SGナトリウム液面カバーガス部における水素挙動

（リーク検出計開発詞験，第4報）

1982年4月

動力炉•核燃料開発事業団
大洗エ学センター

複製又はこの資料の入手については，下記にお問い合わせください。

〒311－13 茨城県東茨城郡大洗町成田町4002

動力炉•核燃料開発事業団
大洗工学センター システム開発推進部•技術管理室

Enquires about copyright and reproduction should be addressed to：Technology Management Section O－arai Engineering Center，Power Reactor and Nuclear Fuel Development Corporation 4002 Narita－cho，O－arai－machi，Higashi－Ibaraki， Ibaraki－ken，311－13，Japan

動力炉•核燃料開発事業団（Power Reactor and Nuclear Fuel Development Corporation）

SGナトリウム液面カバーガス部における水素挙動
（リーク検出閆発試験 第4報）

要 旨
ずでに報告されている直接捕入型力バーガス中水素計を使用してナトリウムノカバーガス体系
㲎工学センター蒸気発生器安全性試験室内のSWAT－2装直に，蒸気発生器を模擬するための容器
用して，バックグランド水菜澌度測定，注水菜，注水試験等を行なった。
本書では，これらの弑験結果について叔告するものであり，得られた成果は以下の通りである。
（1）アルゴンガス中での水蒵ガスの移行は，分子拡散より，浮力杖よび対流によるミキシング効果 の力かか支配的である。
（2）ナトリウムノカバーガス体䒺でのカバーガス币バックグランド水素分圧は，ナトリウム中水業分圧に比べ2～3オーダ岁く， 10^{-2} Torr 以下には下がらない。
（3）ナトリウム中における単気泡の気泡径と上玨速度の関係は，実験と解析がよく一致した。
（4）本試験体系でカバーガス中へ出た水素ガスの検出割合は約 20% であった。またナトリウム中 へ溶解した水奨の检出割合は約 80 名であった。
（5）ナトリゥムー水反応で発生する水甞のナトリゥム叫水素計での検出割合は，注水素武験に比べ数倍高くなる。

[^0]Experiments of Hydrogen Behavior in the Cover Gas and Sodium Space of the LMF'BR's SG

- Studies of Leak Detector Developments on LMFBR's SG (4) - -
Y. Okumura ${ }^{1 *}$), M. Kuroha ${ }^{1 *)}$, M. Sato ${ }^{1 *)}$,
Y. Dalgo ${ }^{2 *}$, I. Ikemoto ${ }^{3 *)}$, S. Kasai ${ }^{4 *)}$,
H. Ohta ${ }^{5 *)}$, Y. Sano ${ }^{6 *)}$ and A. Masui ${ }^{7 *)}$

Abstract

Various tests were conducted in SWAT-2 to investigate the hydrogen behavior both in the cover-gas and in the sodium by using the In-cover gas and the In-sodium hydrogen meters. The results of the hydrogen injection tests, the water injection tests and the bubble rising velocity measurment tests are presented in this report. The conclusions that were drawn from these tests are the followings.
(I) Traveling velocity of hydrogen gas in the cover gas was dominated by the buoyancy and the convection rather than by the diffusion.
(2) The background hydrogen partial pressure in the cover gas did not become lower than 10^{-2} Torr. This lower limit was two to three orders of magnitude higher than the hydrogen pressure in sodium.
(3) The experimentally determined bubble rising velocity in sodium agreed we. 11 with the theoretical prediction.
(4) The detection rate of cover gas hydrogen that was not disolved into sodium was determined to be about 20%, and that of hydrogen disolved into sodium to be about 80% with the present test vessel.
(5) The hydrogen disolution rate during the water injection tests was higher than that of the hydrogen injection tests.

1*) . Plant Safety Section, FBR Safety Engineering Division, O-arai Engineering Center, PNC.
2*) Fast Breeder Reactor Development Project, PNC.
3*) Energy and Environment Laboratory, Central Research Institute of Electric Power Industry.
$4 *)$ Naka Works of Hitachi, Ltd.
5*) Energy Development Division, Ishikawajima-Harima Heavy Industries Co., Ltd.
6*) Nuclear Engineering LaB., Toshiba Corporation.
7*) Mitsubishi Atomic Power Industries Co., Ltd.

