が充填されているが、下流側は真空であり、温度は下表のとおりであった。

<table>
<thead>
<tr>
<th>Table 2.3.5 注水配管内温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>計測位置</td>
</tr>
<tr>
<td>温度（℃）</td>
</tr>
</tbody>
</table>

但し，計測位置はFig.3.1参照
注水時間は 9.4 sec、総注水量：83.3kg、準定常注水速度：9.0〜7.2kg/sec であった。（3.1 章で詳述する。）

2.3.3 ナトリウム系
試験前には主循環ポンプ（MP）を停止し、ナトリウム弁 V102、V103（Fig 2.1.2 参照）を閉じる。注水試験は蒸発器（EV）、過熱器（SH）、間接熱交換器（IHI）の三つの回路（V101を開）、静止ナトリウム中で行われる。しかし、試験開始後、EV放出系ラブチャ板の破裂信号により V101 が自動的に閉じられる。V101 が完全閉となるに要する時間は約 9 sec である。

注水前のナトリウム温度は EV: 380°C（T111）、SH: 381°C（T121）、IHX: 380°C（T131）、SH→EV 配管: 382°C（T103）であった。容器外管あるいは配管外壁に設けられた予熱ヒータ制御用 T.C の値は Appendix 2 を参照されたい。

カバーガスはアルゴンを用い、EV、SH、RT は試験前に均圧にするためともに 0.50kg/cm²G（P121）であった。ナトリウム液位は FL: 6100 である。

2.3.4 放出系
放出系配管の取付位置は EV においては容器側部（FL: 6900）であり、SH においては容器頂部である。それぞれの放出系配管は途中で合流し、RT に至る。（Fig 2.1.2 や Fig 3.4.10 参照のこと）

EV 用ラブチャ板は反転バックリング型ナイフ付きであり、S H および RT 用は引張型である。下表に主な仕様をまとめた。なお、破裂圧力等に関しては 314 篇を参照されたい。

<table>
<thead>
<tr>
<th>Table 2.3.6 放出系用ラブチャ板仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>メーカー</td>
</tr>
<tr>
<td>型式</td>
</tr>
<tr>
<td>ディスク径</td>
</tr>
<tr>
<td>ディスク材質</td>
</tr>
<tr>
<td>設計破裂圧力</td>
</tr>
<tr>
<td>設計温度</td>
</tr>
<tr>
<td>シール方法</td>
</tr>
<tr>
<td>ホルダー設計圧力・温度</td>
</tr>
</tbody>
</table>

注) 1. ナイフ材質 SUS 631
注) 2. Vサポート材質 SUS 304
放出系予熱温度は放出系配管壁で267℃〜298℃（Appendix 2のHour Log T088〜T091参照）、収納容器壁で334℃〜354℃（同Hour Log T094〜T099）、収納容器内部（T611）では358℃であった。配管内温度は実験計画としてT6031〜T6006が収録されており、36節に示した。

2.3.5 ドレン系
前回試験（Run−3）では注水試験後のドレン操作過程で、ドレン配管が反応生成物により閉塞した。そのため、このような閉塞が生じても、少なくともE V内のナトリウムはドレンできるように、E V出口垂直配管部にバイパスドレンライン（2B配管）を設けた。このバイパスライン用のドレン弁には既設のV302を使用したので（V302以降も既設配管を使用）、これに伴ってSHドレンラインも改造した。改造後のドレン配管組立図をFig. 2.3.3に示す。

なお、本試験でのE Vからのナトリウムのドレンに関しては、反応生成物を調査するため此时出口B配管（水平部）に反応生成物が沈殿するよう、注水試験の2日後にバイパスラインからのみドレンし、V301ラインは使用しなかった。この一連の操作は2.4.2項に記述したので参照されたい。

2.3.6 純化系
注水試験前のナトリウム中不純物濃度が大リック・ナトリウム水反応現象におよばす影響はないと考えられているため、その意味での純化運転は行われていない。ただ、注水試験前に容器あるいは配管壁に設けられた圧力測定用の導圧管に不純物が析出しないようにある程度純化運転が行なわれた。

注水試験前にはCT温度は246℃で運転され、プラグ温度は250℃（振動法による測定）であった。
2.4 試験経過

2.4.1 全体経過
主な作業を下表にまとめた。

<table>
<thead>
<tr>
<th>日時</th>
<th>Run−4 関連作業</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975年12月</td>
<td>Run−4内部構造物引き合い仕様の作成</td>
</tr>
<tr>
<td>1976年1月</td>
<td>Run−2試験（1.26）</td>
</tr>
<tr>
<td>2月</td>
<td>3メーカーの見積仕様書検討</td>
</tr>
<tr>
<td>3月</td>
<td>東芝／IHIと契約（3.27）</td>
</tr>
<tr>
<td>4月</td>
<td>内部構造物</td>
</tr>
<tr>
<td>5月</td>
<td>中間製造計画</td>
</tr>
<tr>
<td>6月</td>
<td>現地調査</td>
</tr>
<tr>
<td>7月</td>
<td>Run−3試験（9.16）</td>
</tr>
<tr>
<td>8月</td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>現地調査</td>
</tr>
<tr>
<td>1977年1月</td>
<td>試験準備（8B配管新設、V301改造、パイパスライン新設、耐压 etc）</td>
</tr>
<tr>
<td>2月</td>
<td>調整運転</td>
</tr>
<tr>
<td>3月</td>
<td></td>
</tr>
<tr>
<td>3月15日</td>
<td>試験運転</td>
</tr>
<tr>
<td>3月22日</td>
<td></td>
</tr>
<tr>
<td>4月</td>
<td>試験後状況調査</td>
</tr>
<tr>
<td>5月</td>
<td>反応生成物サンプリング</td>
</tr>
<tr>
<td>5月10日</td>
<td>洗浄準備</td>
</tr>
<tr>
<td>5月14日</td>
<td>EV洗浄</td>
</tr>
<tr>
<td>6月</td>
<td>内部構造物検査</td>
</tr>
<tr>
<td>7月</td>
<td>反応生成物凝固点測定</td>
</tr>
<tr>
<td>8月</td>
<td></td>
</tr>
</tbody>
</table>

3.18 Run−4注水試験
1976年3月に東芝／IHIと内部構造物の製作・据付工事の契約を結び、1976年12月に据付を完了した。同時に、試験全体工程を円滑に進めるため新たに蒸発器中間槽を同メーカーにて製作した。この中間槽は既設のもと同一仕様である。

前回試験（Run-3）でドレン配管が反応生成物で閉塞したため、試験準備作業の過程で、8B配管の交換・ドレン弁の移設、EVバイパスドレン配管の新設を行なった。

注水試験運転に先立って、装置全体および計測機器の作動を確認するため、水系およびナトリウム系を試験条件まで昇温・昇圧する調整運動が実施され、問題のないことを確認した。

注水試験は1977年3月18日に実施され、蒸発器以外のナトリウムは当日にドレンされた。（収納容器はドレン配管閉塞でドレンできず）蒸発器は反応生成物を下部観板あるいは出口配管に沈殿させて、上澄みのナトリウムのみバイパスドレンラインから3月20日にドレンした。

その後、反応生成物の分布状況を調査（EV, RT, 8 B配管 etc.）、反応生成物のサンプリング、巻固め測定が行なわれた。並行して、蒸発器は水蒸気洗浄され、1977年8月まで内部構造物の変形・損傷程度を調べる検査を続行し、一連の試験を終了した。

Run-4 試験は計画開始からハード作業の終るまで1年9ヶ月を要した。

2.4.2 試験運転経過

3月15日から試験運転を開始し、3月18日に注水試験を行なった。その概略をTable 2.4.2に示す。ループ状態を示すデータの代表値を同表に合わせて示したが、詳細は運転日誌、Hour Log等に記録されている。

注水試験の主な操作と時刻を以下に示す。なお、より詳細な注水試験計時結果をAppendix 3に示したので参照されたい。

(1)注水試験経過

1977年3月18日

14°15′26″ 試験条件設定完了 SEQ-12* STEP 1 START
16′35″ ナトリウム加熱器 OFF
17′14″ 放出水素ガス点火ヒータ ON
19′40″ 予熱ヒータ OFF
14°29′46″ 注水弁（V502）開操作開始
(0.248 sec) 注水管ラプチャ板（RD502）破裂、ナトリウム中に注水開始。

*）SWAT-3 装置の注水試験操作は制御用計算機に内蔵されたシークエンスプログラムSEQ-12により半自動で行われる。シークエンスプログラムの各ステップはAppendix 3参照。
(0.774 sec) E Vラプチャ板（ RD601）破裂。放出系への流動開始。
(3.20 sec) R Tラプチャ板（ RD603）破裂。H₂ガス大気放出開始。
(9.4 sec) 注水弁開。注水停止
14°31'〜14°35' 注水配管内残水追い出し（5回）。
14°36'〜14°42' 注水配管へのNa逆流防止操作。
14°44'〜14°49' 注水配管よりH₂ガス追い出し（5分間）。
14°49'〜15°35' EV, SH, RTよりH₂ガス追い出し（カードル元圧約120K〜約50K）
15°35' 放出水素ガス点火ヒータ OFF
15°36' カバーガス圧力制御開始（ FBC 06 ON）

(2) ドレン経過

<table>
<thead>
<tr>
<th>17°20'</th>
<th>MHラインドレン (V303 OPN)</th>
</tr>
</thead>
</table>
| L141 | ON → OFF
| L311 | 0.5 → 0.6
| L111 | 2.83 → 2.69
| L121 | 1.8 → 1.62
| | Na 温度 T111 424℃
| | T141 334℃
| | ライン温度 T053 401℃
| | V303 ° T046 398℃

<table>
<thead>
<tr>
<th>17°31'</th>
<th>CTラインドレン (V304 OPN)</th>
</tr>
</thead>
</table>
| L311 | 0.6 → 0.71
| | Na 温度 T214 298℃
| | ライン温度 T054 402℃

<table>
<thead>
<tr>
<th>17°40'</th>
<th>V305ライン (V305 OPN)</th>
</tr>
</thead>
</table>
| L311 | 0.71 → 0.72
| | ライン温度 T054 315℃
| | V305 ° T048 404℃

<table>
<thead>
<tr>
<th>17°46'</th>
<th>PMライン (V352 OPN)</th>
</tr>
</thead>
</table>
| L311 | 0.72 → 0.72 ほとんど変化なし。

<table>
<thead>
<tr>
<th>17°51'</th>
<th>SHドレン (V351 OPN)</th>
</tr>
</thead>
</table>
| L121 | 1.62 → 0.00
| L111 | 2.68 → 2.55
| L311 | 0.72 → 0.91
| | ライン温度 T057 388℃
| | V351 ° T050 397℃
| | Na 温度 T121 343℃
3月19日

9時43分 RTドレン (V306 OPN)

L311 変化なし
ガス導通なし。

RT温度 T611 278℃
T099 273℃
ライン温度 T055 256℃
V306 25 247℃

3月20日

9時42分 EVドレン (V302 OPN)

L111 2.48 → 0.00

Na温度 T111 281℃
ライン温度 T052 394℃
V302 25 400℃

（ドレン操作終了）

3.1 注水率

Fig. 3.1.1に注水系全体図を示す。

注水系は水加熱器（WH）、注水配管、2つのラプチック板（RD 501, RD 502）、トリガーピン（V 502）から構成されている。水加熱器では圧力（P 511）、温度（T 511）、液面（L 511）が計測され、V 501の上流側注水配管ではターピン流量計（F 5001）、ドラッグ式流量計（F 5002）、圧力（P 5002）、温度（T 5001）が、下流側では圧力（P 5001）がそれぞれ計測されている。注水配管はE Vに入ってから、ヘッダー部（2B配管）でダウンカーマー側とヘリカルコイル側に分岐され、途中には注水配管内圧力測定用の圧力計（PK 5001～PK 5004）が4点設けられている。

使用された注水配管圧力計の構造をFig. 3.1.2に、計測位置をFig. 3.1.3に、またE V内の注水管管組立図をFig. 3.1.4に示した。

水加熱器からの配管径、配管長、注水配管圧力計位置を下表にまとめた。

<table>
<thead>
<tr>
<th>配管部</th>
<th>配管径</th>
<th>配管長</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH～レデューサ 1)</td>
<td>3B(89.1Φ×15.2t)</td>
<td>9774</td>
<td>ベンド7個、弁2個、流量計2個 2)</td>
</tr>
<tr>
<td></td>
<td>STPA 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>レデューサ～分岐</td>
<td>2B(60.5Φ×8.7t)</td>
<td>9125</td>
<td>()内注水配管から遠い分岐までとする。</td>
</tr>
<tr>
<td></td>
<td>SUS 304</td>
<td>(10625)</td>
<td></td>
</tr>
<tr>
<td>分岐→DC〜注水点</td>
<td>1B(25.4Φ×32t)</td>
<td>8265</td>
<td>ベンド5個、16.15ターン</td>
</tr>
<tr>
<td></td>
<td>STBA 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>分岐→コイル〜注水点</td>
<td>1B(25.4Φ×32t)</td>
<td>45173</td>
<td>ベンド3個、2.74ターン</td>
</tr>
<tr>
<td></td>
<td>STBA 24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) 3B→2B 側方レデューサ

2) ターピン流量計（F 5001）部は1023ΦIDである。

3) 注水配管からの320mmは60.5Φ×11.1t（SUS 321TP）である。
<table>
<thead>
<tr>
<th>Tag</th>
<th>分数値から</th>
<th>注水量から</th>
<th>備</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK5001</td>
<td>7062</td>
<td>1203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK5002</td>
<td>8180</td>
<td>85</td>
<td></td>
<td>分数＝コイル＝注水量</td>
</tr>
<tr>
<td>注水点</td>
<td>8265</td>
<td>45173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK5003</td>
<td>43970</td>
<td>1203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK5004</td>
<td>22320</td>
<td>22853</td>
<td></td>
<td>分数＝D.C.＝注水量</td>
</tr>
</tbody>
</table>

注）全長＝53.438である。

注水系の試験条件については233節を参照されたい。得られた結果を以下に示す。

Fig. 3.15 に水加熱器および途中配管（V502の上流）におけるデータを示す。水加熱器
では現象の変化がゆるやかなので、デジタル型高速データ収録装置（HP 2116 C）に収録さ
れた。注水前後では、P 511: 155 kg/cm² a → 139 kg/cm² a T 5101: 306°C→306
°Cであった。（同図では室温補償されてないので24°C加える必要がある。また、L 511の
試験前後の値から総注水量が求められ、83 kgであった。（139 kg/mV × 60 mV）

Fig. 3.16 (a)(b) および Fig. 3.17(a)(b) にV502上流に設けられたタービン流量計およ
びドライフ構成流量計（本構造については第4報参照のこと）の結果を示す。両図とも初期に、
過大な流量が測定されているが、これがそのまま注水率に相当するわけではない。計測器と噴
出口の位置が離れているため、注水量測定が不全なものになる。計測器と噴出口との間
にはないようである。また、いずれも流体のポイドを知り得ないと重量流量に変換できない
が、ここでは注水供給から1秒後以降を価値相流と仮定し、かつ配管内の流動が準実用的にな
るとして注水量を求めた。（タービン流量計の方が精度が高いので、Fig. 3.16(a)(b) からよ
る。またこの時の注水を準実用注水率として定義しておく。）この結果、準実用注水率は
90 kg/sec（1秒後）〜72 kg/sec（9秒後）であった。（1秒後；F 5001 = 127
L/sec，P 511 = 150 kg/cm² a，T 511 = 306°C，9秒後；F 5001 = 102 L/sec，
P 511 = 138 kg/cm² a，T 511 = 306°C）また、従来からデータ整理で用いられていた
平均注水率* で表示すると7.3 kg/sec であった。

* 平均注水率 = (総注水量) - (V502下流容積) × (V502閉時重量) で求めた。
(RD 502 破裂から V502閉までの時間)

V502下流容積 = 23.2L。比重量は306°C、130 kg/cm² aの値を使用した。
注水弁の開閉時間は、タップ流量計の信号から9.4 secであった。

Fig. 3.1.8(a)～(c), 3.1.9(a)～(c)に注水配管内の圧力変化を示した。Fig. 3.1.8(a)～(c)はRD501より上流の圧力であり、Fig. 3.1.9(a)～(c)はRD501より下流の圧力である。それそれぞれ、時間軸の異なる3種類のデータを示したが、0～0.3 secの図では時間軸の原点は注水弁開操作より0.02 sec前であり、0～2 secの図、0～6 secの図、0～30 secの図では0.19 sec前となっている。

この両図から作成した管内圧力分布の時間変化をFig. 3.1.10(a), (b)に示す。ただし、管内の温度変化も著しいので、圧力の絶対値に関しては、精度の悪いものになっている。

以上のデータから次のことが推定される。

注水弁（V502）が開かれるとき、その下流の圧力（P5001）が上昇し、配管途中に設けられたラブチャー板（RD501）を破る。その後、注水伝熱管内の圧力（PK5001～PK5004）が時間遅れを伴って徐々に上昇し始める。

伝熱管部へのこの様な急激な流入はRD502破壊直前（約248 msec）まで続く。この時の管内の空間的な圧力勾配はかなり大きい。また、ダウンカーマー側とライザー側の両端から伝熱管部に流入するが、それらの流体先端が衝撃する時に生ずると考えられる静止衝撃波的な特別な圧力変化は認められない。

RD502（注水用ラブチャー）が破壊する直前の圧力勾配は大きい。また、RD502が破壊して生ずる減圧波が、流れの上流側に位置する圧力計PK5001に伝播していない。（RD502）から85mmしか離れていない上流側のPK5002には伝播していないが）このことは、RD502破壊時の流速が音速近くの値であるために生じたものと考えられる。

破壊に伴って生ずる減圧波のデータをTable 3.1.2にまとめた。

<table>
<thead>
<tr>
<th></th>
<th>PK5001</th>
<th>PK5002</th>
<th>PK5003</th>
<th>PK5004</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD502破断時圧力 [kg/cm²a]</td>
<td>86</td>
<td>86</td>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>压力降下時刻 [msec]</td>
<td>N.D</td>
<td>248</td>
<td>248+3.25</td>
<td>248+3.6</td>
</tr>
<tr>
<td>压力降下直前圧力 [kg/cm²a]</td>
<td>N.D</td>
<td>86</td>
<td>83</td>
<td>78</td>
</tr>
<tr>
<td>压力降下値</td>
<td>N.D</td>
<td>26</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

（注）PK5001は圧力降下が認められなかった。

-17-
また、ラブチャ板の破壊圧はRD501：106kg/cm²（PK501の圧力の最初のピーク値をとった）、RD502：86kg/cm²（PK5002の圧力から）であり、破裂時刻（注水弁開操作から）はRD501：0.073 sec, RD502：0.248 secであった。
3.2 初期スパイク圧力

本節では蒸発器（E V）内の初期スパイク圧力について述べる。

注水位置は内側から5層目で、90°方向、PL 5460（ナトリウム液面下6400mm）である。
圧力計測位置はFig. 3.2.1に示した。EV胴壁の90°、0°、270°方向にそれぞれ5点EV
内部に3点である。

胴壁には100mmの導管が設けられているが、圧力計にはS T研究製のエクストルーダ型
（PHT-E）を使用しているので、受圧面位置は胴内壁面と一致である。また伝熱管コイル部
はシャラウドで囲まれているが、圧力計測位置に相当する部分には100mm穴の穴があいている
ので、実質的にはコイル部の圧力を計測していると考えられる。

E V内のナトリウム中圧力計はKaman社製のKP-1911、およびST研究ディップ型
（PHT-D）を使用している。それぞれは内部構造物に固定されており、受圧面をすべて上向
きである。

それぞれの圧力計の応答周波数は增幅器込みで10KHz（ST製）、16KHz（Kaman製）
であり、データレコーダーに収録された。しかし、本報告書に係わったグラフはデータのプ
ロッター段階で、見かけ上1.28KHz以下にフィルタリングされたものである。(22節参照)

Fig. 3.2.2(a)~(c)はEV胴壁での測定結果であり、Fig. 3.2.3はEV内コイル部の測定結
果である。両図とも時間軸原点は注水弁開操作から0.2415sec後である。

Fig. 3.2.3(a)におけるP1115、P1114に関しては、上記のデータ再生プロセス（ローバス）
を使用しないで、データレコーダーから直接電磁オシロで再生したものをFig. 3.2.4に示し
たが、同図から分るように、時間遅れを伴って10KHz程度の高周波成分が現われている。
このような波形はこれまでの実験では測定されていない。また、この時間遅れは、自由液面から
の膨張波が伝播するに要する時間にはほぼ一致する。従って、膨張波と関係があると考えられる
が、その他の計測位置で表されていないので、はっきりした理由は分からない。

Fig. 3.2.2(c)中のP1133の波形で、17msec以前に15kg/cm²a程度の平担な圧力が示
されているが、その他の時間スケール（例えば150msec、あるいは6sec）で見ても不合理な
圧力であるので信憑性がない。

以上の結果をTable 3.2.1にまとめた。

注水点近傍（PK1103）ではピーク値は14.7kg/cm²aであり、この点での圧力が最大
値となっている。

また、圧力波形からみると、コイル下部での同一断面内の波形はほぼ同じであると言える。

-19-
Table 3.2.1 初期スパイク圧のまとめ

<table>
<thead>
<tr>
<th>Tag No</th>
<th>ピーク値</th>
<th>ピーク幅</th>
<th>立上り開始時</th>
<th>特記事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1115</td>
<td>kg/cm²</td>
<td>msec 0</td>
<td>N.D* N.D*</td>
<td>高周波成分を含む波形である。</td>
</tr>
<tr>
<td>P1114</td>
<td>N.D*</td>
<td>0.75</td>
<td>全体的に高周波成分を含む波形である。</td>
<td></td>
</tr>
<tr>
<td>P1113</td>
<td>11.2</td>
<td>6.4</td>
<td>1.53</td>
<td>ピークが2山に分かれている。</td>
</tr>
<tr>
<td>P1112</td>
<td>12.0</td>
<td>6.4</td>
<td>1.59*</td>
<td>ピークが2山に分かれている。立上り開始が不明確である。</td>
</tr>
<tr>
<td>P1125</td>
<td>5.0</td>
<td>3.6</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>P1124</td>
<td>12.0</td>
<td>5.4*</td>
<td>0.63</td>
<td>第1ピークを対象とした。</td>
</tr>
<tr>
<td>P1123</td>
<td>11.2</td>
<td>6.8</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>P1122</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>計測せず</td>
</tr>
<tr>
<td>P1121</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>計測せず</td>
</tr>
<tr>
<td>P1135</td>
<td>4.6</td>
<td>3.8</td>
<td>0.34</td>
<td>第1ピークを対象とした。</td>
</tr>
<tr>
<td>P1134</td>
<td>9.8</td>
<td>6.2*</td>
<td>0.53</td>
<td>第1ピークを対象とした。</td>
</tr>
<tr>
<td>P1133</td>
<td>12.2</td>
<td>7.5</td>
<td>1.44</td>
<td>17msec 以降のデータに信頼性がない。</td>
</tr>
<tr>
<td>P1132</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>計測せず</td>
</tr>
<tr>
<td>P1131</td>
<td>12.8</td>
<td>6.0</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>PK1103</td>
<td>14.7</td>
<td>8.0</td>
<td>0</td>
<td>注水点に最も近い。ピーク幅が定義しにくい。</td>
</tr>
<tr>
<td>PK1102</td>
<td>10.0</td>
<td>8.0*</td>
<td>0.69</td>
<td>P1114 と同一レベル。</td>
</tr>
<tr>
<td>PK1101</td>
<td>9.6</td>
<td>6.5</td>
<td>1.66</td>
<td></td>
</tr>
</tbody>
</table>

注
1) 下図のように定義した。
2) PK1103の立上りを基準とした。電磁オシロのデータから読みとったものである。
3.3 压力波伝播

本節ではEVから二次系への初期スパイク圧力の伝播について述べる。

注水実験時はナトリウム井V102, V103を閉じるので、蒸発器（EV）、過熱器（SH）
中間熱交換器（IHX）の機器と、それらを結ぶ配管系で構成される。Fig. 3.3.1に全体の体
系、計測位置を示した。ただし、SHの内部構造物は伝熱管ではなく、4組の多孔板で流動抵抗
を模擬している。 (Fig. 2.1.6参照) 配管系は8Bと2Bで構成されていて、EVからIHX
への途中に8B→2Bのレデューサー、IHXからSHへの途中に2B→8Bのデフューザーが
あり、また、EVからIHXへの途中に弁が2個設けられている。その他、配管長等の詳細は
Fig. 3.3.1を参照のこと。

圧力計測定位置は、EVの出口からP1001,P1002…………と順番に配管に沿って計13
個、IHXには下端と上端に2個、SHには下端に1個設けられている。 (Fig. 3.3.1参照)

しかし、すべての計測点で圧力測定されたわけではなく、本試験ではP1010,P1012が省略
された。

使用された圧力計はST研製のPHT-E型（エクストルーダ型）なので、受圧面は配管内
壁と同じ位置にある。それぞれの圧力計出力信号はデータレコーダーに収録されたが、次に示
す測定結果のプロッター図は2.2節で述べたように1.28KHz以下にフィルタリングされたも
のである。

測定結果をFig. 3.3.2(a)〜(c)およびFig.3.3.3(a)〜(c)に示す。両図とも時間軸の原点は注
水弁開操作から0.2415sec後である。

同図から分るように、本試験ではEV出口配管部からの圧力（P1001）が途中配管(P1004
以降)で極端に変形し、減衰している。これは配管途中あるいは弁にガスが混入していたため
と推定される。同様な現象はRun－1試験でもみられている。
3.4 準定常圧力

本節では初期スパイク圧力や二次系への伝播圧力が減衰した後に生ずる圧力ビルドアップを準定常圧力で事前に述べる。本節での試験結果のプロッター図は、注水弁開操作から0.01秒後を時間軸原点としている。（注水弁開操作を時間軸原点にする予定であったが、データ負荷作業の段階で結果的にずれてしまった）しかし、解析との比較上は、ナトリウム中に水蒸気が爆発され始める時刻を基準にした方が好ましいので、文中ではこの時刻を用いて記述した。（[]で囲んで表示した）この注水開始を基準にした時間軸と本節プロッター図の時間軸とは0.238秒の差がある。

3.4.1 E V 内圧力

蒸発器（E V）に関してはFig. 3.21で示したような圧力計測点と、実験用カバーガス圧測定の圧力計測点P 1101, および圧力測定用のカバーガス圧力計P 1111がある。P 1101はE Vの上部に設けられており、Fig. 3.4に示すような導圧管を使用している。この導圧管内には試験前にナトリウムを充填しており、E V内のナトリウム温度と等しくなるように温度制御されている。これは試験時に圧力計の応答面が受ける熱混入による仮信号を少なくするためである。また、放出系用ラブチャ板（RD 601）の破壊時刻を示す破壊検知信号も収録された。（破壊検知器については別報（\(^{(a)}\)）を参照）

使用されている圧力計はP 1111以外の全てがST研究所製の高温用圧力計（P HT-E 型、P HT-S型）であり、応答周波数は10KHz以上である。ただ準定常圧力そのものは初期スパイク圧力、特に異常な現象なのでE V、カバーガス圧力（P 1101, P 1111）は高速データ収録装置（HP 2116C）に収録されている。この収録装置の応答周波数は80Hzでありサンプリングは625 data/secである。Na中の圧力については、3.2節で述べたようにデータレコーダーに収録された。

Fig. 3.42(a)-(f), Fig. 3.43(a)-(f), Fig. 3.44(a)-(c)にE Vカバーガス圧（P 1111）とE Vナトリウム中の準定常圧力を示した。それぞれ、2 sec, 6 sec, 30 sec までの現象を表わす図である。P 1101はセンサーが故障し測定できなかった。また、E Vナトリウム中の圧力計の受圧面はE V内壁面と同じ位置になっているので、温度変化の影響を受けやすい。従って、影響の少ないと思われるデータのみ示している。放出系用ラブチャ板（RD 601）破裂時の圧力値を次表にまとめた。
Table 3.4.1 RD601破裂時圧力データのまとめ

<table>
<thead>
<tr>
<th>Tag No</th>
<th>R/D破裂時圧力</th>
<th>備</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-111</td>
<td>1.9 kg/cm²a</td>
<td>実験用でないので、過渡特性が悪く、圧力に遅れがある。</td>
<td></td>
</tr>
<tr>
<td>P1111</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1113</td>
<td>5.7</td>
<td>全時間領域で信頼性がある。</td>
<td></td>
</tr>
<tr>
<td>P1114</td>
<td>6.3</td>
<td>注水停止以降の圧力が少し高すぎる。</td>
<td></td>
</tr>
<tr>
<td>P1115</td>
<td>5.5</td>
<td>6 sec以降のデータは熟影響のため信頼性なし。</td>
<td></td>
</tr>
<tr>
<td>P1123</td>
<td>5.4</td>
<td>15 sec以降の</td>
<td></td>
</tr>
<tr>
<td>P1124</td>
<td>5.9</td>
<td>6 sec以降の</td>
<td></td>
</tr>
<tr>
<td>P1125</td>
<td>5.1</td>
<td>3 sec以降の</td>
<td></td>
</tr>
<tr>
<td>P1131</td>
<td>5.8</td>
<td>4 sec以降の</td>
<td></td>
</tr>
<tr>
<td>P1134</td>
<td>5.0</td>
<td>10 sec以降の</td>
<td></td>
</tr>
<tr>
<td>P1135</td>
<td>5.4</td>
<td>3 sec以降のデータは熟影響のため信頼性なし。</td>
<td></td>
</tr>
</tbody>
</table>

注 1) Run-3報告書で、P1101と比較した結果4 sec以降のゆるやかな圧力過渡変化については信頼性がある。
2) 熱影響を示すドリフトがないことと、4 sec以降のP-111との一致性がよいことから判断した。

これらの結果から次のことが分る。
(1) EV放出系用ラブチャ板（RD601）の破裂時刻は[0.536 sec]であった。
(2) Table 4.3.1に示された各計測点での絶对圧力表示値からヘッド分を差引いた圧力の相対変化値の平均値をとると、3.9 kg/cm²Dである。従って、ラブチャ板は差圧3.9 kg/cm²Dで破裂し、この時のカバーガス圧力は5.4 kg/cm²aであったと考えられる。
(3) RD601が破裂すると、EV内圧力は減圧され、その後わずかに上昇し、[2 sec頃]にピークに達する。しかし、RD601が破壊した圧力以上にはなっていない。
(4) 注水位置が異なる以外は、ほぼ同じ試験条件であるRun-3試験の準定常圧力挙動と比較すると、RD601破壊後の減圧のし方が大きく、圧力のピーク値は低い。これは、注水位置がNa液面に近いため（放出系配管の入口にも近い）発生した水素ガスがEVから抜けやすいうことによるものと考えられる。放出系配管のポイド率のデータからも裏付けられる。
(3.8節参照)

(5) E V内ではほとんど同一な圧力波形である。

(6) 注水弁は9.4 secに閉鎖されたが、E V内の圧力も11 sec頃には収まっている。

3.4.2 二次系圧力

S Hでの圧力挙動をFig. 3.4.5(a)～(c)に、IHXでの圧力挙動をFig. 3.4.6(a)～(c)に、
二次系配管の圧力挙動をFig. 3.4.7(a)～(e)、Fig. 3.4.8(a)～(e)、Fig. 3.4.9(a)～(d)に示
した。使用された圧力計はS T研究所製のPHT-E型、PHT-S型である。S Hのカバーガ
ス圧力（P 1201）のみナトリウム放熱式導压管を使用している。また、参考に、運転制御
用の圧力計（P-121）の測定結果も合わせて示してある。その他の圧力計測点はS Hにつ
いてはFig. 2.1.4、IHXについてはFig. 2.1.7、二次系配管についてはFig. 3.3.1を参
照されたい。

主な結果をまとめて以下に示す。

(1) S H用放出系ラブチャ板（RD 602）は破裂しなかった。

(2) S Hでの最大圧力は（1.5 sec頃）に生じP 1201で3.0 kg/cm²a、P 1204で3.7 kg/cm²
aであった。（P-121は過渡変化に対して遅れる）

(3) IHXでは初期スパイク圧力の影響と思われる圧力の脈動が認められ、（0.7 sec頃）ま
で続く。準常圧力の最大値を定義しつつ圧力波形である。

(4) 二次系配管ではE Vに近いP 1001あるいは、P 1013などはE Vの圧力挙動に似ており
S Hに近くなると（例えばP 1011）SHの圧力挙動に似てくる。しかし、P 1009の圧力
は、事故のものであるのか、異常あるいはセンサーの故障による偽信号であるのか判断しにく
い特異な圧力波形となっている。

3.4.3 放出系配管

放出系配管の計測位置をFig. 3.4.10に示した。これらの全点が測定されたわけではない。
最初の計画段階で除外されたもの、準備期間中に破損したもの、測定中に熱影響を受けたもの
が含まれ、結局、P 6031、P 6037、P 6004と収納容器圧力P 6101、P 611の測定結果の
みをFig. 3.4.11(a)～(c)に示した。

同図には示されていないが、収納容器ラブチャ板（RD 603）の破裂信号も同時に測定され
ている。

使用された圧力計はS T研究所製PHT-S型であり、ナトリウム放熱式導压管に取付けられ
て圧力測定された。各圧力計出力信号はデジタル型高速データ収録装置（HP 2116C）に収
録され、サンプリング周期は62.5 data/secであった。
主な結果をまとめて以下に示す。

(1) 収納容器ラプチャ板（RD603）の破裂時刻は2.95 secであった。

(2) この時の収納容器圧力は2.4 kg/cm²であり（P6101によった）、これ以降は減圧される。

(3) 従って、RD603の破裂圧力は1.4 kg/cm²Dであった。

3.4.4 まとめ

各機器における単定常圧力の最高到達圧力を下表にまとめた。

Table 3.4.2 各機器での単定常圧力

<table>
<thead>
<tr>
<th></th>
<th>最高圧力</th>
<th>到達時刻</th>
<th>備</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV（カバーガス圧力）</td>
<td>5.4 kg/cm²a</td>
<td>0.536 sec</td>
<td>RD601破裂時が最大</td>
<td></td>
</tr>
<tr>
<td>SH（カバーガス圧力）</td>
<td>3.0 kg/cm²a</td>
<td>1.5 sec</td>
<td>RD602不破裂、P1201の値から</td>
<td></td>
</tr>
<tr>
<td>IHX</td>
<td>-</td>
<td>-</td>
<td>単定常圧力として定義しにくい</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>2.4 kg/cm²a</td>
<td>2.95 sec</td>
<td>RD603破裂時が最大</td>
<td></td>
</tr>
</tbody>
</table>
3.5 亜