目 次

1 はじめに 1
2 試験装鸜 2
2． 1 CGHMタンク 2
2．1．1 CGHMタンクの棒造 2
2．1．2 CGHMタンクク壁面の温度制御 3
2．1．3 SWAT－2装㯰の系統 3
2.2 ガマ注入装置 4
2.3 気泡検出器 5
2．3．1 気泡検出器の検討 5
2．3．2 気泡検出器の主な仕様 6
2.4 カバーガス中水素計の特性 7
2．4．1 較正試験 7
2．4．2 抁散膜0）水素透過率 7
2．4．3 イオンポンプの排気速度 8
3 アルゴンガスゆ水素挙動試験 9
3.1 試 験 9
3.2 試 験 解 析 11
3.3 考 察 13
4 バックグランド水素潩度測定試験． 14
4.1 試験条件および試験方法 14
4.2 試験結果 14
4．3 考 察 15
5 気泡の上昇速度 18
5.1 解析モデル 18
5.2 試験結果 20
5.2 .1 水中試験 20
5.3 ナトリゥム中試験 21
5.4 考 察 22
6 ナトリウム中注水素試験 23
6.1 試験方法及び条件 23
6.2 試 験 結 果 23
6.3 試験結果0考注 25
7 ナトリウムゅ社水試験 29
7.1 試験条件 29
7.2 試験結果 29
7.3 試験結果の洘察 30
8 まと と 33
参 考 文 献 34
付録－ 1 ニッケル膜の水素透過率の算定法についての考察 83

1．はじめに
故が発生した場合に，これを早期に検出するためのリーク検出計の1つとしてカバーガス中水菜計 がある。てれはリークの発生点が下降管のスタグナント䬣域，伝熱流動領域の上部の場合，あるい はナトリゥムの流動が停止した場合での水リークを检出するのに非常に有効であり，内外で框々の型式のものが開発されている。（1）（2）（3）動力㻏•核燃料開発其業団（以下PNC）で主として小リーク －ナトリウムー水反応試験装置（以下SWAT－2試験装夏）を使朋して開発されたPNC型ナトリ「ム中水業検出計 ${ }^{(4)(5)(6)}$ に引続き，その設計方卻および同型の真空部品を採用して，ニッケル膜お よびその加鲧ヒータをカバーガス中に設㯰する型のカバーガスゆ水絜計が開発され，その仕様，構造および基本的性能が報告された。

実機SGでの検出特性図を作成し，また種々の連転下においてもその検出特性からリーク規模お よび発生した位置を推定し，リーク時運転法を確立するためには，ナトリウム中に浸視された伝熱管の水リークにより発生した水素がスが，カバーガス中水素計によって検出されるまでて振䇸う種々の挙動を定䭪的に把握するととが必要である。このために，SWAT－2試験装置に専用の容器を新設し，その上部に上記のカバーガス中水傃計を設踶して既設のナトリゥム中水素計と洪に使用さ れ，ナトリウム／カバーガス体系下での水素ガスの挙動一主として移動速度とナトリゥム中溶解割合一を調查する試験が実施された。

本報告書は，この試験結果を報告するもので，次の内容加ら構成されている。
－水素計の性能特性
（第2章）
－アルゴンガスゆでの水素ガスの移行速度
（第3章）
－気液平衡時におけるカバーガス中水素濃度のレベル
（第4章）
○ナトリウム中の気泡上昇速度およびてれを測定する気泡検出器の説明
（第2，5章）
－ナトリゥム中注水素試験
（第6章）
－ナトリゥム中注水試験
（第7章）

2．試 験 装 置

験窒，小リーク・ナトリウムー水友応試験装蜔（SWAT－2）にカバーガス中水素計を設㯰して ナトリウム叫水亚計と其に羊転し，各稿の試験が計画された。

（1）SWAT－2ルーブを改造し，カバーガス中水素計試験タンク（以下「CGHMタンク」L記述す る）の増設
（2）ナトリウム中へ水素ガスおよび水を正確な注入率で注入するためのガス注入装置の新設
（3）ナトリウム中での水素気泡の上䍙速度を測定するための気泡検出器の新設
本章では，製作したCGHMタンク，ガス注入装置，気泡検出器について述べる。また，カバー ガス中水素計の特性についても述べる。

2． 1 CGHMタンク

SWAT－2 装置では，反応容器を持ち，小リーク・ナトリウムー水反応試験およびナトリゥム ゆ水素計開発試験に使用されてきた。しかし，既設の反応容器を使用して本拭験を実施する場合 ナトリゥムの深さ，流速の不足および容器壁面温度コントロール，気泡検出器の取付，ナトリウ ム液面調整等が難しい。そのため，收設の反応容器と並列にカバーガス中水素計用の有液面タン ク設置することとした。