3.5.1 蒸発器（EV）胴壁亜

AILTECH社製の高圧亜ゲージ（SG－425－09A）をEV容器外壁に貼付し、ナトリウム水反応時に受けるEV胴壁亜を測定した。計測位置は Fig. 3.5.1 に示したように各圧力計測点に近い位置に重ねされ、周方向亜（図中の計測 Tag Noの末尾にHが付くもの）と軸方向亜（末尾にA）の計14点が計測された。それぞれの亜ゲージは動亜測定器（応答周波数5KHz）で增幅され、データレコーダー（応答周波数は最低値でも5KHz）に収録された。データプロッター段階では125KHz以下にフィルタリングされている。

Fig. 3.5.2(a)～(e)に初期スパイク圧力に対応した時間領域の測定結果、Fig. 3.5.3(a)～(d)に準定常圧力に対応した時間領域の測定結果をそれぞれ示した。

Fig. 3.5.2(a)～(e)の時間軸原点は3.2節で示した初期スパイク圧力のプロッター図と一致させてあるはずのものであるが、実際はずれていると考えられる。これは、圧力と亜が異なるデータレコーダーで収録されているので、プロッター図の原点の指示（基準信号にはRD601の破壊信号をとり、そこで0.05sec前を原点として指示している）にデータレコーダーの回転角や等の理由で誤差が入り込むためと考えられる。

また、Fig. 3.5.2(a), Fig. 3.5.3(a)図中のS1112Hは同一データレコーダーで収録された他のデータ（S1111Hと基準信号）と時間軸が0.05secほどずれていると考えられる。考えられる原因としては、ヘッドの位置のずれであり、この場合、偶数チャンネルと奇数チャンネルの時間差が生じる。その意味で、同一機種に収録された次のFig. 3.5.5のS9001(1ch.), S9002(3ch.)とS9004(2ch.), S9003(4ch.)を比較すると、時間差があるようにも見える。しかし、データはS1111H(5ch.)とS1112H(6ch.)ほど顕著に時刻を示す特異点（例えば、注水開始に対応するスパイク状の亜）がないので正確な比較はできない。また、ヘッドの位置のずれについては、時間のずれが大きすぎるとせの理由から、ずれの原因についてはよく分からない。

Fig. 3.5.2(b)図中のS1114Hに認められる大きな負の信号は、合理的な説明がつかないのでノイズであろう。

以下に主な結果をまとめる。

(1) 測定結果をTable 3.5.1にまとめた。
(2) P1114, P1115には高周波成分の圧力波形が認められたが（3.2節参照）、対応する亜S1114H, S1115Hには認められなかった。
(3) S1111Hで最大亜が生じているが、ピークの2山目の方が大きく、圧力波形(P1111)とも異なった形状である。
(4) 軸方向亜ではS1115A以外は初期圧縮亜が測定されている。
(5) 熱的影響が少なかったので、準定常圧力領域における歪の挙動が測定できた。
(6) 準定常圧力領域では軸方向の歪はほとんど変化しない。

Table 3.5.1 EV胴壁歪の測定結果のまとめ

<table>
<thead>
<tr>
<th></th>
<th>歪ピーク値</th>
<th>歪ピーク幅</th>
<th>RD601</th>
<th>備 記 事 項</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1111H</td>
<td>1.64 x 10^-5</td>
<td>8.2 msec</td>
<td>5.0 x 10^-4</td>
<td>ピークが2つある。</td>
</tr>
<tr>
<td>S1112H</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>時間軸がずれているため未確認。</td>
</tr>
<tr>
<td>S1113H</td>
<td>1.28</td>
<td>6.0</td>
<td>4.0</td>
<td>ピークが2つある。</td>
</tr>
<tr>
<td>S1114H</td>
<td>1.54</td>
<td>5.4</td>
<td>4.2</td>
<td>ノイズが混入している。</td>
</tr>
<tr>
<td>S1115H</td>
<td>1.28</td>
<td>4.6</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>S1121H</td>
<td>1.02</td>
<td>5.7</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>S1131H</td>
<td>0.96</td>
<td>6.4</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>S1132H</td>
<td>1.10</td>
<td>5.8</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>S1133H</td>
<td>1.10</td>
<td>5.2</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>S1112A</td>
<td>0.48</td>
<td>5.0</td>
<td></td>
<td>初期に負の歪がある。</td>
</tr>
<tr>
<td>S1114A</td>
<td>1.30</td>
<td>4.3</td>
<td></td>
<td>初期に負の歪がある。</td>
</tr>
<tr>
<td>S1115A</td>
<td>0.72</td>
<td>6.2</td>
<td></td>
<td>ほとんど0</td>
</tr>
<tr>
<td>S1131A</td>
<td>N.D</td>
<td>N.D</td>
<td></td>
<td>定義しきれない。初期に負の歪がある。</td>
</tr>
<tr>
<td>S1133A</td>
<td>N.D</td>
<td>N.D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注 1) 上の表は図のように定義したが、全体の概略を示すためにまとめたものである。
3.5.2 蒸発器（E V）フランジ間ギャップ測定

E Vは下胴、中間胴、上部胴板の三体で構成されている。（Fig. 2.1.3参照）中间胴は内部構造物を吊り下げるものであり、実験前の挿入、組立、実験後の解体作業を円滑にするために設けられたものである。従って、E V自体には2組のフランジがあり、それぞれオクタゴナル形リングジョイントガスケット（SUS304L相当製造品）でシールされ、M42×40本のボルト（ASME SA193 B8M）で締め付けられている。測定の対象としたフランジ間ギャップは上部胴板と中间胴である。これはナトリウム水反応時に発生すると思われる上部胴板へのナトリウム・ハンマー現象によりフランジが開くか否かを確かめるためである。Fig. 3.5.4に測定場所、方法を示した。ギャップは上部胴板と中间胴のフランジ間にベース板を溶接し、ベース板の歪から推定した。歪の測定は前節と同様である。

測定結果をFig. 3.5.5(a)〜(b)に示した。すべてのプロッター図の時間軸原点は注水弁開操作後0.01secである。

ただし、前項で述べたように、S9002とS9004は時間軸がずれている可能性がある。
3.6 温度

以下の節で、蒸発器（E V）内温度、二次系内温度、放出系配管内温度、収納容器（R T）内温度について述べる。各測定はC A熱電対で計測され、高速データ収録装置（HP 2 1 1 6 C、80 Hz）に収録された。ただし、室温補償されてないので、本レポートのプロッター図は厳密にはこの補正が必要である。（初期状態はE Vでは380℃であり、そこから補正分を読み取ると、20℃を図示されたデータに加算すればよい。）

いずれも図示された測定結果の時間原点は注水弁開操作から0.01 sec後である。（ナトリウム中に注水されたのは0.248 secである。）

3.6.1 蒸発器内温度

シース外径1.0Φ，非接地型の熱電対59点で計測された。（ただし、T 1 1 1 9 は断線のため収録されていない）シース材質は注水点近傍の10点がインコネル600で、その他はSUS 316である。計測点位置をFig. 3.6.1に示す。また、計測点リスト（Appendix 1）に位置等を明記した。熱電対は注水点近傍の伝熱管部の他に、カーバガス空間、放出系配管の入口にも設置されている。

測定結果をFig. 3.6.2(a)〜(e)に示した。

測定された最高温度はT 1 1 4 4における1175℃であった。

3.6.2 二次系内温度

ループ配管内温度T 1 0 0 1〜T 1 0 1 4の14点、およびSH（T 1 2 0 1）、IHX（T 1 3 0 1）が測定された。

使用された熱電対のうちT 1 2 0 1のみ1.6Φ、非接地型で、SHのナトリウム中（Fig. 2 1.4参照）に取付けられている。その他は、シース外径3.2Φ、非接地型の熱電対で、先端が内壁から5mm突き出されて使用されている。

測定結果をFig. 3.6.3(a)〜(d)に示した。

3.6.3 放出系配管温度

配管内温度9点（T 6 0 3 1〜T 6 0 0 6）が計測された。計測位置はFig. 3.4.10に示したように、E VからR Tへの放出系配管のみで、SHからの配管にはない。熱電対はシース外径3.2Φ、非接地型で、その先端は内壁から5mm突き出っている。

測定結果をFig. 3.6.4(a)〜(d)に示した。

-29-
3.6.4 収納容器（RT）内温度

これまでと同様のFig. 2.1.5に示したT6101〜T6105の5点の他に、上部注水試験であったので、T6141〜T6147の7点を追加した。Fig. 3.6.5に追加した計測位置を示す。

使用された熱電対は1.6Φ、非接地型である。

測定結果をFig. 3.6.6(a)〜(c)に示した。

3.6.5 その他の

放出系スタック逆止弁温度（T7001, 2）は熱電対の断線により測定できなかった。
3.7 蒸発器及び二次系内の流動

E V及び二次系内におけるナトリウム/ガスの流動を調べるために連続式液面計をE V内に
4点、SHに1点、抵抗式ナトリウム・ボイド計をE V内に17点、電磁流量計を二次系配管
に1点設置した。また、E Vのカーバーガス中には熱電対が24点設置されており、これからも
E V内の流動が明らかとなる。

3.7.1 E V内の流動

誘導型連続式液面計をE V内のダウンカーテン(L111, L1103), センタパイプ(L1101),
コイル部上部(L1102)に設置した。これらの配置をFig. 2.1.3に示す。またSHにも
L121が挿入されている。（Fig. 2.1.4を参照）たとえ、L1102とL121は計測に失敗した。
これらの結果をFig. 3.7.1に示す。初期の液位はM.R.6100であった。また、反応と同時に
液面の急激な上昇が見られるが、アンプの時定数が大きく取っているので、この傾きから液
面上昇速度を求める事はできない。

E V内のナトリウム流動は抵抗式ナトリウム・ボイド計17点（V1101〜V1117）, 熱電
対59点（T1101〜T1159）からも読み取れる事ができる。抵抗式ナトリウム・ボイド計の
配置図及び測定結果をFig. 3.7.2, Fig. 3.7.3(a)〜(f)にそれぞれ示した。また、抵抗式ナ
トリウム・ボイド計及び熱電対の初期の信号の立ち上がり時間帯を横軸に、センサの取付け位置
のレペルを縦軸にプロットしたのがFig. 3.7.4である。この図から、初期のナトリウムの液
面移動速度は破損チャンネルで5〜15 m/secと推定される。また、1.5秒頃に見られる
センタパイプ上部の熱電対の信号の立ち上がり、伝熱管管部からの反応ナトリウムのまわ
り込みによるものと考えられる。

E Vの外部シュラウド管の外側に加速度計が取り付けられ、内部構造物の振動を調べてい
る。AK1101, AK1102共に容量10Gである。結果をFig. 3.7.5(a), (b)に示した。

3.7.2 二次系内の流動

電磁流量計F101はホットレグに相当するIHX出口2 B配管に設置されている。その結
果をFig. 3.7.6に示した。0.8〜1.1秒のフラット及びゼロ出力の部分はアンプの入力が
オーバーフローしたものである。
3.8 放出系配管内の流動

放出系配管内の流動様相を推定するために以下のセンサが設置されている。即ち、ナトリウム流速は、接触式ナトリウム検知器、抵抗式ナトリウムピード計、流体力はドラッグ式流量計ピード率はγ線ピード率計で求めた。計測器取付け位置はFig.3.4.5に示した。

3.8.1 ナトリウムの初期流速

放出系ラブチャ板破壊直後流出するナトリウムの速度を求めるために設置した接触式ナトリウム検知器の信号はほとんど得られなかった。これは、自由液面付近でのNa —水反応現象の特徴と思われるが、流体にナトリウム成分が少なかったためと考えられる。抵抗式ナトリウムピード計の立上がりの時間遅れを軸方向距離に対してプロットしたのがFig.3.8.1でこの図から流速46 m/secが得られた。

3.8.2 ピード率

γ線ピード率計は、ガスとナトリウムに対するγ線の透過率の差からピード率を求めるものである。その結果をFig.3.8.2に示したが、ほとんど目立ったピード率の変化は見られない。これは、抵抗式ナトリウムピード計の出力からも同様の結果が得られている。抵抗式ナトリウムピード計の取付け詳細図及び、その結果をFig.3.8.3, Fig.3.8.4にそれぞれ示した。

3.8.3 ナトリウム流量

ドラッグ式流量計F6038は7mmφのディスクを用いている。Fig.3.8.5にその結果を示したが初期のピーク値は0.24 kgfである。また、1〜4秒の出力は温度による偽信号と思われる。

-32-
3.9 放出系配管の運動

放出系配管の運動には流体力によるもの、反応容器やRTの振動によるもの、配管容器等の熱膨張によるもの等考えられる。これらの原因により放出系配管に発生する力・運動を求めるためにFig. 3.9.1に示すような計測器（ロードセル・加速度計・歪ゲージ）が設置されている。

3.9.1 配管支持点反力

圧縮型荷重変換器を用いて配管支持点に作用する力を測定した。荷重計は共和電業製LC-5TE, 10TE, 20TEを用い、一方向についての容量の合計が20tonになるように3支持点に対し計15個設置してある。試験結果をFig. 3.9.2(a)～(d)に示す。

これらの図から次の事が判る。
1) 伸縮繊手上流の支持点に作用する反力（R6001～R6008）は初期1sec頃に10Hz程度の振動が見られる。また、熱膨張力と思われるかなりかな荷重が顕著であり、場所によっては最大1tonを超えている。
2) 伸縮繊手下流の支持点に作用する力（R6009～R6014）には初期の10Hz程度の振動（振幅約1ton）と2秒以後の2～3Hz程度の低周波数の振動が認められるものがある。

3.9.2 配管の振動

本試験から放出系配管及び収納容器に加速度計（共和電業製AS-10B, 容量10G）が取付けられて、配管の振動特性が求められた。Fig. 3.9.3に加速度計の測定方法を、試験結果をFig. 3.9.4(a)～(c)に示す。約0.2秒, 0.8秒, 3.2秒と3回の激しい振動が見られるが、これらは、それぞれ、ナトリウム水反応開始, RD601爆破後のナトリウム通過, RTでの大気放出開始に対応するものと思われる。

3.9.3 配管壁歪

放出系配管に生ずる歪量を求めるために歪ゲージS6001, S6002Bが貼られている。共に放出系入口付近に軸方向の歪を計測できるように取付けてある。

試験結果をFig. 3.9.5に示した。0.8秒以後の急激な上昇は熱応力によるものと思われ、RD601爆破直後に最大50×10^-6の歪量が認められる。
3.10 放出ナトリウム量

今回のRun - 4 試験は EV の伝熱管上部での破断を模擬したため、EV 内でのナトリウム流動は従来の試験と比べて穏やかなものであった。従って、EV・SH の試験前後の液面変化から求めた放出ナトリウム量は Run 2, 3 の約半分の 0.541 m³ (466kg) であった。これは、EV 内のナトリウム量の 0.12 倍、破断点レベル以上の伝熱管上部のナトリウム量の 0.90 倍に当たる。

Table 3.10.1 EV, SH の液面変化

<table>
<thead>
<tr>
<th></th>
<th>注水直前</th>
<th>注水 0 分後</th>
<th>差</th>
<th>相当する Na 量 [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>3.19 m</td>
<td>2.85 m</td>
<td>0.34 m</td>
<td>0.399</td>
</tr>
<tr>
<td></td>
<td>(F.L.6100)</td>
<td>(F.L.5760)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td>1.96 m</td>
<td>1.80 m</td>
<td>0.16 m</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>(F.L.6100)</td>
<td>(F.L.5940)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

初期レベル F.L. 6100
注水後のレベル F.L. 5760

V101（注水開始後 開）
3.11 二次系配管の運動

本節では、EV, SH, IHXを結ぶ二次系配管のナトリウム水反応に伴う運動について述べる。

二次系配管をFig. 3.11.1に示す。EV, SHは架台に固定され、配管はスプリング・ハンガ（HG）、リジットハンガー（RD）、ハイドローリック・スナップ（HS）、およびアンカー等の各種レストレイト（GK, GS, ANC）で、それぞれ固定されている。IHXは上部が架台に固定され、下部は2本のHGで吊り下げる。また同図に示すように、配管運動を測定するために10点の加速度計（A1001〜A1010）と2点の非接触変位計（A1011〜A1012）が設置されている。ただし、前回試験（Run-3）以降に次の計測位置を変更した。

(1) A1005はSHの下部から、A1003の位置（Y方向）に移動した。
(2) A1006は方向だけ、Y方向からZ方向に変更した。
(3) A1009は方向だけ、Y方向からX方向に変更した。

加速度計には共和電業製AS-5C（歪ゲージ式）が使用された。定格容量は5Gで0〜100Hzが測定周波数範囲である。（固有振動数は160Hz±10%である）。各加速度計は常温使用なので配管に直接取付けられているのではなく、冷却のためにFig. 3.1.2に示される取付枠を介して取付けられている。

非接触変位計には新日本測器製503-F型NP-050が使用された。測定範囲は0〜5mm、応答周波数はDC〜20KHzである。変位計の測定図をFig. 3.1.3に示した。

出力信号はいずれもデータレコーダーに収録された。
0〜2secの2種類を示した。0〜0.15secの時間軸原点は注水弁開操作から0.2415sec後であり、0〜2secの時間軸原点は注水弁開操作から0.01sec後である。

同図中でA1007はデータレコーダーの入力オーバーのため波形が変形している。なお、加速度の定格容量が5Gであるので、その他のデータに関しても過大な加速度に対しての信頼性は乏しい。
3.1.2 水素ガス大気放出

本節では、E Vから放出系配管を通ってR Tでナトリウムと分離された水素ガスの放出スタ
クからの大気放出過程について述べる。

R Tに流れ込んだナトリウムと水素ガスは放出系配管入口管がR T容器に対して接線方
向に取付けられているので、内筒とライナーとの間のアニマス部で遠心分離により粗分離さ
れ、ナトリウムはR T下部に沈殿する。ナトリウムミストを含んだ水素ガスはさらにセパレー
タで分離される。R T上部には大気放出用のラブチャ板（RD603）があるので、水素ガスは
さらにそれを破って、大気放出弁を通じ、イグナイターで点火され大気放出される。

大気放出弁、イグナイター等の詳細は別報④を参照されたい。

イグナイターは電気加熱ヒーターが使用され、試験直前から昇温が開始され、700℃以上
であることを確認して注水試験が行われている。（ヒーター仕様では800℃以上表面温度であ
るが制御用計算機の温度計測上限値が700℃なので、それ以上である実際の値は確認されて
いない。）

試験時の水素ガス放出過程は8mmカメラ、ビデオテープレコーダー、カメラで記録されてい
る。Fig. 3.1.2.1に写真記録を示す。

使用したカメラはNikonF（モータドライブF－250）、使用フィルムKodacolor II ASA
80、撮映条件、しぼり；5.6、シャッター；1／125、撮映スピードは3コマ/secであった。

同写真からもわかるように、スムーズに着火し、安全に水素ガスの大気放出が行われた。
炎の高さはほぼ10mであった。また、放出開始後9 sec頃には逆止弁が作動し、炎は小さくな
った。
3.13 伝熱管二次破断

本節では初期伝熱管破断にともなう隣接伝熱管二次破断について述べる。
本試験では9層の伝熱管コイルのうち、内側5層をN₂ガスで加圧・封入し、注水期間中その圧力を監視した。
モニターされた封入ガス圧をFig. 3.13.1に示す。同図から明らかのようにいずれの伝熱管にも破断がない。ガス圧力の上昇はナトリウム－水反応による温度上昇によるものである。封入ガス圧をTable 3.13.1に示した。

<table>
<thead>
<tr>
<th>初期封入圧力値</th>
<th>135 kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5201（1層目）</td>
<td>144</td>
</tr>
<tr>
<td>P5202（3層目）</td>
<td>145</td>
</tr>
<tr>
<td>P5203（5層目）</td>
<td>141</td>
</tr>
<tr>
<td>P5204（4層目）</td>
<td>143</td>
</tr>
<tr>
<td>P5205（2層目）</td>
<td>144</td>
</tr>
</tbody>
</table>

注 1）SEQ－12操作記録より
3.14 ラブチヤ板破裂

3.14.1 放出系ラブチヤ板

放出系用ラブチヤ板は、EV、SH、RTにそれぞれ設けられているが、それらの仕様は2.3.4節に述べた。

各破壊状況はTable 3.14.1のとおりである。また、破壊後写真をFig.3.14.1、3.142に示した。

Table 3.14.1 放出系ラブチヤ板破壊データ

<table>
<thead>
<tr>
<th></th>
<th>RD601(EV)</th>
<th>RD602(SH)</th>
<th>RD603(RT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>破裂圧力</td>
<td>3.9 kg/cm²</td>
<td>破裂せず</td>
<td>1.4 kg/cm²</td>
</tr>
<tr>
<td>破裂時温度</td>
<td>400℃ (T1149)</td>
<td>-</td>
<td>不明</td>
</tr>
<tr>
<td>開口状況</td>
<td>完全開口</td>
<td>-</td>
<td>完全開口</td>
</tr>
<tr>
<td>破裂時計</td>
<td>[0.536 sec]</td>
<td>-</td>
<td>[2.95 sec]</td>
</tr>
</tbody>
</table>

注 1）正確には定義しにくい。の値で代表させたが、温度は過渡変化している。
2）水射出開始からの時間である。

3.14.2 注水系ラブチヤ板

注水系ラブチヤ板は途中配管に設けられたRD501と伝熱管コイル部に設けられたRD502によって構成されている。それぞれの仕様および形状は2.3.2節で述べた。

本節ではRD502購入時の破壊試験結果および注水試験での破壊結果をまとめておく。

Table 3.14.2 注水系ラブチヤ板破壊データ

<table>
<thead>
<tr>
<th></th>
<th>破裂圧力</th>
<th>温度</th>
<th>破裂状況</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>破裂試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RD502)</td>
<td>77kg/cm²</td>
<td>500℃</td>
<td>良</td>
<td></td>
</tr>
<tr>
<td>注水試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD501</td>
<td>106kg/cm²</td>
<td>306℃(T511)</td>
<td>良</td>
<td></td>
</tr>
<tr>
<td>RD502</td>
<td>86kg/cm²</td>
<td>380℃(T111)</td>
<td>良</td>
<td></td>
</tr>
</tbody>
</table>

注 1）注水試験時の温度は正確には不明である。の測定値で代表させた。

-38-
4. その他の特記事項

4.1 溶接用ステンレス鋼棒によるウェステージ測定結果

小あるいは中リーグ・Na－水反応によって隣接伝熱管に損耗（以下ウェステージ）が生ずることはよく知られている現象である。

これまでのSWAT－3における大リーグ試験においてもこの点に着目して、注水試験後に伝熱管の損傷状態を調べる検査が実施されてきた。しかし、伝熱管が直管（ヘリカル型）であるため、損耗量の測定はノギスにて行われてきた。

この測定結果によれば、大リーグ・Na－水反応によって生ずるウェステージ量はノギスの測定誤差範囲内にあり、小あるいは中リーグに較べて極めて小さい値であることが分っている。

本節は、大リーグ・Na－水反応によって生ずるウェステージ量を定量化するために、寸法測定が容易な円棒を伝熱管束内に組み込み、その試験前後の直径を比較した結果についてまとめたものである。

4.1.1 測定方法

ウェステージ測定用に組み込まれた丸棒には、本来伝熱管と同材質を使用するのが好ましいのであるが、入手困難であったため、溶接用ステンレス鋼棒を使用した。その主な仕様を下表に示す。

<table>
<thead>
<tr>
<th>表4.1.1 ウェステージ測定用に使用した溶接用ステンレス鋼棒の仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造元</td>
</tr>
<tr>
<td>品名</td>
</tr>
<tr>
<td>寸法</td>
</tr>
<tr>
<td>種類番号</td>
</tr>
<tr>
<td>化学成分</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>その他</td>
</tr>
</tbody>
</table>

-39-
組み込まれたウェスタン・ターゲット（溶接棒）は5組であり、その取付位置をFig. 4.1.1に示す。それぞれのターゲットは上端で固定され、下端は無拘束である。

注水試験後、取りはずした際には、W-1, W-2 には若干の変形があり、W-3 が最も変形が大きかった。また、W-4, W-5 は変形がなかった。

これらのターゲットの外径はマイクロメーター（読み取り精度：0.001 mm）で測定され、その注水試験前後の値が比較された。

4.1.2 測定結果

ターゲット組み込み前の外径測定は任意の箇所を代表的に29回測定したのみである。その結果をFig. 4.1.2に示す。全計測点の平均値は2.608 ± 0.004 mmであった。

注水試験後は、Fig. 4.1.3に示したように下端から上方に100 mm間隔で測定し、1ヶ所につき45°ごと4回測定した。

以上の結果をFig. 4.4に示す。図面から注水点に近いW-1, W-2, W-3 にはウェスタンが認められ、比較的近いW-4, W-5 にはウェスタンは認められない。

ただ、注水試験前の測定値よりも大きな値になっている箇所もあり、測定精度は±0.01程度であると考えられる。（ターゲットが変形したことも誤差が大きくなっている原因にあげられる）

また、同時に目視による検査も実施したが、この検査では、ウェスタン箇所を判定することは困難であった。

上記のことから、本試験で生じたウェスタン量は、最大でも0.023 ± 0.01 mm 程度であったと判断される。注水時間は9.4 sec であったからウェスタン率に換算すると2.4 × 10^{-3} (mm/ sec) となり、ソリッド現象で測定されているSUS304での最大ウェスタン率*は約3.0 × 10^{-2} に較べて1桁程度小さいことが分る。
4.2 収納容器大気放出弁の弁座部改造結果

4.2.1 これまでの経過

SWAT-3製作時において大気放出弁として、「ばね式」、「ウェイト式」の両形式が比較され、「ばね式」が採用された。主な比較項目は下表のとおりである。

Table 4.2.1 両形式の比較

<table>
<thead>
<tr>
<th></th>
<th>ばね式</th>
<th>ウェイト式</th>
<th>理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>シール性</td>
<td>-</td>
<td>-</td>
<td>差なし</td>
</tr>
<tr>
<td>安定性</td>
<td>○</td>
<td>×</td>
<td>ウェイト式に弁体が大きい放，熱膨張による変形が大</td>
</tr>
<tr>
<td>作動特性</td>
<td>○</td>
<td>×</td>
<td>初期吹き出し時ウェイト式は慣性のため遅れあり</td>
</tr>
<tr>
<td>摸動部</td>
<td>○</td>
<td>×</td>
<td>ウェイト式の方が多い</td>
</tr>
<tr>
<td>保守性</td>
<td>-</td>
<td>-</td>
<td>差なし</td>
</tr>
<tr>
<td>オーバーホール</td>
<td>×</td>
<td>○</td>
<td>ばね式は分解後，ばね再調整の必要がある</td>
</tr>
</tbody>
</table>

また，主な設計仕様は次のとおりである。

型 式：自立式（ベネ式）逃し弁
接続管：10×⁸×Sch 40，出口は大気開放
流体：H₂ガス，混入物なし
設計圧力・温度：10 kg/cm²G, 535℃
吹き出し圧力：0.3～1.5 kg/cm²G
全開圧力：1.5 kg/cm²G
吹き出し流量：35.5 m³/sec（535℃, 1.5 kg/cm²Gの時）
弁開圧力：0.3 kg/cm²G
吹き止まり圧力：規定しない

なお，価格の低減化を計るため，弁体は溶接構造とした。また，弁座はばねフランジな当り面となっており，ステンレス製されている。Fig. 4.2.1に外形を示す。

ところが，これまでの試験では（Run -1 ～ Run -3），弁座にナトリウムがかみ込み，注水試験後弁間リークが生じた。このため，本試験に先立って，弁座の密着性を向上させるため形状変更し，当り面の巾を従来より狭くした。改造後の弁座部形状をFig. 4.2.2に示した。
4.2 本試験での結果

本試験においても、注水試験後には弁間リークが生じ、完全にシールすることはできなかった。ただ、カバーガス圧力の変化から判断して定性的には従来よりもリーク量は少なくなったと言える。注水試験後の弁座部ナトリウム付着状況をFig. 4.2.3（写真）に示した。

4.2.3 その他

これまでの試験では、大気放出弁の吹き出し特性に関しては顕著な時間遅れ、スティック等の問題は生じていない。ただ、注水試験前に作動試験を実施しているので、作動特性の経年変化に関しては本SWAT-3試験のみでは情報が得られない。
5. むすび

1975年12月、試験計画を検討し始めから、1977年8月の内部構造物検査の終了に至るRun−3試験全過程、1977年3月18日実施された注水試験結果を中心に主な事象に関して以下にまとめた。

(1) 試験には東芝/石川島播磨重工業㈱によって設計、製作された蒸発器内部構造物が使用され、放出系配管が蒸発器側部に取付けられた体系で行なわれた。本試験の目的は、伝熱管コイル上部でのナトリウム−水反応現象の解明にあたる。

(2) 注水率9.0〜7.2kg/secの試験規模であった。これは「Iso-velocity」モデルによって、「もんじゅ」体系における5本破断に相当する。また、注入伝熱管内部圧力が測定された。それによれば、注水用ラブチャ板の破裂時圧力は86kg/cm²であった。

(3) 蒸発器内圧力挙動の概要をFig.5.1に示した。

(a) 初期スパイク圧力は注水点近傍（PK1103）で14.7kg/cm²であり、蒸発器内で最大であった。しかし、一部には高周波成分を含む圧力波が測定された。

(b) 中間熱交換器への伝搬圧力は、途中配管においてガスの混入によると思われる変形・変衰が認められた。

(c) 蒸発器内単定常圧力（カバーガス）の最大値は5.4kg/cm²であり、蒸発器放出系ラブチャ板（RD601）は注水開始後（0.536sec）に破裂した。収納容器ラブチャ板（RD603）破裂は（2.95sec）であった。また、本試験と注水装置が異なる以外はほぼ同じ試験条件であるRun−3試験の単定常圧力挙動と比較すると、RD601破裂後の波圧のない方が大きく、圧力のピーク値も低いことが分かった。

(6) 蒸発器内カバーガス領域の熱電対・ボイド計の信号によれば、破損上部のナトリウム液面上昇速度は5〜15m/secと推定された。

(7) ボイド率計によれば、試験の全時間領域で高ボイド率（ほぼ1.0）であった。

(8) 収納容器に放出されたナトリウム量は466kgであった。

(9) 加速度計によって二次系配管の運動が測定され、最大加速度は15G以上であった。

(10) 水素ガスは放出後まもなく着火し、安全に大気放出された。

-43-
<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>Run4</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験年月日</td>
<td></td>
<td>1977.3.18</td>
</tr>
<tr>
<td>反応容器</td>
<td></td>
<td>煮発器</td>
</tr>
<tr>
<td>内部構造物型式</td>
<td></td>
<td>ヘリカル・東芝/IHI</td>
</tr>
<tr>
<td>反応点位置</td>
<td></td>
<td>ヘリカル上部5箇目</td>
</tr>
<tr>
<td>注水条件</td>
<td></td>
<td>円筒型・19φ×2以上</td>
</tr>
<tr>
<td>注水孔・ラブチャ板形式</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラブチャ板設定圧</td>
<td>Kg/cal</td>
<td>100±10(350℃)</td>
</tr>
<tr>
<td>RD501</td>
<td>Kg/cal</td>
<td>100+0−10(500℃)</td>
</tr>
<tr>
<td>RD502</td>
<td>Kg/sec</td>
<td>9.0(初期)−7.2(後期)</td>
</tr>
<tr>
<td>注水流量</td>
<td>Kg</td>
<td>83</td>
</tr>
<tr>
<td>注水配管温度</td>
<td>°C</td>
<td>254〜386</td>
</tr>
<tr>
<td>水加熱器温度</td>
<td>°C</td>
<td>306</td>
</tr>
<tr>
<td>"圧力</td>
<td>Kg/cal</td>
<td>155</td>
</tr>
<tr>
<td>初期給水量</td>
<td>Kg/sec</td>
<td>390</td>
</tr>
<tr>
<td>注水弁(V502)弁開時間</td>
<td>sec</td>
<td>94</td>
</tr>
<tr>
<td>ナトリウム系条件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナトリウム温度</td>
<td>°C</td>
<td>380</td>
</tr>
<tr>
<td>ナトリウム流量</td>
<td>Kg/sec</td>
<td>静止</td>
</tr>
<tr>
<td>カーバーガス圧</td>
<td>Kg/cal</td>
<td>0.5</td>
</tr>
<tr>
<td>煮発器</td>
<td>Kg/cal</td>
<td>0.5</td>
</tr>
<tr>
<td>通熱器</td>
<td>Kg/cal</td>
<td>0.5</td>
</tr>
<tr>
<td>カーバーガス使用ガス</td>
<td></td>
<td>アルゴン</td>
</tr>
<tr>
<td>放出系条件</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラブチャ板設定圧</td>
<td>Kg/cal</td>
<td>3(485℃)</td>
</tr>
<tr>
<td>RD601</td>
<td>Kg/cal</td>
<td>3(515℃)</td>
</tr>
<tr>
<td>RD602</td>
<td>Kg/cal</td>
<td>1.5(150℃)</td>
</tr>
<tr>
<td>放出系配管取出位置</td>
<td></td>
<td>側部</td>
</tr>
<tr>
<td>運転温度</td>
<td>°C</td>
<td>267〜298</td>
</tr>
<tr>
<td>放出系配管温度</td>
<td>°C</td>
<td>358</td>
</tr>
<tr>
<td>収納容器温度</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>カーバーガス圧(収納容器)</td>
<td>Kg/cal</td>
<td>0.5</td>
</tr>
<tr>
<td>カーバーガス使用ガス</td>
<td></td>
<td>アルゴン</td>
</tr>
</tbody>
</table>
Fig. 2.1.6 水加熱器
型 式 | C | 破裂圧力 | 100 Kgf/cm² | G
---|---|---|---|---
ディスク材質 | SUS 316L | 許容誤差 | ± 0 Kgf/cm² | 0 G
液 体 | 加圧水及び加圧蒸気 | 外部圧力 | 1 ～ 1 Kgf/cm² | G
接 続 | 3B ANSI 2500 WN | 温 度 | ハレツ | 350 ～ 500 ℃