2．1．1 CGHMタンクの雃造

図2．1にCGHMタンクの構造を示す。
CGHMタンクは上部（主にカバーガス部）を 12^{13} ステンレスパイプ，下部（まにナトリ ウム部）を4Bステンレスバイプで製作し，ナトリウム液面を上下させることによう，ナトリ ウム液面の裴面䅡を変化させることが可能である。以下に主な仕様を示す。

| 構 造 上部フランジ型タンク | |
| :--- | :--- | :--- |
| 材 | |

外佳 \times 肉厚（ mm ）上部 $\varnothing 318.5 \mathrm{~mm} \times \mathrm{t} 10.3 \mathrm{~mm}$
下部 $\varnothing 114.3 \mathrm{~mm} \times \mathrm{t} 6 \mathrm{~mm}$
長
さ 全長 6600 mm
上部 1344.4 mm
下部 4900 mm
レジューサ部 355.6 mm

全 内 容 積 146 ℓ
カバーガス部容槛 91ℓ（ナトリウム液面FL＋7700時）
109ℓ（ナトリゥム液囬FL＋7000時）

2．1．2 CGHMタンク壁面の温度制御

CGHMタンク壁面温度は，カバーガス部壁面に付着したチトリウムミストによる水素ガスの吸脱着に重要な影響を与えるため，正確に訨御する必要がある。そのため予熱用ヒータは， 12 Bパイプ部に 3 本，レジューサ部に 1 本， 4 Bパイプ部に 4 本とし，それぞれのヒータは壁面 に取付けた熱雫対によりサイリスタ制御される。またヒータ容量は，壁面温度を $500^{\circ} \mathrm{C}$ に加熱可能な容量である。以下にその仕様を示す。

電 源 AC 100 V
容 量 12^{8} パイプ部 $1.07 \mathrm{kw}, 0.97 \mathrm{kw}, 0.86 \mathrm{kw}$ （上部より）
レジューサ部 0.56 kw
4 Bパイプ部 $1.24 \mathrm{kw} \times 4$ 本
形 状 シース型ヒータ（シース材質：SUS316）

2．1．3 SWAT－2装置の系統

図2．2にCGHMタンク設置後のSWAT－2装置のフローシートを示す。
CGHMタンク使用時には，反応容器のナトリウム入口部はメクラとし，ナトリゥムループか ら反応容器を切り離して使用する。またナトリウム中の検出計としては，CGHM タンクの入 ロ側にOHモジュール，出口側にPNC型ナトリゥム中水素計と配素計ループが接続されてい る。

2.2 ガス注入装趠

ナトリゥム中での気炮の上算速度，およよび水素気泡の溶解挙動を知るためには，ナトリウムゅ へのガスの注入莭を正傕に測定しなければならない。そのため，図 2.3 に示すがス注入装道を製作した。

 である。 V_{11} ラインは，ノズルが閉そくした場合の高仼パージライン，V_{6} ラインは，ガス放出 ラインである。 $V_{13}, ~ V_{14}, ~ V_{15}$ からはそれぞれ，CGHMタンク内の注水素ノズルへ配管されて いる。
以下にがス注入装置の仕㥞について述べる。
（1）質量流量計
×－カ 上島製作所
名 称 サーマルマスフローメータ
流 輥 $0.2 \sim 10 \mathrm{~cm}^{3} / \mathrm{min} \cdot \mathrm{NTP}$（コントローラ付） $0.6 \sim 30 \mathrm{~cm}^{3} / \mathrm{min} \cdot \mathrm{NTP}$（コントローラ付） $4 \sim 200 \mathrm{~cm}^{3} / \mathrm{min} \cdot \mathrm{NTP}$（コントローラ付） $0.2 \sim 10 \mathrm{\ell} / \mathrm{min} \cdot \mathrm{NTP}$（コントローラ付） $8 ~ 400 \ell / \mathrm{min} \cdot \mathrm{NTP}$（コントローラなし）$\cdots \cdots \mathrm{F}_{3}$