注) 1) ○印部品ハミルシート付スツル

品番	部品名	材質	個数	仕上
9 | Vサポート | SUS 316L | 1 | |
8 | 打込ネジ | SUS 304 | 2 | |
7 | 銘板 | SUS 304 | 1 | |
6 | ナット | SUS 316 | 16 | M 33
5 | スタッド | SUS 316 | 8 | M 33×230 L
4 | ジャッキボルト | SUS 304 | 2 | |
3 | ディスク | SUS 316L | 1 | |
2 | ホルダー（H） | SUS 316 | 1 | |
1 | ホルダー（L） | SUS 316 | 1 | |

Fig. 2.3.1 注水系ラブチャ板（RD501）

-62-
備考
1. ○印は側面接続口、Bi-40M-10Fなどは
 関係部品を示す。
2. *印は高圧付近である。

材料表

<table>
<thead>
<tr>
<th>材料名</th>
<th>材料種類</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUS304TP, SS840</td>
<td>腹管</td>
<td>1</td>
</tr>
<tr>
<td>SUS304TP, SS840</td>
<td>腹管</td>
<td>1</td>
</tr>
<tr>
<td>スライドハンドル</td>
<td>2B</td>
<td>1</td>
</tr>
<tr>
<td>スライドハンドル</td>
<td>2B</td>
<td>1</td>
</tr>
<tr>
<td>SS304TP, SS840</td>
<td>外径</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 2.3.3 ドレン配管組立図
<table>
<thead>
<tr>
<th>定格容量</th>
<th>200 ks/cm²G</th>
<th>使用温度範囲</th>
<th>RT～500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>出力電圧</td>
<td>0.5 mV/V以上</td>
<td>温度特性</td>
<td>0.02%FS/℃</td>
</tr>
<tr>
<td>過積荷荷</td>
<td>120%FS</td>
<td>周波数特性</td>
<td>DC～10 kHz</td>
</tr>
<tr>
<td>非直線性</td>
<td>1%FS</td>
<td>製作メーカー、型式</td>
<td>ST研、PHT－200D</td>
</tr>
<tr>
<td>再現性</td>
<td>0.5%FS</td>
<td>備考</td>
<td>———</td>
</tr>
</tbody>
</table>

Fig. 3.1.2 注水配管圧力計
Fig. 3.1.4 注水管組立図
Fig. 3.1.7(a) Drag Force in Water Injection Line
Fig. 3.1.8(a) Pressure Transient in Water Injection Pipe above RD501
Fig. 3.1.8(c) Pressure Transient in Water Injection Pipe above RD501
Fig. 3.1.9(b) Pressure Transient in Water Injection Tube
Fig. 3.1.10(a) Pressure Distribution in Water Injection Tube
Fig. 3.2.1 Pressure Transducer Locations in Evaporator (Run-4)
6. 謝辞

本報告書をまとめるにあたっては試験グループ（注水試験担当）の室内メモが基礎となって
いる。また、本報告書の内容に関しては、試験グループ各位、大後美雄氏、進藤嘉久氏、黒羽光
男氏、三宅教氏から貴重な助言と協力をしていただいた。

本試験の実施に際しては、大洗工学センター各室から計測器を貸与の等協力していただいた。

SWAT－3 試験装置の組立・試験準備、試験後処理等の作業は東興機械工業㈱派遣作業員の手
で行われた。

末筆ながら、御協力いただき各位に心から感謝の意を表します。
図・表集
Fig. 3.2.2(b) Initial Spike Pressure at Pressure Tap in Evaporator
Fig. 3.2.2(c) Initial Spike Pressure at Pressure Tap in Evaporator
Fig. 3.6.3(c) Temperature in Secondary Loop
01. 隣接伝熱管はN₂ガスで135 kg/cm²Gに加圧されたが、二次破損は生じなかった。
02. 隣接用ステンレス鋼棒によるウェステージ調定の結果、小リーグ実験で得られているSUS304の最大ウェステージ率に較べて1桁程度小さいことが分った。
03. 特記事項として大気放出弁の経験をまとめた。
7. 参考文献

(1) 佐藤稔, SWATグループ, SWAT-3 試験装置による大リーク・ナトリウム一水反応試験の
概要 動力炉技報 A 25 (1978. 2)

(2) M. Sato, H. Hiroi, N. Tanaka, M. Hori, Initial Pressure Spike and Its
Propagation Phenomena in Sodium-Water Reaction Tests for MONJU Steam Genera-
tors PNC SN941 77-60 (1977. 4)

(3) M. Sato, H. Hiroi, M. Hori, Large Scale Sodium-Water Reaction Tests for
MONJU Steam Generators PNC SN941 77-61 (1977. 4)

(4) 広井博, 佐藤稔, 田辺裕美, 錦見正和, 吉岡直樹, 塩川茂, 「蒸気発生器安全性総合試験装置
(SWAT-3) Run-3 試験結果 大リーク・ナトリウム一水反応試験 (第4報)」
PNC SN941 78-93 (1978. 7)

(5) 広井博, 佐藤稔, 田辺裕美, 錦見正和, 吉岡直樹, 塩川茂, 「蒸気発生器安全性総合試験装置
(SWAT-3) Run-5 試験結果 大リーク・ナトリウム一水反応試験 (第10報)」
PNC SN941 79-04 (1978. 10)

(6) 田辺裕美, 佐藤稔, 広井博, 錦見正和, 吉岡直樹, 塩川茂, 「蒸気発生器安全性総合試験装置
(SWAT-3) Run-6 試験結果 大リーク・ナトリウム一水反応試験 (第11報)」
PNC SN941 78-154 (1978. 10)

(7) 横井弘道, 氏原幸三朗, 大内義弘, 橋口弘, 大島聡, 井上健生, 塩川茂, 「小リーク・ナト
リウム一反応試験研究第4報 蒸気ウェステージと検出計の応答」
PNC SN941 74-45 (1974. 7)

(8) 大高仁護, 山田敏雄, 佐々木和一, 高橋憲二郎, 井上健生, 大内義弘, 佐藤稔, 「SWAT-3
用放出系ラプチャ板破裂検知器の改良 大リーク・ナトリウム一水反応試験 (第8報)」

-46-
Fig. 3.2.2(a) Initial Spike Pressure at Pressure Tap in Evaporator
Fig. 3.1.10(b) Pressure Distribution in Water Injection Tube
Fig. 3.1.9(c) Pressure Transient in Water Injection Tube
Fig. 3.1.9(a) Pressure Transient in Water Injection Tube
Fig. 3.1.8(b) Pressure Transient in Water Injection Pipe above RD501
Fig. 3.1.7(b) Drag Force in Water Injection Line
Fig. 3.1.6(b) Measured Result of Turbine Meter
Fig. 3.1.5 History of Water Heater Condition
Fig. 3.1.3 Pressure Transducer Locations in Water Injection Tube
仕様

<table>
<thead>
<tr>
<th>型式</th>
<th>特殊</th>
</tr>
</thead>
<tbody>
<tr>
<td>ディスク材質</td>
<td>SUS 304L相当</td>
</tr>
<tr>
<td>流体</td>
<td>管内</td>
</tr>
<tr>
<td>接続</td>
<td>絡</td>
</tr>
<tr>
<td>破裂圧力</td>
<td>100 Kg/cm²</td>
</tr>
<tr>
<td>許容誤差</td>
<td>+50 Kg/cm² (G)</td>
</tr>
<tr>
<td></td>
<td>-50 Kg/cm² (G)</td>
</tr>
<tr>
<td>常用圧力</td>
<td>mmtHg (abs)</td>
</tr>
<tr>
<td>外压</td>
<td>1 Kg/cm² (G)</td>
</tr>
<tr>
<td>試験温度</td>
<td>破裂時</td>
</tr>
<tr>
<td></td>
<td>500 ℃</td>
</tr>
<tr>
<td>常用</td>
<td>515 ℃</td>
</tr>
</tbody>
</table>

図

![図]

品番 部品名 材質 個数 仕上

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ダッター</td>
<td>SUS 304</td>
<td>2</td>
<td>ナイフエッジ ステライト溶着</td>
</tr>
<tr>
<td>3</td>
<td>ラブチャスリーブ</td>
<td>SUS 304L</td>
<td>1</td>
<td>シームレス</td>
</tr>
<tr>
<td>2</td>
<td>リング</td>
<td>SUS 304</td>
<td>1</td>
<td>最適</td>
</tr>
<tr>
<td>1</td>
<td>本体</td>
<td>SUS 304</td>
<td>1</td>
<td>最適</td>
</tr>
</tbody>
</table>

Fig. 2.3.2 注水系ラブチャ板（RD502）

-63-
<table>
<thead>
<tr>
<th>MLC</th>
<th>品名・寸法</th>
<th>材質</th>
<th>倍数</th>
<th>重量 (kg)</th>
<th>引当番号</th>
<th>合計重量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1301温度計用</td>
<td>SUS 304 TP</td>
<td>1</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T131 温度計用</td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P1302圧力計用</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P1302圧力計取付管</td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8B×S40×42968</td>
<td>SUS 304 TP</td>
<td>1</td>
<td>1444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8B×S40 キャップ</td>
<td>SUS 304 相当</td>
<td>2</td>
<td>81</td>
<td>(JIS-B-2305)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2B×S40×120</td>
<td>SUS 304 TP</td>
<td>2</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.1.7 中間熱交換器
Fig. 3.6.3(d) Temperature in Secondary Loop
Fig. 3.3.1 Secondary Loop Circuit in SWAT-3
Fig. 3.3.2(b) Propagated Pressure
Fig. 3.3.3(a) Long Time Transient of Propagated Pressure
Fig. 3.3.3(c) Long Time Transient of Propagated Pressure
Fig. 3.4.2(a) Quasi-Steady Pressure in Evaporator (0-2sec)
Fig. 3.4.2(c) Quasi-Steady Pressure in Evaporator (0~2 sec)
Fig. 3.4.2(e) Quasi-Steady Pressure in Evaporator (0-2sec)
Fig. 3.4.3(a) Quasi-Steady Pressure in Evaporator (0-6 sec)
Fig. 3.4.3(c) Quasi-Steady Pressure in Evaporator (0-6sec)
Fig. 3.4.3(e) Quasi-Steady Pressure in Evaporator (0 - 6 sec)
Fig. 3.4.4(a) Quasi-Steady Pressure in Evaporator (0–30sec)
Fig. 3.4.4(c) Quasi-Steady Pressure in Evaporator (0 - 30sec)
Fig. 3.4.5(b) Quasi-Steady Pressure in Superheater (0~6 sec)
Fig. 3.4.6(a) Quasi-Steady Pressure in I.H.X. (0~2sec)
Fig. 3.4.6(c) Quasi-Steady Pressure in I.H.X. (0~30sec)
Fig. 3.4.7(b) Quasi-Steady Pressure in Secondary Piping (0-2 sec)
Fig. 3.4.7(d) Quasi-Steady Pressure in Secondary Piping (0-2 sec)
Fig. 3.4.8(a) Quasi-Steady Pressure in Secondary Piping (0-6sec)
Fig. 3.4.8(c) Quasi-Steady Pressure in Secondary Piping (0~6sec)
Fig. 3.4.8(e) Quasi-Steady Pressure in Secondary Piping (0-6sec)
Fig. 3.4.9(b) Quasi-Steady Pressure in Secondary Piping (0-30sec)
Fig. 3.4.9(d) Quasi-Steady Pressure in Secondary Piping (0-30sec)
Fig. 3.4.11(a) Quasi-Steady Pressure in Pressure Relief Line (0~2sec)
Fig. 3.4.11(c) Quasi-Steady Pressure in Pressure Relief Line (0-30sec)
Fig. 3.5.2(a) Strain of Evaporator Wall
Fig. 3.5.2(c) Strain of Evaporator Wall
Fig. 3.5.2(e) Strain of Evaporator Wall
Fig. 3.5.3(b) Strain of Evaporator Wall Owing to Quasi-Steady Pressure
Fig. 3.5.3(d) Strain of Evaporator Wall Owing to Quasi-Steady Pressure
Fig. 3.5.5(a) Strain of Base Plate Fixed between Flanges
Fig. 3.6.2(b) Temperature in Evaporator
Fig. 3.6.2(d) Temperature in Evaporator
Fig. 3.6.2(f) Temperature in Evaporator
Fig. 3.6.2(h) Temperature in Evaporator
Fig. 3.6.2(j) Temperature in Evaporator
Fig. 3.6.2(1) Temperature in Evaporator
Fig. 3.6.2(n) Temperature in Evaporator
Fig. 3.6.2(p) Temperature in Evaporator
Fig. 3.6.2(r) Temperature in Evaporator
Fig. 3.6.2(t) Temperature in Evaporator
Fig. 3.6.2(v) Temperature in Evaporator
Fig. 3.6.2(x) Temperature in Evaporator
Fig. 3.6.2(z) Temperature in Evaporator
Fig. 3.6.3(b) Temperature in Secondary Loop
Fig. 3.6.4(a) Temperature in Pressure Relief Line
Fig. 3.6.4(b) Temperature in Pressure Relief Line
Fig. 3.6.3(a) Temperature in Secondary Loop
Fig. 3.6.2(y) Temperature in Evaporator
Fig. 3.6.2(w) Temperature in Evaporator
Fig. 3.6.2(u) Temperature in Evaporator
Fig. 3.6.2(s) Temperature in Evaporator
Fig. 3.6.2(q) Temperature in Evaporator
Fig. 3.6.2(o) Temperature in Evaporator
Fig. 3.6.2(m) Temperature in Evaporator
Fig. 3.6.2(k) Temperature in Evaporator
Fig. 3.6.2(i) Temperature in Evaporator
Fig. 3.6.2(g) Temperature in Evaporator
Fig. 3.6.2(e) Temperature in Evaporator
Fig. 3.6.2(c) Temperature in Evaporator
Fig. 3.6.2(a) Temperature in Evaporator
Fig. 3.5.5(b) Strain of Base Plate Fixed between Flanges
Fig. 3.5.4 Measuring Method of Gap between Flanges
Fig. 3.5.3(c) Strain of Evaporator Wall Owing to Quasi-Steady Pressure
Fig. 3.5.3(a) Strain of Evaporator Wall Owing to Quasi-Steady Pressure
Fig. 3.5.2(d) Strain of Evaporator Wall
Fig. 3.5.2(b) Strain of Evaporator Wall
Fig. 3.5.1 Strain Gage Locations on Evaporator
Fig. 3.4.11(b) Quasi-Steady Pressure in Pressure Relief Line (0-6sec)
Fig. 3.4.10 Instrumentation Locations in Pressure Relief Line
Fig. 3.4.9(c) Quasi-Steady Pressure in Secondary Piping (0 - 30sec)
Fig. 3.4.9(a) Quasi-Steady Pressure in Secondary Piping (0 - 30 sec)
Fig. 3.4.8(d) Quasi-Steady Pressure in Secondary Piping (0~6sec)
Fig. 3.4.8(b) Quasi-Steady Pressure in Secondary Piping (0~6sec)
Fig. 3.4.7(e) Quasi-Steady Pressure in Secondary Piping (0~2sec)
Fig. 3.4.7(c) Quasi-Steady Pressure in Secondary Piping (0-2 sec)
Fig. 3.4.7(a) Quasi-Steady Pressure in Secondary Piping (0~2 sec)
Fig. 3.4.6(b) Quasi-Steady Pressure in I.H.X. (0~6sec)
Fig. 3.4.5(c) Quasi-Steady Pressure in Superheater (0 - 30 sec)
Fig. 3.4.5(a) Quasi-Steady Pressure in Superheater (0~2sec)
Fig. 3.4.4(b) Quasi-Steady Pressure in Evaporator (0~30sec)
Fig. 3.4.3(f) Quasi-Steady Pressure in Evaporator (0~6sec)
Fig. 3.4.3(d) Quasi-Steady Pressure in Evaporator (0-6 sec)
Fig. 3.4.3(b) Quasi-Steady Pressure in Evaporator (0-6sec)
Fig. 3.4.2(f) Quasi-Steady Pressure in Evaporator (0-2sec)
Fig. 3.4.2(d) Quasi-Steady Pressure in Evaporator (0-2 sec)
Fig. 3.4.2(b) Quasi-Steady Pressure in Evaporator (0~2sec)
Fig. 3.4.1 压力測定用導圧管
Fig. 3.3.3(b) Long Time Transient of Propagated Pressure
Fig. 3.3.2(c) Propagated Pressure
Fig. 3.3.2(a) Propagated Pressure
Fig. 3.2.3 Initial Spike Pressure in Coil Region
Fig. 3.6.4(c) Temperature in Pressure Relief Line
Fig. 3.6.4(d) Temperature in Pressure Relief Line
Fig. 3.6.5 Location of Thermocouples Added for Run-4 in Reaction Product Tank
Fig. 3.6.6(a) Temperature in Reaction Product Tank.
Fig. 3.6.6(b) Temperature in Reaction Product Tank.
Fig. 3.6.6(c) Temperature in Reaction Product Tank.
Fig. 3.7.1 Shift of Sodium Level in Evaporator
Fig. 3.7.2 Void Detector Locations in Evaporator
Fig. 3.7.3(a) Void Behaviour in Evaporator
Fig. 3.7.3(c) Void Behaviour in Evaporator
Fig. 3.7.3(d) Void Behaviour in Evaporator
Fig. 3.7.3(e) Void Behaviour in Evaporator
Fig. 3.7.3(f) Void behaviour in Evaporator
Fig. 3.7.4 Sodium Flow in Evaporator
Fig. 3.7.5(a) Acceleration of Internals in the EV
Fig. 3.7.5(b) Acceleration of Internals in the EV
Fig. 3.7.6 Flow Rate in Secondary Loop
Fig. 3.8.1 Sodium Front Velocity in Pressure Relief Line
Fig. 3.8.2 Void Fraction in Pressure Relief Line from the Densitometer
Fig. 3.8.3 Sodium Void Detector Locations in Pressure Relief Pipe
Fig. 3.8.4(a) Sodium Void in Pressure Relief Line
Fig. 3.8.5 Drag Force in Pressure Relief Piping of Evaporator
Fig. 3.9.2(a) Thrust Load on Pressure Relief Piping
Fig. 3.9.2(c) Thrust Load on Pressure Relief Piping
Fig. 3.9.4(b) Acceleration at Pressure Relief Piping
Fig. 3.9.5 Strains of Pressure Relief Piping
Fig. 3.11.2 加速度計の測定方法

Fig. 3.11.3 変位計の測定方法
Fig. 3.11.4(b) Acceleration at Secondary Loop (A1002)
Fig. 3.11.4(d) Acceleration at Secondary Loop (A1004)
（4）全系予熱試験

（1）メガ不良箇所：H-68-1（H-66-2も除去）
現在メガ不良ヒーターの機能回復予熱試験続行中である……がH-55-1Bについて
ては、機能回復困難かと思われるので調整試運転の結果をみて新規ヒーターと付保温施
行実施予定

（2）H-51, 52, 57のサーマルリレーが容量不足のため現在カットし運転予定（電源ケ
ーブル容量については現在検討中）

（3）真空ポンプオイル交換実施
Fig. 3.11.4(a) Acceleration at Secondary Loop (A1001)
Fig. 3.11.4(g) Acceleration at Secondary Loop (A1007)
Fig. 3.11.4(i) Acceleration at Secondary Loop (A1009)
Fig. 3.11.5(a) Displacement at Secondary Loop (A1011)

$A-1011$

t$_0$=0.2415 sec

TIME (SEC)
Fig. 3.14.1 RD601破裂状况

Fig. 3.14.2 RD603破裂状况
Fig. 4.1.2 試験前の寸法測定結果

Fig. 4.1.3 寸法測定要領
Fig. 4.2.3 注水試験後の弁座部
Appendix

Appendix 1 計測点リスト
実験時にデータレコーダー、HP 2116C に収録した各計測タグ、測定対象、計測位置、計測器型式、収録機種をまとめた。(1)圧力 (2)歪 (3)温度 (4)液面 (5)波高 (6)荷重 (7)加速度・変位 (8)流量・破壊検知の順に並べた。詳細な計測位置は 3 章を参照のこと。

Appendix 2 試験時のHour Log, Fast Scan Log
注水試験15分前 (14°20′30″) の装置状態を示す Hour Log および注水試験中の Fast Scan Log を示した。Fast Scan Log はサンプリングタイムが 0.5 sec である。また、注水試験後の Hour Log (18°00′) も示した。

Appendix 3 注水試験時結果
注水試験の各操作シーケンスの時間経過を示したものである。テープレコーダーに収録された操作記録、運転日誌等をまとめたものである。

Appendix 4 Run-4 主な準備作業経過
前回試験以後の主な作業をまとめたものである。
(1) 压力計測（\(P_{3g} \)）

<table>
<thead>
<tr>
<th>Tag No.</th>
<th>測定対象</th>
<th>計測位置</th>
<th>計測器型式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1004</td>
<td>EV出口配管内圧力</td>
<td>EV出口端から 6,432mm</td>
<td>ST研 PHT-80E</td>
<td>R-2801(30)</td>
<td></td>
</tr>
<tr>
<td>P1005</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1006</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1007</td>
<td>IHX入口配管内圧力</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1008</td>
<td>IHX出口配管内圧力</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1009</td>
<td>F-101入口圧力</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1010</td>
<td>SH入口配管内圧力</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1011</td>
<td>SH出口配管内圧力</td>
<td>EV出口端から 14,536mm</td>
<td>ST研 PHT-15S</td>
<td>R-275(30)</td>
<td></td>
</tr>
<tr>
<td>P1012</td>
<td>SH-EV配管内圧力</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1013</td>
<td>EV入口配管内圧力</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1201</td>
<td>SHカバーガス圧</td>
<td>S H上飽和</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1202</td>
<td>SH内Na圧力</td>
<td>FL5700、SH飽和</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1203</td>
<td>"</td>
<td>FL4900、"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1204</td>
<td>"</td>
<td>FL3700、"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P1301</td>
<td>IHX内Na圧力</td>
<td>EV出口端から 13,818mm</td>
<td>ST研 PHT-20E</td>
<td>R-2801(30)</td>
<td></td>
</tr>
<tr>
<td>P1302</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P6031</td>
<td>放出系配管圧力</td>
<td>RD601から 412mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P6032</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P6033</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P6034</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P6036</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>P6037</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

* EV側フランジ端面から

測定せず

測定せず

測定せず

測定せず

測定せず

測定せず

測定せず

測定せず

Na環境のため測定できません
<table>
<thead>
<tr>
<th>Tag.No</th>
<th>測定対象</th>
<th>計測位置</th>
<th>計測器型式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1111H</td>
<td>EV 胴道</td>
<td>90° FL2340 周方向</td>
<td>AILTECH社 SG425-09A</td>
<td>R-260(30)</td>
<td></td>
</tr>
<tr>
<td>S1112H</td>
<td>#</td>
<td>FL2880 周方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1112A</td>
<td>#</td>
<td>FL2880 軸方向</td>
<td>#</td>
<td>#</td>
<td>R-510(30)</td>
</tr>
<tr>
<td>S1113H</td>
<td>#</td>
<td>FL3700 周方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1114H</td>
<td>#</td>
<td>FL4280 周方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1114A</td>
<td>#</td>
<td>FL4280 軸方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1115H</td>
<td>#</td>
<td>FL5600 周方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1115A</td>
<td>#</td>
<td>FL5600 軸方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1121H</td>
<td>#</td>
<td>0° FL2380 周方向</td>
<td>#</td>
<td>#</td>
<td>ANALOG-7(30)</td>
</tr>
<tr>
<td>S1131H</td>
<td>#</td>
<td>270° FL2880 周方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1131A</td>
<td>#</td>
<td>FL2880 軸方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1132H</td>
<td>#</td>
<td>FL3835 周方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1133H</td>
<td>#</td>
<td>FL4280 周方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S1133A</td>
<td>#</td>
<td>FL4280 軸方向</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S9001</td>
<td>フランジギャップ</td>
<td>上線と中間距離 90° (E)</td>
<td>#</td>
<td>SG425-09F</td>
<td>R-260(30)</td>
</tr>
<tr>
<td>S9002</td>
<td>#</td>
<td>0° (N)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S9003</td>
<td>#</td>
<td>270° (W)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S9004</td>
<td>#</td>
<td>180° (S)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>S6001</td>
<td>放出系配管県</td>
<td>放出系配管，RD601より 377mm</td>
<td>#</td>
<td>#</td>
<td>FR-1300(60)</td>
</tr>
<tr>
<td>S6002B</td>
<td>#</td>
<td>放出系配管，RD601より 1,938mm</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>
(8) 温度計測（2/5）

<table>
<thead>
<tr>
<th>Tag.№</th>
<th>測定対象</th>
<th>計測位置</th>
<th>計測器型式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1121</td>
<td>EV 内温</td>
<td>F.L.5500, 1層目, 270°</td>
<td>助川電機, Nimblox シーガ型</td>
<td>HP2116C</td>
<td></td>
</tr>
<tr>
<td>T1122</td>
<td>5層目, 270°</td>
<td>C.A. JIS 075級, 非接触, 0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1123</td>
<td>内筒, 270°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1124</td>
<td>F.L.5700, 1層目, 90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1125</td>
<td>5層目, 90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1126</td>
<td>9層目, 90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1127</td>
<td>5層目, 90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1128</td>
<td>5層目, 0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1129</td>
<td>315°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1130</td>
<td>F.L.5900, 1層目, 270°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1131</td>
<td>5層目, 90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1132</td>
<td>90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1133</td>
<td>5層目, 45°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1134</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1135</td>
<td>270°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1136</td>
<td>EV カバーガス部 F.L.6200, 5層目相当, 90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1137</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1138</td>
<td>270°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1139</td>
<td>内筒相当, 270°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1140</td>
<td>F.L.6500, 5層目相当, 90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag. No</td>
<td>測定部位</td>
<td>計測位置</td>
<td>計測器型式</td>
<td>収録機種</td>
<td>備考</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>T1002</td>
<td>EV出口配管内温度</td>
<td>EV出口端から 1539mm</td>
<td>助川黒子，Nimblox シース型，C.A.JIS 0.75級，非酸化32φ</td>
<td>HP2116C</td>
<td></td>
</tr>
<tr>
<td>T1003</td>
<td>"</td>
<td>2539mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1004</td>
<td>"</td>
<td>3539mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1005</td>
<td>"</td>
<td>4858mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1006</td>
<td>"</td>
<td>6432mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1007</td>
<td>IHX入口配管内温度</td>
<td>12293mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1008</td>
<td>IHX出口配管内温度</td>
<td>19409mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1009</td>
<td>SH入口配管内温度</td>
<td>34655mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1010</td>
<td>SH出口配管内温度</td>
<td>EV入口端から 12567mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1011</td>
<td>SH→EV配管内温度</td>
<td>8908mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1012</td>
<td>"</td>
<td>5559mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1013</td>
<td>"</td>
<td>2509mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1014</td>
<td>EV入口配管内温度</td>
<td>1000mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1201</td>
<td>SH内部温度</td>
<td>PL4400</td>
<td>助川黒子，Nimblox シース型，C.A.JIS 0.75級，非酸化16φ</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T1301</td>
<td>IHX内部温度</td>
<td>EV出口端から 17618mm（IHX内）</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T5101</td>
<td>WH内部温度</td>
<td>WH底面</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T5001</td>
<td>注水配管内</td>
<td>V502の上段</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T6031</td>
<td>放出管配管内温度</td>
<td>RD60%から 412mm</td>
<td>助川黒子，Nimblox シース型，C.A.JIS 0.75級，非酸化16φ</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T6032</td>
<td>"</td>
<td>1884mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T6033</td>
<td>"</td>
<td>3664mm</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

EV側フランジ端面から
<table>
<thead>
<tr>
<th>Tag.No</th>
<th>測定対象</th>
<th>計測位置</th>
<th>計測器形式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>L111</td>
<td>EV Na レベル</td>
<td>EV ダウンカマー部（280°, 615°）</td>
<td>助川電機，熱導型連続式</td>
<td>HP2116C</td>
<td></td>
</tr>
<tr>
<td>L1101</td>
<td>#</td>
<td>EV 内筒中心</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>L1102</td>
<td>#</td>
<td>EV ダウンカマー部（75°, 615°）</td>
<td>助川電機，熱導型連続式</td>
<td>HP2116C</td>
<td>*</td>
</tr>
<tr>
<td>L1103</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td>測定せず</td>
</tr>
<tr>
<td>L121</td>
<td>SH Na レベル</td>
<td>SH 内</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L611</td>
<td>RT Na レベル</td>
<td>RT内</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L511</td>
<td>WH の水レベル</td>
<td>WH内</td>
<td>鎌川電機，6362-2220/ELSP-E23差測計</td>
<td>HP2116C</td>
<td></td>
</tr>
<tr>
<td>L6031A</td>
<td>放出管内</td>
<td>RD601から1,062mm</td>
<td>接触式ナトリウム検知器（スパークプラグ改良）</td>
<td>PR-20001(30)</td>
<td>ポイド計に使用</td>
</tr>
<tr>
<td># B</td>
<td>#</td>
<td>1,162mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># C</td>
<td>#</td>
<td>1,262mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6032A</td>
<td>#</td>
<td>2,404mm</td>
<td>接触式ナトリウム検知器（スパークプラグ改良）</td>
<td>PR-20001(30)</td>
<td></td>
</tr>
<tr>
<td># B</td>
<td>#</td>
<td>2,504mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># C</td>
<td>#</td>
<td>2,604mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6033A</td>
<td>#</td>
<td>5,418mm</td>
<td>接触式ナトリウム検知器（スパークプラグ改良）</td>
<td>PR-20001(30)</td>
<td></td>
</tr>
<tr>
<td># B</td>
<td>#</td>
<td>5,518mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># C</td>
<td>#</td>
<td>5,618mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6034A</td>
<td>#</td>
<td>7,595mm</td>
<td>接触式ナトリウム検知器（スパークプラグ改良）</td>
<td>PR-20001(30)</td>
<td></td>
</tr>
<tr>
<td># B</td>
<td>#</td>
<td>7,695mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># C</td>
<td>#</td>
<td>7,795mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>品目</td>
<td>位置</td>
<td>計測値</td>
<td>動作状態</td>
<td>註</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>T101</td>
<td>V101</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>270°</td>
</tr>
<tr>
<td>T102</td>
<td>V102</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T103</td>
<td>V103</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>T104</td>
<td>V104</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T105</td>
<td>V105</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>T106</td>
<td>V106</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T107</td>
<td>V107</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>T108</td>
<td>V108</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T109</td>
<td>V109</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>T110</td>
<td>V110</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T111</td>
<td>V111</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>T112</td>
<td>V112</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T113</td>
<td>V113</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>T114</td>
<td>V114</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T115</td>
<td>V115</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>T116</td>
<td>V116</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>T117</td>
<td>V117</td>
<td>FL9200</td>
<td>5段前後に</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>収縮形態</td>
<td>平成20年11月（30）</td>
<td>平成20年11月（30）</td>
<td>平成20年11月（30）</td>
<td>平成20年11月（30）</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>R-280Ⅱ</td>
<td>R-570Ⅱ</td>
<td>R-280Ⅱ</td>
<td>R-570Ⅱ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>测定対象</td>
<td>メーカー</td>
<td>メーカー</td>
<td>メーカー</td>
<td>メーカー</td>
<td></td>
</tr>
<tr>
<td>優先</td>
<td>R6001</td>
<td>R6002</td>
<td>R6003</td>
<td>R6004</td>
<td></td>
</tr>
<tr>
<td>優先</td>
<td>R6005</td>
<td>R6006</td>
<td>R6007</td>
<td>R6008</td>
<td></td>
</tr>
<tr>
<td>優先</td>
<td>R6009</td>
<td>R6010</td>
<td>R6011</td>
<td>R6012</td>
<td></td>
</tr>
<tr>
<td>優先</td>
<td>R6013</td>
<td>R6014</td>
<td>R6015</td>
<td>R6016</td>
<td></td>
</tr>
<tr>
<td>優先</td>
<td>R6017</td>
<td>R6018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(6) 優先 (圧力) (1/1)
<table>
<thead>
<tr>
<th>タグ号</th>
<th>計測対象</th>
<th>場所</th>
<th>計測器/製式</th>
<th>記載欄/備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>P101</td>
<td>放出等管内流量</td>
<td>5118 mm</td>
<td>電磁流速計</td>
<td>R-S702E (30)</td>
</tr>
<tr>
<td>P6035</td>
<td>放出等管内流量</td>
<td>5118 mm</td>
<td>ST形 FHT (judged for use)</td>
<td>R-2801 (30)</td>
</tr>
<tr>
<td>P6038</td>
<td>放出等管内流量</td>
<td>5118 mm</td>
<td>ST形 FHT (judged for use)</td>
<td>R-5702 (30)</td>
</tr>
<tr>
<td>P5001</td>
<td>注水等管内流量</td>
<td>5118 mm</td>
<td>ST形 FHT (judged for use)</td>
<td>R-2801 (30)</td>
</tr>
<tr>
<td>P5002</td>
<td>注水等管内流量</td>
<td>5118 mm</td>
<td>ST形 FHT (judged for use)</td>
<td>R-5702 (30)</td>
</tr>
<tr>
<td>D6001</td>
<td>リッチ ster 入口</td>
<td>7459 mm</td>
<td></td>
<td>HP2116C</td>
</tr>
<tr>
<td>D6002</td>
<td>リッチ ster 入口</td>
<td>7459 mm</td>
<td></td>
<td>HP2116C</td>
</tr>
<tr>
<td>D6003</td>
<td>リッチ ster 入口</td>
<td>7459 mm</td>
<td></td>
<td>HP2116C</td>
</tr>
</tbody>
</table>