上記流量計のうち $\mathrm{F}_{1}, ~ \mathrm{~F}_{2}$ にはコントローラ付の 4 台の中から試験条件に適合する 2 台を選 んで使用する。てれにより，注水素率は， $1 \times 10^{-6} \mathrm{~g} / \mathrm{sec}$ より $1.5 \times 10^{-2} \mathrm{~g} / \mathrm{sec}$ の範囲で選択するととが可能である。
（2）面樍式流量計…… F_{4}
メ－力 流体工業株式会社
流 量 $50 \sim 500 \mathrm{~cm}^{3} / \mathrm{min} \cdot \mathrm{NTP}$ アルゴン
（3）配管材料
材 質 SUS 304
口 径外径 $\varnothing 6.35 \mathrm{~mm} \times$ 内径 $\varnothing 4.35 \mathrm{~mm}$

2.3 氮泡検出器

ナトリウム中，カバーガスゆでの水䋕の挙動を解析するため必要な要因として，ナトリウム中 における気泡の上昇速度がある。しかし，ナトリゥムゆでの気泡上舁速度を実測した例が殆んど ないため，気泡検出器を開発し，気泡上异速度を測定した。とこでは，気泡検出器について述ベ る。

2．3．1 気泡検出器の検討

気泡蚞出の方法として接触式などの比較的簡単なあのか使用されてきた。
しかし，検出精度が悪く気泡上昇速度を求めるためには不向きである。また，超音波技術を利用した方式も考えられるが，本方式の開発には実用上，幾つかの問題があり，開発費用，期間にも制約があるため，以下に述べる電磁誘尊式について開発を進めるととにした。
今回，気泡上昇速度を測定する対象はCGHMタンクの下部管の直径約 100 mm （4Bパイプ） のステンレス鋼管内の気泡を検出するもので，気泡の最小径を約 10 mm 程度とした。
以下，䉓磁誘導式で 4 B パイプ内の気泡を検出するととが可能か検討する。図2．4は気泡検出器の構成を示すあのである。パイプをはさんで 2 個のステンレスボビンに巻かれた 1 次コイ ルと 2 次コイルを配置し，同様のコイルを上•下に 2 組取付ける。上•下 4 個の 1 次コイルは直列に接続され，交流定電流電源で励磁される。

励磁周波数は磁束のナトリゥム侵透深さを大きくとるためと，外部磁界の周波数と区別する ために 20 Hz を選定した。

2 次コイルには 1 次コイルが作った磁界により 2 次電圧が誘起される。上•下の 2 個の 2 次 コイル信号はそれぞれ和となるように接続し，信号処理回路に入力して，上の 2 次コイルと下 の 2 次コイルの信号の差を増幅して，レコーダに記録する。 上•下の 2 次コイルの気泡による差信号は気泡の大きさに比例し，下婄のように大略求められる。
（1）気泡の面積効果

$$
\frac{S_{2}}{S_{1}}=\frac{\pi \cdot 1^{2} / 4}{\pi \cdot 11.4^{2} / 4} \leftrightharpoons 1 \times 10^{-2}
$$

S_{1} ：検出コイル面積（直径 11.4 cm ）
S_{2} ：気泡断面積（直径 1 cm ）
（2）気泡による磁路長差効果

$$
\frac{\ell_{2}}{\ell_{1}}=\frac{1}{50}=2 \times 10^{-2}
$$

ℓ_{1} ：磁束の平均通路長（約 50 cm ）

$$
\ell_{2}: \text { 気泡の正径 }(1 \mathrm{~cm})
$$

（8）気泡による信号成分
気泡が侲いときの信号镇を eoとすると 1 cm の気泡が検出コイル部を通過するために生ず る信号変化能 e_{s} は

$$
e_{S}=e_{0} \times \frac{S_{2}}{S_{1}} \times \frac{\ell_{2}}{\ell_{1}}=2 \times 10^{-4} e_{0}
$$

したがって，$e_{0}=1 \mathrm{~V}$ の侍約 $200 \mu \mathrm{~V}$ の信号が得られる。
以上述べたように e_{s} は非常に微弱であるが，上•下の 2 次コイルを同一巻数として，かつ差動信号とするととにより，e_{0} 成分を打消し，気泡信号 e_{s} のみを取出すようにした。
信号処理回路で必要な增幅率は出力仺圧を5Vとして，約 10^{5} 倍となる。
実際には， 1 次コイルと 2 次コイルの巻数比を大きくするととにより，増幅率を減らすと とが可能である。

なお，外部兹界の外乱，上•下の 2 次コイルの信号の位相調整等を考虑して信号処理回路 は設計される必晏がある。

2．3．2 気泡検出器の主な壮様

気泡検出器の主な仕様
（1） 1 次コイル励磁仕様

周 波 数	20 Hz
励磁電流電王	0．2A， 120 V
駆動方式	定軍流駆動
負荷 箞囲	$300 \sim 600$（ Ω ）

（2）信号処理回路仕様
増 幅 率 $10 \sim 10^{5}$ 倍
出 力 $0 \sim 5 \mathrm{~V} \quad \mathrm{DC}$
応答時間 100 msec
ノッチフィルタ 50 Hz
検出コイル部差動信号位相補䫡回路内蔵
（3）検出コイル仕様
上•下コイル間隔 1 m
1 次コイル巻数 3000 回
2 次コイル巻数 7000 回
線 材 ポリイミド被㠅銅線

図 2.5 は率磁誘導式ナトリゥム中気泡検出器のブロックダイヤグフムを示す。図 2.6 は気沟检出信号の 1 例を示す。信号は気泡が下の侩出谷を通過するとき正側に，上の検出器を通過するときは負㑬汇出る。検出コイルは保温を外し，韩接ナトリゥム配管に接近して取付け，感度の向上を図った。との状態でナトリゥム温度 $500^{\circ} \mathrm{C}$ まで測定が可能である。

2.4 カバーガス中水素旪の特性

カバーガス中水素計の較正試験はガス中試験Run 6001 （ナトリウムミスト鲃し）とRun 6002 （ナトリゥムミスト有り）について実施した。

較正試験としては水素計の特性確認のために数点の眬度で試験し，さらにナトリゥムーカバー ガス体系（ナトリウムミスト中）での結果も得られたので合わせて述べる。

2．4．1 較 正 試 験

較正試験に先立って，ガス加熱器の特性を確認するための煙の上昇試験，超高電霍真空計の測定子の断線による真空系の大気開放などがあり，水萦計を工場から納入後，特性に変化が生 じるととが考えられた。そのため，CGHMタンクに水素計を設置後，静的平衡圧力を測定し て較正曲線を求めた。

図 2.7 は動的平衡生力（ P_{N} ）と静的平衡佳力（ P_{GH} ）の関係を示すものである。
Run 6001試験には工場試験時の結果も合せて示している。との結果から真空系の大気開放後も特性に変化がないととがわかる。一方Run 6001 とRun 6002 試験とは僆いか明膫で ナトリウムミストがある場合は動的平衡圧力が高くなっている。これは拡散膜表面の酸化物や不純物等がナトリゥムミストにより洗浄されたためと思われる。図から求めた較正式を以下に示す。
（1）ガス中較正式

$$
\begin{equation*}
\mathrm{P}_{\mathrm{GH}}=5.38 \times 10^{5} \mathrm{P}_{\mathrm{N}}^{1.3} \quad(\text { Torr }) \tag{2.1}
\end{equation*}
$$

（2）ナトリゥム中較正式

$$
\begin{equation*}
\mathrm{P}_{\mathrm{OH}}=3.58 \times 10^{5} \mathrm{P}_{\mathrm{N}}^{1.3} \quad(\text { Tor } \mathrm{r}) \tag{2.2}
\end{equation*}
$$

2．4．2 拡散膜の水素透過卒

今回カバーガス中水索計で使用しているニッケル拡散膜でPNC 型ナトリゥム中水素計に使用している拡散膜と異なる点は下記の 2 点である。
（1）拡散膜の製作方法はナトリウム中水亚計ではプレス加工であるがカバーガス中水素計では

旋盤加工による削り出しである。
（2）形状が試験管状で原さが 0.025 cm （ナトリウム中水蔋乵では 0.05 cm ）である。図2．8はニッケル膜の水素透過系の値である。水素透過率の算定には次式によった。（付録 ［ 参憔）

$$
\begin{equation*}
K=\frac{d / A \cdot C_{N P}\left(P_{N}-P_{\mathrm{I}}\right)}{P_{a H}^{1 / 2}} \tag{2.3}
\end{equation*}
$$

$\mathrm{K}:$ 水素透過率 $\left(\mathrm{cm}^{2} \cdot \mathrm{Torr}^{1 / 2} / \mathrm{sec}\right)$
$\mathrm{d}:$ ニッケル膜原さ $(=0.025 \mathrm{~cm})$
A：ニッケル膜面積（ $=19.9 \mathrm{~cm}^{2}$ ）
C_{NP} ：オリフィスコンダクタンス（ $=3.3 \ell / \mathrm{sec}$ ）
P_{N} ：超高電離真空計部門力（Torr）
$P_{I P}$ ：イオンポンプ部圧力（Torr）
P_{aH} ：カバーガス中水素分圧（Torr）
水素透過率Kは趐高筐離真空計とシュルツ型当離真空計の単体較正精度，イオンポンプの排気速度および各測定精度の埧響を受ける。図 2.8 から，水菜透過率は若干の圧力依存性が見られる。 P_{aH} とKの関係を求めた実験式が下式である。