* EV 電気パネル側面にて個別に

(8) 流量・放熱検知器 (L/H)
<table>
<thead>
<tr>
<th>Time</th>
<th>P101</th>
<th>P111</th>
<th>P121</th>
<th>P311</th>
<th>P400</th>
<th>P401</th>
<th>P501</th>
<th>P511</th>
<th>P519</th>
<th>P611</th>
<th>L111</th>
<th>L121</th>
<th>L311</th>
<th>L511</th>
<th>L611</th>
<th>F101</th>
<th>F201</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.5</td>
<td>0.50</td>
<td>0.50</td>
<td>17.1</td>
<td>0.16</td>
<td>-1</td>
<td>154</td>
<td>164</td>
<td>0.49</td>
<td>3.19</td>
<td>1.96</td>
<td>0.50</td>
<td>0.51</td>
<td>0.00</td>
<td>0.0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.376</td>
<td>376</td>
<td>372</td>
<td>370</td>
<td>376</td>
<td>349</td>
<td>345</td>
<td>340</td>
<td>340</td>
<td>363</td>
<td>343</td>
<td>379</td>
<td>372</td>
<td>368</td>
<td>368</td>
<td>369</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>0.328</td>
<td>328</td>
<td>379</td>
<td>377</td>
<td>335</td>
<td>328</td>
<td>312</td>
<td>348</td>
<td>292</td>
<td>282</td>
<td>272</td>
<td>266</td>
<td>258</td>
<td>249</td>
<td>177</td>
<td>302</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>0.401</td>
<td>401</td>
<td>393</td>
<td>392</td>
<td>391</td>
<td>385</td>
<td>19</td>
<td>360</td>
<td>407</td>
<td>255</td>
<td>269</td>
<td>265</td>
<td>287</td>
<td>255</td>
<td>256</td>
<td>301</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>0.294</td>
<td>294</td>
<td>297</td>
<td>301</td>
<td>299</td>
<td>297</td>
<td>305</td>
<td>291</td>
<td>293</td>
<td>306</td>
<td>295</td>
<td>322</td>
<td>299</td>
<td>294</td>
<td>267</td>
<td>295</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>0.328</td>
<td>328</td>
<td>380</td>
<td>381</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>384</td>
<td>65</td>
<td>249</td>
<td>291</td>
<td>274</td>
<td>261</td>
<td>248</td>
<td>227</td>
<td>275</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>0.380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>0.309</td>
<td>309</td>
<td>308</td>
<td>295</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>001</td>
<td>010</td>
<td>014</td>
<td>015</td>
<td></td>
</tr>
<tr>
<td>0.041</td>
<td>041</td>
<td>042</td>
<td>043</td>
<td>044</td>
<td>045</td>
<td>046</td>
<td>047</td>
<td>048</td>
<td>049</td>
<td>050</td>
<td>051</td>
<td>052</td>
<td>053</td>
<td>054</td>
<td>055</td>
<td>056</td>
<td></td>
</tr>
<tr>
<td>0.378</td>
<td>378</td>
<td>380</td>
<td>381</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>384</td>
<td>65</td>
<td>249</td>
<td>291</td>
<td>274</td>
<td>261</td>
<td>248</td>
<td>227</td>
<td>275</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>0.309</td>
<td>309</td>
<td>308</td>
<td>295</td>
<td>305</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>EXIT</th>
<th>MTR</th>
<th>FCT</th>
<th>VP</th>
<th>MHVR</th>
<th>MPVR</th>
<th>CT</th>
<th>1504</th>
<th>EDM</th>
<th>OFF</th>
<th>OFF</th>
<th>ON</th>
<th>OFF</th>
<th>OFF</th>
<th>ON</th>
<th>ON</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.221</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.072</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADCT OFF
Appendix 4. Run−4 主な準備作業経過

1. 復旧概要:

76/12より開始したRUN−4の為のSWAT−3装置復旧作業は、77/2/24一応完了
調整試運転への遂げとなった。

この間の主な復旧作業項目は、

(1) #4内部構造物剥取 (電気/1HI)
(2) E V下−V101間8B配管の新規製作 (日立設備)
(3) 水系細線の点検整備 (V 501, 5 02 ボックメータのオーバーホール及びWH性能検査)
(4) RUN−4用計測ケーブルの新設及び整理、導圧管予熱制御用SCR電源の整備
(5) 8B配管の復旧
(6) EVドレーンライン（V 3 01ライン）の改造復旧
(7) EVバイパスライン（V302ライン）の新設
(8) SHドレーンライン（V351ライン）の改造復旧
(9) #4内部構造物剥取及び各ドレーンラインの復旧・改造・新設後における耐圧・漏洩・センサ
一覧正試験
00 新規製作中間胴体のヒーター巻（助川電気）
01 復旧・改造・新設部のヒーター巻及びT/C取付配線
02 の保温施設（東洋保冷）
03 計測関係一連の調整作業
04 RUN−4用RD（RD601・602・603・501）取付
05 機器定期点検（ヒーターメガチェック、機器の作動チェック）

等であり、SWAT−3装置は試験実施状態前に復旧される。

2. 各部の復旧概要:

装置復旧は担当者提出資料に基づいて実施したので、詳細については各室内資料を参照されたい。ここでは各部の復旧概要についてのみ記す。

(1) E V 補充

(4) #4内部構造物, 中間胴新規製作, 伝熱管 (5 本), 水系ライン (1 本) の溶接, EV下
ドレーンノズル100m/m短管溶接
(5) 予備実験孔ベローズ溶接, リング挿入
(6) L−1103の新設（旧T A GL−6111）, L−1102は除去
(2) EVフランジ部高圧挿針の取付（4 本）（S−9001・9002・9003・9004）
８ E V ドレンライン（V 3 0 1 ライン）

E V ドレンラインは、E V バイパス ドレンライン、S H ドレンラインと同様 RUN-4 に於いて大きさの変更点である。

このラインは RUN-2、RUN-3 に於いて閉塞したラインであり、閉塞原因等の検討の結果を反映し、

(4) V 3 0 1 取付位置を 8 B 配管側より 3 1 0 0 m/m付近に移動（最悪時に於ける閉塞ラインの短縮のため）

(5) V 3 0 1 上流側に内部 T/C の挿入（T 1 0 1 5 、T 1 0 1 6 ）

(6) ヒーター制御 T/C 取付位置をバルブ上流側とした。

(7) 配管材質 SUS316 に変更（一部）従来 SUS304

(8) ヒーター新規巻直し、H-51、TE-51

(9) 硬固点測定用 T/C 取付（T 1 0 6 5 、1 0 6 6 、1 0 6 7 、1 0 6 8 、1 0 6 9 、1 0 7 0 、

1 0 7 1 ）等を実施した。尚、V 3 0 1 移設に伴い既設ケーブルを延長した。

配線チェックについては、V 3 0 1 作動試験の結果良好であり問題はない。

(8) E V バイパスライン（V 3 0 2 ライン）

(8) 項目と同様 RUN-4 に於ける大きな変更点である。

試験E V ドレンラインが閉塞した場合。最低限E V 内 Na のみはドレンしようという試みで設けられた新設ラインでバルブは既設V 3 0 2 を使用した（V 3 0 2 以降既設部使用）配管材質はV 3 0 2 まで（上流側）はSUS316 とした。

(4) 耐圧・漏洩試験（V 3 0 2 上流側 8 K、下流側 5 K）

(5) ヒーター巻付 T/C 取付、ヒーター制御 T/C はバルブ上流側に取付、H-52、TE-52

(6) 保温 C F B 1 2 m/m、C A P C 6 5 m/m、F F B 5 0 m/m、A C であり、各ドレンライン

と同様の仕様である。

(7) 内部 T/C の挿入（T 1 0 1 7 ）。硬固点測定用 T/C の取付（T 1 0 7 4 、1 0 7 5 、1 0 7 6

1 0 7 2 、1 0 7 3 ）

尚、本ラインはNa - 化水反応試験後に於けるドレン操作上最も検討を要するラインである。

00 S H ドレンライン（V 3 5 1 ライン）

E V バイパスライン新設の為、変更必要となったラインであり、V 3 5 1 を使用し新設した。

(4) Na のみのドレンが主との判断で材質 SUS304、D T マンホールフランジ上板ドレン管

注）(2)、(9)、同様に於いて監視用T/Cがヒーター1本に付T/C 1本取付けられ計測部ディジタル記録計に配置した。
<table>
<thead>
<tr>
<th>Tag, No.</th>
<th>测定対象</th>
<th>計測位置</th>
<th>計測器型式</th>
<th>収録機種</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6034</td>
<td>放出系配管内温度</td>
<td>RD601から 5,118mm</td>
<td>助川電機, Nimblox シリーズ型</td>
<td>C.A. JIS 0.75 級, 非接地 3.2φ</td>
<td>HP2116C</td>
</tr>
<tr>
<td>T6035</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6003</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6004</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6005</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6006</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6101</td>
<td>RT 内温度</td>
<td>RT上部</td>
<td>助川電機, Nimblox シリーズ型</td>
<td>C.A. JIS 0.75 級, 非接地 1.6φ</td>
<td>*</td>
</tr>
<tr>
<td>T6102</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6103</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6104</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6105</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6141</td>
<td>*</td>
<td>FL16420, 1300R 0°</td>
<td>助川電機, Nimblox シリーズ型</td>
<td>C.A. JIS 0.75 級, 非接地 1.0φ</td>
<td>*</td>
</tr>
<tr>
<td>T6142</td>
<td>*</td>
<td>FL15620, *</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6143</td>
<td>*</td>
<td>FL14820, *</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6144</td>
<td>*</td>
<td>FL13620, *</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6145</td>
<td>*</td>
<td>FL12620, *</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6146</td>
<td>*</td>
<td>FL12120, *</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T6147</td>
<td>*</td>
<td>FL11620, 1300R, 0°</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>T7001</td>
<td>大気放出弁温度</td>
<td>放出弁内部</td>
<td>助川電機, Nimblox シリーズ型</td>
<td>C.A. JIS 0.75 級, 非接地 1.6φ</td>
<td>*</td>
</tr>
<tr>
<td>T7002</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

測定失败
Fig. 3.8.4(b) Sodium Void in Pressure Relief Line
Fig. 3.9.1 The location of Load Cells, Acceleration Sensors and Strain Gages in Pressure Relief Line
Fig. 3.9.2(b) Thrust Load on Pressure Relief Piping
Fig. 3.9.2(d) Thrust Load on Pressure Relief Piping
Fig. 3.9.4(a) Acceleration at Pressure Relief Piping
Fig. 3.9.4(c) Acceleration at Pressure Relief Piping
Fig. 3.11.1 Acceleration Sensor and Displacement Sensor Locations in Secondary Loop
Fig. 3.11.4(c) Acceleration at Secondary Loop (A1003)
Fig. 3.11.4(e) Acceleration at Secondary Loop (A1005)
Fig. 3.11.4(f) Acceleration at Secondary Loop (A1006)
Fig. 3.11.4(h) Acceleration at Secondary Loop (A1008)
Fig. 3.11.4(j) Acceleration at Secondary Loop (A1010)
Fig. 3.11.5(b) Displacement at Secondary Loop (A1012)
Fig. 3.13.1 Pressure Transient of Pressurized Tubes
Fig. 4.1.1 ウェステージ用ターゲットの配置図
Fig. 4.2.2 井座部改造图
Fig. 5.1 Outline of Pressure Transient in Evaporator
Appendix 1. 計測点リスト （Run-4）

(1) 压力計測 (1/3)

<table>
<thead>
<tr>
<th>Tag. No</th>
<th>測定対象</th>
<th>計測位置</th>
<th>計測器型式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1101</td>
<td>EVカーバーガス圧力</td>
<td>EV上部</td>
<td>ST研 PHT-15S</td>
<td>HP2116C</td>
<td>故障（温度が変）</td>
</tr>
<tr>
<td>P1111</td>
<td>EV内Na圧力</td>
<td>90°, FL2200, EV底面</td>
<td># PHT-50E</td>
<td>R-5701(30)</td>
<td></td>
</tr>
<tr>
<td>P1112</td>
<td>#</td>
<td>FL2550, #</td>
<td>#</td>
<td>#</td>
<td>测定せず</td>
</tr>
<tr>
<td>P1113</td>
<td>#</td>
<td>FL3000, #</td>
<td>ST研 PHT-20E</td>
<td>R-5701(30)</td>
<td></td>
</tr>
<tr>
<td>P1114</td>
<td>#</td>
<td>FL4400, #</td>
<td># PHT-20E</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P1115</td>
<td>#</td>
<td>FL5800, #</td>
<td># PHT-20E</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P1121</td>
<td>#</td>
<td>0°, FL2200, #</td>
<td>#</td>
<td>#</td>
<td>测定せず</td>
</tr>
<tr>
<td>P1122</td>
<td>#</td>
<td>FL2550, #</td>
<td>#</td>
<td>#</td>
<td>测定せず</td>
</tr>
<tr>
<td>P1123</td>
<td>#</td>
<td>FL3000, #</td>
<td>ST研 PHT-20E</td>
<td>R-570(30)</td>
<td></td>
</tr>
<tr>
<td>P1124</td>
<td>#</td>
<td>FL4400, #</td>
<td># PHT-50E</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P1125</td>
<td>#</td>
<td>FL5800, #</td>
<td># PHT-20E</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P1131</td>
<td>#</td>
<td>270°, FL2200, #</td>
<td># PHT-100E</td>
<td>R-280(30)</td>
<td></td>
</tr>
<tr>
<td>P1132</td>
<td>#</td>
<td>FL2550, #</td>
<td>#</td>
<td>#</td>
<td>测定せず</td>
</tr>
<tr>
<td>P1133</td>
<td>#</td>
<td>FL3000, #</td>
<td>ST研 PHT-15S</td>
<td>R-5701(30)</td>
<td></td>
</tr>
<tr>
<td>P1134</td>
<td>#</td>
<td>FL4400, #</td>
<td># PHT-50E</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P1135</td>
<td>#</td>
<td>FL5800, #</td>
<td># PHT-20E</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK1101</td>
<td>#</td>
<td>#</td>
<td>Kaman社 KP1911 SN.9905</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK1102</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK1103</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P1001</td>
<td>EV出口配管内圧力</td>
<td>EV出口端から270mm</td>
<td>ST研 PHT-50D</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P1002</td>
<td>#</td>
<td>939mm</td>
<td># PHT-50E</td>
<td>R-2801(30)</td>
<td></td>
</tr>
<tr>
<td>P1003</td>
<td>#</td>
<td>3539mm</td>
<td># PHT-80E</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>
(1) 壓力計測

<table>
<thead>
<tr>
<th>Tag. No</th>
<th>測定対象</th>
<th>計測位置</th>
<th>計測器型式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6003</td>
<td>放出系配管圧力</td>
<td>RD601から9195mm</td>
<td></td>
<td></td>
<td>未測定</td>
</tr>
<tr>
<td>P6004</td>
<td>#</td>
<td>11.791mm</td>
<td>S T研 PHT-15S</td>
<td>HP2116C</td>
<td></td>
</tr>
<tr>
<td>P6005</td>
<td>#</td>
<td>14.171mm</td>
<td># PHT-15S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6006</td>
<td>#</td>
<td>17.495mm</td>
<td># PHT-15S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6101</td>
<td>RT カバーガス圧力</td>
<td>RT上部</td>
<td># PHT-15S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P501</td>
<td>注水配管内圧力</td>
<td>V502下流</td>
<td>共和 200kgf/cm²（冷媒型）</td>
<td>R-570II(30)</td>
<td></td>
</tr>
<tr>
<td>P5001</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P5002</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK5001</td>
<td>注水伝熱管内圧力</td>
<td>注水点から1203mm</td>
<td>S T研 PHT-200D</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK5002</td>
<td>#</td>
<td>85mm</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK5003</td>
<td>#</td>
<td>1203mm</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK5004</td>
<td>#</td>
<td>22853mm</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>PK5005</td>
<td>#</td>
<td></td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P111</td>
<td>EV カバーガス圧</td>
<td>EV上部からベーパートラップを介して</td>
<td>横河電機 611G d／ppセル</td>
<td>HP2116C</td>
<td>運転計装備</td>
</tr>
<tr>
<td>P121</td>
<td>SH カバーガス圧</td>
<td>SH上部からベーパートラップを介して</td>
<td># 6334-0520／ELSP</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P511</td>
<td>WH 壓力</td>
<td>WH上部</td>
<td># 6335-0220</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P611</td>
<td>RT カバーガス圧</td>
<td>RT上部からベーパートラップを介して</td>
<td># 6334-0520／ELSP</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P5201</td>
<td>加圧伝熱管圧力</td>
<td>加圧伝熱管入口</td>
<td>共和 200kgf/cm²（冷媒型）</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P5202</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P5203</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P5204</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>P5205</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