ナトリゥムミストなしの場合

$$
\begin{equation*}
\mathrm{K}=1.6 \times 10^{-4} \mathrm{P}_{\mathrm{GH}}{ }^{0.29}\left(\mathrm{~cm}^{2} \cdot \mathrm{Torr}^{1 / 2} / \mathrm{sec}\right) \tag{2.4}
\end{equation*}
$$

ナトリゥムミストありの場合

$$
\begin{equation*}
\mathrm{K}=2.5 \times 10^{-4} \mathrm{P}_{\mathrm{OH}} 0.29\left(\mathrm{~cm}^{2} \cdot \mathrm{Torr}^{1 / 2} / \mathrm{sec}\right) \tag{2.5}
\end{equation*}
$$

ての結果は従来のナトリウム中水新計について求められている結果 ${ }^{(8)}$ とほぼ同じである。

2．4．3 イオンポンプの排気速度

イオンポンプの排気速度は前項で述べた水素計の較正曲線を左右する。本水奚計ではイオン ポンプ入口部にオリフィスを設け，排気速度の影響は約 $1 / 10$ になるように設計されている。図2．9はRun6002で得られた超高霓離真空計圧力 P_{N} とイオンポンプ電流から求めたイオン ポンプ部圧力 P_{IP} の関係を示す図である。イオンダ！ンブに付けたオリフィスコンダクタンスは $\mathrm{C}_{\mathrm{OF}}=3.31 \mathrm{l} / \mathrm{sec}$ であるため， P_{N} と P_{IP} から次式によりイオンポンプの排気速度 S_{p} が求め られる。

$$
\begin{equation*}
S_{p}=C_{O F}\left(P_{N}-P_{I P}\right) / P_{I P} \quad(\ell / \mathrm{sec}) \tag{2.6}
\end{equation*}
$$

図叶の実線は $\mathrm{S}_{\mathrm{P}}=35 \mathrm{l} / \mathrm{sec}$ のイオンポンプ排気速度の定格値を示す。図中，測定値のバ ラツキは，計器の零点移動や読取器差などによるものと思われる。

3．アルゴンガス中水素挙䢻氠験

カバーガス中水素計の水リーク検出性能を施個するためには，アルゴンカバーガス系内での水素 の挙動を知る必要がある。しかし，カバーガス中の水䇣挙動は（1）カバーガス空間でのアルゴンガス
 ナトリゥムへの水素の吸脱浿等により複雑に変化することが予想され，さらにカバーガス中水素計 が比較的新しいものであり，実験データが泛しいため，現在までのところ定壮的な砰佃はなされて いない。

ことでは，実験およびその解析を容易なものとするため，ナトリウムミストの存在しない状態で注水䋕実験を行ない，水素計の応答加らカバーガス空間での水素の挙動を評価した。

3.1 脦 験

3．1．1 試験条件

実矩した試験条件を表3．1に示す。本試験は，Run 6001B－1 からRun 6001B－5ま で計5回のケースが実施された。

試験パラメータは，注水素䭪，CGHMタンク内アルゴンガス温度，注水索位置，ニッケル膜温度である。

Run $6001 \mathrm{~B}-1$ はタンク内アルゴンガス温度が常温での武験であるため，ニッケル膜温度 を $300^{\circ} \mathrm{C}$ に設定したものである。注水素は操作上の不都合があり 3 回に分けて行われた。
Run $6001 \mathrm{~B}-2$ はCGHMタンク内アルゴンガス温度か $200^{\circ} \mathrm{C}$ 一定で，ニッケル膜温度を 500 ㄷに設定したものである。注水素量は 0.1 g である。
Run $6001 \mathrm{~B}-3$ はCGHMタンク内アルゴンガス温度及びニッケル膜設定濫度はRun6001 B－2の場合と同じであるが，注水素点を 0.5 g に增加したものである。

Run $6001 \mathrm{~B}-4$ はCGHMタンク内アルゴンガス温度およびニッケル膜投定塭度はRun 6001 B － 2 及びRun 6001 B － 3 の場合と同一であり，注水傃䭪はほぼRun 6001 B －2の場合と同じ 0.05 g であるが，注水亚位置が，他のケースのようにCGHMタンク下部（CGHM タンクフランジ面から6m）でなく，容器上部（CGHMタンクフランジ面加ら4mm）としたも のである。

Run6001B－5はCGHMタンク内アルゴンガス温度を上部200 ${ }^{\circ} \mathrm{C}$ ，下部 $300^{\circ} \mathrm{C}$ とした あのであり，その他の条件はRun $6001 \mathrm{~B}-2$ とほぼ同一である。CGHMタンク内のアルゴ ンガス温度分布は，図3．1に示したとおりである。CGHMタンク上部は，カバーガス中水素計の主ヒータの埧響により温度が高くなっている。

3．1．2 試 験 結 果

Run $6001 \mathrm{~B}-1$～ $\mathrm{B}-3$ およびRun $6001 \mathrm{~B}-5$ のカバーガスゆ水索計の応答曲線を図
 より，カバーガス中の水素分圧を求め，各封刻における水素波度上界分の比C（t）－C（ to ） $/ \mathrm{C}(\mathrm{ta})-\mathrm{C}(0)(\mathrm{C}(\mathrm{t}):$ 時刻 t の水菜澌度， $\mathrm{C}(\mathrm{to})$ ：時刻 $\mathrm{t}=0$（注水素開始時）で

Run 6001B－4は，容器上部に注水塐したケースで，注水素中にカバーガス中水素計が応答を始めたこと，およびCGHMタンク上部に充満した水素が下方へ拡散する過程のデータ は採取しなかったてとから，図3．2にはとのケースのカバーガス中水素計の応答曲線は掲載し ていない。

Run $6001 \mathrm{~B}-1$ は，タンク内温度が室温であり，ニッケル膜温度が $300^{\circ} \mathrm{C}$ であった。と の試験では，注水亚の不手際により，注水索が3回に分けて行なわれたが，1回目， 2 回目は うまく注入できなかったので，応答曲線の時刻は， 3 回目注入開始時を時刻 $\mathrm{t}=0$ としてプロ ットした。

Run $6001 \mathrm{~B}-2$ ， 3 ； 5 は，ニッケル膜温度が $500^{\circ} \mathrm{C}$ であり，注水龍，タンク内温度を パラメータに取った試験である。3稙の試験を比較するため，図3．3に水溹濃度変化を，図 3.4 に継軸を注水萦鼌より求めた想定㵋度C（ ∞ ）を使用して，各時刻における水素濃度上㐟分の比 として試験結果を示す。また，表3．2に各ヶースの想定測度，カバーガス中水䒺計が応答を開始した時間，および試験終了時の超高電離真空計部圧力等を示す。

Run $6001 \mathrm{~B}-2$ ， 3 ， 5 の応答開始時間について比較すると，$B-2$ ，$B-5$ は，ほぼ同じ時間であるが，B－3は約 $1 / 2$ の時間となっている。
また，容器内水素濃度上界率は，応答開始後，B－2はほぼ同じ曲線を示しているが，B－5 は明らかに上舁藥は大きくなっており，約 2300 秒後に，上昇率か変化している。次に，最終到遠濃度を比較すると，B－5試験は，想定㧡度以上に上昇して， 10000 秒以後減少してい る。B－3試験では，想定濃度の 37% 以上には上昇せず B－5と同楢， 10000 秒以後減少 している。一方，B－2試験では，測定終了時（16500秒後）まだ上昇傾向であるが想定鬞度の約 60% であり， 100% まで上昇じないと思れれる。との，末検出の割合は，注水梇量 が大きいB－3武験の方が大きくなっているが，原因として水素計の較正曲線は，シュルッ型電離真宅計の動作範囲である 1 Torr以下（約 $1000 \mathrm{ppm以下)} \mathrm{で}$ いるため， 1000 ppm 以上の浱度での，較正曲線のズレているためであると考えられる。
以上，Run $6001 \mathrm{~B}-2$ ， 3 ， 5 の試験結果より，次のようなととがわかる。
（a）水素計応答開始洔刻は，注水素姐が大きいほど早く，水素がスのかたまりの持つ浮力の影響を受けたと考えられる。
（b）水素計部における，水素濃度上舁率には，注水素量の影帮はなく，タンク内の温度分布の影響を受けている。すなわち，タンク内の対流により，水素ガスの混合が促進されたと考え られる。