* EV側フランジ端面から
<table>
<thead>
<tr>
<th>Tag. No</th>
<th>測定対象</th>
<th>計測位置</th>
<th>計測器型式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1101</td>
<td>EV 内 溫度</td>
<td>F.L.3100, 5層目, 90°</td>
<td>助川電機, Nimblex シース型</td>
<td>HP2116C</td>
<td></td>
</tr>
<tr>
<td>T1102</td>
<td></td>
<td>F.L.4100, 1, 90°</td>
<td>C.A.JIS 0.75級, 非接地, 1.0φ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1103</td>
<td></td>
<td>F.L.4100, 3, 270°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1104</td>
<td></td>
<td>F.L.5100, 1, 90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1105</td>
<td></td>
<td>2, 0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1106</td>
<td></td>
<td>3, 270°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1107</td>
<td></td>
<td>F.L.5300, 1層目, 90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1108</td>
<td></td>
<td>2, 5層目, 90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1109</td>
<td></td>
<td>3, 45°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1110</td>
<td></td>
<td>4, 0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1111</td>
<td></td>
<td>5, 270°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1112</td>
<td></td>
<td>F.L.5500, 1層目, 90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1113</td>
<td></td>
<td>2, 5層目, 90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1114</td>
<td></td>
<td>3, 9層目, 90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1115</td>
<td></td>
<td>4, 5層目, 45°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1116</td>
<td></td>
<td>5, 9層目, 45°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1117</td>
<td></td>
<td>6, 1層目, 0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1118</td>
<td></td>
<td>7, 5層目, 0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1119</td>
<td></td>
<td>8, 5層目, 0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1120</td>
<td></td>
<td>9, 5層目, 315°</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: 水点最近傍
<table>
<thead>
<tr>
<th>Tag No.</th>
<th>測定項目</th>
<th>測定位置</th>
<th>測定器型式</th>
<th>収録機種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1141</td>
<td>EV内カバーガス部</td>
<td>F.L.6500, 5層目相当, 0°</td>
<td>宮川電機, Nimblox シース型</td>
<td>C.A.JIS 0.75級, 非接地, 10φ HP2116C</td>
<td></td>
</tr>
<tr>
<td>T1142</td>
<td>#</td>
<td>#, #, #, 270°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1143</td>
<td>#</td>
<td>#, 内筒相当,</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1144</td>
<td>#</td>
<td>F.L.6900, 5層目相当, 90°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1145</td>
<td>#</td>
<td>#, #, #, 0°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1146</td>
<td>#</td>
<td>#, #, 270°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1147</td>
<td>#</td>
<td>#, 内筒相当,</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1148</td>
<td>#</td>
<td>F.L.6800, 放出系配管入口,</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1149</td>
<td>#</td>
<td>F.L.6900, #, #</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1150</td>
<td>#</td>
<td>F.L.7000, #, #</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1151</td>
<td>#</td>
<td>F.L.7300, 5層目相当, 90°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1152</td>
<td>#</td>
<td>#, #, 0°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1153</td>
<td>#</td>
<td>#, #, 270°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1154</td>
<td>#</td>
<td>#, 内筒相当,</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1155</td>
<td>#</td>
<td>F.L.7700, 5層目相当, 90°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1156</td>
<td>#</td>
<td>#, #, 0°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1157</td>
<td>#</td>
<td>#, #, 270°</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1158</td>
<td>#</td>
<td>#, 内筒相当,</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1159</td>
<td>#</td>
<td>F.L.8100, #, #, #</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T1001</td>
<td>EV出口配管内寒度</td>
<td>EV出口端から 270 mm</td>
<td>宮川電機, Nimblox シース型</td>
<td>C.A.JIS 0.75級, 非接地 32φ</td>
<td>#</td>
</tr>
<tr>
<td>Tag, No.</td>
<td>测定対象</td>
<td>計測部位</td>
<td>計測位置</td>
<td>収縮価値</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>L6002A</td>
<td>" B "</td>
<td>" C "</td>
<td>17.595mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6003A</td>
<td>" B "</td>
<td>" C "</td>
<td>17.495mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag No.</td>
<td>测定对象</td>
<td>测定位置</td>
<td>計測位置</td>
<td>計測器型式</td>
<td>収録機種</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>V 6001</td>
<td>放出管内の Na/Hs</td>
<td>RD601 から 1.062 m, 下方 100 mm</td>
<td></td>
<td>抵抗式ナトリウムボイド計</td>
<td>FR-2000I(30)</td>
</tr>
<tr>
<td>V 6002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6004</td>
<td></td>
<td>5.418 mm, 中心から 100 mm (-Y 方向)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6007</td>
<td></td>
<td>11.691 mm, 中心から 100 mm (-Y 方向)</td>
<td></td>
<td></td>
<td>FR-2000II(30)</td>
</tr>
<tr>
<td>V 6008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6010</td>
<td></td>
<td>17.595 mm, 中心から 100 mm (-X 方向)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V 6012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 6001</td>
<td>放出系配管内ボイド率</td>
<td>4.898 mm (縦方向)</td>
<td></td>
<td>γ線ボイド率計</td>
<td>R-570II(30)</td>
</tr>
</tbody>
</table>

備考:

L6031Aの位置 (水平部)
L6033Aの位置 (傾斜部)
L6002Aの位置 (傾斜部)
L6003Cの位置 (水平部)
<table>
<thead>
<tr>
<th>Tag No.</th>
<th>計測対象</th>
<th>計測位</th>
<th>0.707</th>
<th>1.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1001</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1002</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1003</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1004</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1005</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1006</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1007</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1008</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1009</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1010</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1011</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A1012</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>AK1101</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>AK1102</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6001</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6002</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6003</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6004</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6005</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6006</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6007</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6008</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>A6009</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

備考：
- PVC TN941 79—118
Appendix 2. 試験時のHour Log, Fast Scan Log

次の頁以下にHour Log, Fast Scan Logのデータを示す。T001～T100以外の値と、温度、圧力等の位置は本文Fig.2.1を参照のこと。

T001～T099は予熱制御用の配管・容器壁に設けられた熱電対である。
取付け位置は下表参照。

<table>
<thead>
<tr>
<th>Tag No.</th>
<th>場所</th>
<th>Tag No.</th>
<th>場所</th>
<th>Tag No.</th>
<th>場所</th>
<th>Tag No.</th>
<th>場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001</td>
<td>V101</td>
<td>T026</td>
<td>分岐点〜EC 2B管</td>
<td>T051</td>
<td>V301（EV）フレネリン</td>
<td>T076</td>
<td></td>
</tr>
<tr>
<td>T002</td>
<td>V102</td>
<td>T027</td>
<td>EC〜CT 2B管</td>
<td>T052</td>
<td>V302（EV）フレネリン</td>
<td>T077</td>
<td></td>
</tr>
<tr>
<td>T003</td>
<td>V103</td>
<td>T028</td>
<td>CT〜EC 2B管</td>
<td>T053</td>
<td>V303（EV）フレネリン</td>
<td>T078</td>
<td></td>
</tr>
<tr>
<td>T004</td>
<td>V104</td>
<td>T029</td>
<td>EC〜合流点 2B管</td>
<td>T054</td>
<td>CTフレネリン</td>
<td>T079</td>
<td></td>
</tr>
<tr>
<td>T005</td>
<td>EV〜V1018B管</td>
<td>T030</td>
<td>ECバイパス</td>
<td>T055</td>
<td>DTフレネリン</td>
<td>T080</td>
<td></td>
</tr>
<tr>
<td>T006</td>
<td>V101〜1HX2B管</td>
<td>T031</td>
<td>F201</td>
<td>T056</td>
<td>DTフレネリン</td>
<td>T081</td>
<td></td>
</tr>
<tr>
<td>T007</td>
<td>分岐点〜MB2B管</td>
<td>T032</td>
<td>PM管</td>
<td>T057</td>
<td>V351（SH）フレネリン</td>
<td>T082</td>
<td></td>
</tr>
<tr>
<td>T008</td>
<td>MH〜合流点 2B管</td>
<td>T033</td>
<td>PM管</td>
<td>T058</td>
<td>PMフレネリン</td>
<td>T083</td>
<td></td>
</tr>
<tr>
<td>T009</td>
<td>SH〜EV 2B管</td>
<td>T034</td>
<td>グループ（PM）</td>
<td>T059</td>
<td></td>
<td>T084</td>
<td></td>
</tr>
<tr>
<td>T010</td>
<td>IHX〜SH 2B管</td>
<td>T035</td>
<td></td>
<td>T060</td>
<td></td>
<td>T085</td>
<td></td>
</tr>
<tr>
<td>T011</td>
<td>F101</td>
<td>T036</td>
<td></td>
<td>T061</td>
<td></td>
<td>T086</td>
<td></td>
</tr>
<tr>
<td>T012</td>
<td></td>
<td>T037</td>
<td></td>
<td>T062</td>
<td></td>
<td>T087</td>
<td></td>
</tr>
<tr>
<td>T013</td>
<td></td>
<td>T038</td>
<td></td>
<td>T063</td>
<td></td>
<td>T088</td>
<td></td>
</tr>
<tr>
<td>T014</td>
<td></td>
<td>T039</td>
<td>ゴールドトラップ （CT）</td>
<td>T064</td>
<td></td>
<td>T089</td>
<td></td>
</tr>
<tr>
<td>T015</td>
<td></td>
<td>T040</td>
<td></td>
<td>T065</td>
<td>EVカーバーガス 1B管</td>
<td>T090</td>
<td></td>
</tr>
<tr>
<td>T016</td>
<td></td>
<td>T041</td>
<td></td>
<td>T066</td>
<td>SHカーバーガス 1B管</td>
<td>T091</td>
<td></td>
</tr>
<tr>
<td>T017</td>
<td></td>
<td>T042</td>
<td></td>
<td>T067</td>
<td>DTカーバーガス 1B管</td>
<td>T092</td>
<td></td>
</tr>
<tr>
<td>T018</td>
<td></td>
<td>T043</td>
<td>エノマイザー（EC）</td>
<td>T068</td>
<td>RTカーバーガス 1B管</td>
<td>T093</td>
<td></td>
</tr>
<tr>
<td>T019</td>
<td></td>
<td>T044</td>
<td>V301</td>
<td>T069</td>
<td>水注入弁V501</td>
<td>T094</td>
<td></td>
</tr>
<tr>
<td>T020</td>
<td></td>
<td>T045</td>
<td>V302</td>
<td>T070</td>
<td>水注入弁V502</td>
<td>T095</td>
<td></td>
</tr>
<tr>
<td>T021</td>
<td></td>
<td>T046</td>
<td>V303</td>
<td>T071</td>
<td>水配管</td>
<td>T096</td>
<td></td>
</tr>
<tr>
<td>T022</td>
<td></td>
<td>T047</td>
<td>V304</td>
<td>T072</td>
<td>水配管</td>
<td>T097</td>
<td></td>
</tr>
<tr>
<td>T023</td>
<td></td>
<td>T048</td>
<td>V305</td>
<td>T073</td>
<td>水流量計（F5001）</td>
<td>T098</td>
<td></td>
</tr>
<tr>
<td>T024</td>
<td></td>
<td>T049</td>
<td>V306</td>
<td>T074</td>
<td>水配管</td>
<td>T099</td>
<td></td>
</tr>
<tr>
<td>T025</td>
<td></td>
<td>T050</td>
<td>V351</td>
<td>T075</td>
<td>WHガスガス加圧ライン</td>
<td>T100</td>
<td></td>
</tr>
</tbody>
</table>

（注1）D601〜603はラブチャ・板破壊信号であるが、ONは「未破壊」OFFは「破壊」を意味する。
（注2）P501はDDCに入力されておらず、横線信号値である。
(6) 保温実施（CAP.B100m/m, F.B100m/mカバー）
(7) 耐圧・漏洩・軸正試験（〜8kg/cm²）
(8) S H側り
変更なし
(9) D T側り
(10) D Tマンホールフランジ部利用し、S Hドレンラインの新設（EVNa 仮ドレン配管ノズル利用）
(11) DT NaチャージラインV351の除去、その後メクラとした。
(12) RT・RT配管
(13) L-611除去、除去したノズルを利用してT/C挿入（7本）盲フランジ利用
(14) RT配管パイド計挿入（接点式液面計タップ利用、メクラブラグ加工）
(15) S-6003・6004高圧計計に切換、S-6002B装付
(16) V651並列部改良（Na反応生成物等異物かみ込み除去の為、及びスプリング温度の採取）
及び取付後における作動試験
（吹出し：0.35K、吹止まり：0.30K）
(17) WH水系ライン
(18) V501・502オーバーホール（東興機械）
(19) WH性能検査、整備（冨基、東興機械）
V552（安全弁）開体点検、マンホールを開放しパッキン挿入締付
(20) ポッタメーターオーバーホール（トキコ）
(21) 水系ラインの移動（ドラッグ流量計挿入スペース分、60m/m間隔平行移動）
(22) ポッタメータ、ドラッグ流量計取付30Kにてリーケテスト
(23) 水系ライン点検フロアの製作
(24) 主配管（EV下ノズル〜V101間）
(25) 主配管新規製作端付・寸法・寸数等はSWAT3装置製作時点と同様
(26) 保温F.F.B.12m/m、CAP.C.75m/m、F.F.B.50m/m、A.C.であり従来より50m
m増加した。
(27) その他の主配管変更なし
(28) 締固点測定用T/Cの取付（T1051、1052、1053、1054、1055、1056、1057、1058、1059、1060、1061、1062、1063、1064）
(29) MH・MP・PM・CT側り
変更なし
ノズルに接続、バルブは現場手動操作のみのV351（従来DTのNaチャージラインで使用）
その為水反応試験後現場で手動操作となる。運転上注意すべき点である。
 conservatism F.F.B12m／m，C.A.P.C65m／m，F.F.B50m／mA．Cである。
 kondensator ヒータ新規設付T／C取付、ヒーター制御T／Cはバルブ下流側に取付H-57，TE-57
耐圧・振動試験（〜5K）
00 ガス系ライン及び加圧伝熱管
VT401，VT402，VT403解体洗浄
VT401復旧に於いて銃接接続からフランジ接続とした。（内構引上げ時を考慮）
G Tは、RUN-4試験終了までArガス使用、N2ガス封入はしないこと
伝熱管耐圧・V570不作動試験
148Kにて異常なし
02 RD取付
RD601：岸川製引張型3.0kg／cm²SET
検知器，IHI製RUN-4始めて使用
RD602：BS&B製反転型3.0kg／cm²SET
検知器，PNC型（RUN1〜3使用）
RD603：BS&B製反転型1.5kg／cm²SET
検知器，PNC型（RUN-1〜3使用）
RD601〜603 リーク試験（0.3K）異常なし
検知器作動試験異常なし
RD501：岸川製引張型100kg／cm²SET
リーク試験1.0K異常なし
RD501〜RD502間リークテスト（真空度チェック）
0.03V → 0.54V／1H
RD501〜V502間リークチェック（真空度チェック）
0.05V → 0.24V／10min
03 その他
全系真空引Arガス置換
RTヒータ水分除去予熱試験（RTドレン配管含）
メガ不良ヒーター（2／24現在）
H-96-4 H-95-5
H-97-5
H-55-1B

-281-
蒸気発生器安全性総合試験装置（SWAT - 3） Run - 4 試験結果
—大リーケー・ナトリウム - 水反応試験 (第9報)—
(PNC SN941 79-118) の正誤表

<table>
<thead>
<tr>
<th>頁</th>
<th>誤</th>
<th>正</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Fig. 2.1.7中間熱交換器の寸法及びP1302の位置</td>
<td>別添 図1参照</td>
</tr>
<tr>
<td>89</td>
<td>Fig. 3.3.1図中の中間熱交換器周辺の寸法</td>
<td>別添 図2参照</td>
</tr>
<tr>
<td>133</td>
<td>Fig. 3.4.10図中の寸法</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SH</th>
<th>EV</th>
<th>RPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3750</td>
<td>800</td>
<td>3250</td>
</tr>
<tr>
<td>254</td>
<td>Tag #</td>
<td>計測位置</td>
</tr>
<tr>
<td>P1301</td>
<td>EV出口端から13818mm</td>
<td></td>
</tr>
<tr>
<td>P1302</td>
<td>- 17618mm</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>T131</td>
<td>EV出口端から17618mm</td>
</tr>
<tr>
<td>T1301</td>
<td>EV出口端から13821mm</td>
<td></td>
</tr>
</tbody>
</table>

-1-
蒸気発生器安全性総合試験装置（SWAT - 3） Run - 4 試験結果
—大リーク・ナトリウム - 水反応試験 (第9報)—
(PNC TN941 79-118) の正誤表

<table>
<thead>
<tr>
<th>頁</th>
<th>誤</th>
<th>正</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Fig. 2.1.7中間熱交換器の寸法及び P1302 の位置</td>
<td>別添 図1参照</td>
</tr>
<tr>
<td>89 90</td>
<td>Fig. 3.3.1図中の中間熱交換器周辺の寸法</td>
<td>別添 図2参照</td>
</tr>
<tr>
<td>133 134</td>
<td>Fig. 3.4.10図中の寸法</td>
<td></td>
</tr>
</tbody>
</table>

表中

<table>
<thead>
<tr>
<th>TagNo</th>
<th>計測位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1301</td>
<td>EV出口端から13818mm</td>
</tr>
<tr>
<td>P1302</td>
<td>17618mm</td>
</tr>
<tr>
<td>P1301</td>
<td>13821mm</td>
</tr>
<tr>
<td>P1302</td>
<td>17121mm</td>
</tr>
<tr>
<td>T131</td>
<td>EV出口端から17618mm</td>
</tr>
<tr>
<td>T1301</td>
<td>EV出口端から13821mm</td>
</tr>
</tbody>
</table>