3.2 侙 跧 解 析

アルゴンガス中での水素ガスは，純分汓昖散で混合すると仮定して，解析を行う。
解析を簡略化するため，右図に示すように，
長さ し の容器（長さ方向をXとする）において時刻 $\mathrm{t}=0$ で $\mathrm{X}=0$ から $\mathrm{X}=\mathrm{h}$ まで浩度 $\mathrm{C}=\mathrm{Co}$ ， $\mathrm{X}=\mathrm{h}$ から $\mathrm{X}=\ell$ まで沙度 $\mathrm{C}=0$ の状態から一次元の拡散で容器内の筡度が均一化する場合に ついて考える。容器内の水索籑度の変化を表わ すと，

$$
\begin{equation*}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=\mathrm{D} \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}} \tag{3.1}
\end{equation*}
$$

C：水素懐度
x ：距 離
t ：時 刻

水素注入時 $(t=0)$ の水素濃度分布

となり，初期条件，境界条件は

$$
\left.\begin{array}{ll}
C(0)=C o & (0 \leq x \leq h) \\
C(0)=0 & (h<x \leq \ell) \tag{3.3}
\end{array}\right\}
$$

（3．1）式を（3．2），（3．3）の条件で解くと， X の位置 $(\mathrm{h}<\mathrm{x}<\ell)$ の時刻 t における濃度C（t）は

$$
\begin{equation*}
C(t)=C_{0}\left[\frac{h}{\ell}+\frac{2}{\pi} \sum_{\mathrm{F}=1}^{\infty} \frac{1}{\mathrm{n}} \sin \frac{\mathrm{n} \pi \mathrm{~h}}{\ell} \exp \left(-\frac{\mathrm{Dn}^{2} \pi^{2}}{\ell^{2}} \mathrm{t}\right) \cos \frac{\mathrm{n} \pi \mathrm{x}}{\ell}\right] \tag{3.4}
\end{equation*}
$$

となる。そとで，x の位置での蕽度変化，$C(t)-C(0) / C(\infty)-C(0)$ を求めると， $\mathrm{C}(\infty)=\mathrm{C} 0 \cdot \frac{\mathrm{~h}}{\ell}, \quad \mathrm{C}(0)=0$ であるから

$$
\begin{align*}
\frac{C(t)-C(0)}{C(\infty)-C(0)} & =\frac{C(t)}{C(\infty)} \\
& =1+\frac{\ell}{h} \cdot \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi h}{\ell} \exp \left(-\frac{D n^{2} \pi^{2}}{\ell^{2}} t\right) \cos \frac{n \pi_{x}}{\ell} \tag{3.5}
\end{align*}
$$

一方，拡散係数Dは次式によって求められる。19）

$$
\begin{equation*}
\ln (P D)=\ln 0.0235+1.519 \ln T-\ln \left(\ln 4.88 \times 10^{7} / \mathrm{T}\right)^{2}-39.8 / \mathrm{T} \tag{3.6}
\end{equation*}
$$

P ：圧 力（atm）
$D:$ 拡散係数 $\left(\mathrm{cm}^{2} / \mathrm{S}\right)$
T ：絶対温度 $\left({ }^{\circ} \mathrm{K}\right)$
上式より，各試験におらる拡散係数を求めると， $\mathrm{B}-1$ 試験では， $0.28 \mathrm{~cm}^{2} / \mathrm{sec}, \mathrm{B}-2 \sim 5$試験では， $0.67 \mathrm{~cm}^{2} / \mathrm{sec}$ となる。

したがって，（3．5）式を用いて，試験条件での洊度変化は，$\quad l=600 \mathrm{~cm}$（注水素位置より容器上部フランジまでの距離），$h=10 \mathrm{~cm}$（水素注入直後には水素はかたまりであるとする）， $\mathrm{X}=550 \mathrm{~cm}$（カバーガス中水素計断熱筒入口までの距離）として求めるととができる。計算結果を図3．2中の曲線（1）（2）に示す。本図より明らかなように応答時間は，実験より約 10 倍荱く なっているが，上昇曲線の形は，B－3とほぼ一致している。
上記解析では，容器形状および水素がスのかたまりの持つ浮力等を考虑していない。調験容器 は，下部で $4^{\text {B }}$ であり，上部は $12^{\text {B }}$ である。また，注入された水素がスの体積は，試験条件下で約 $350 \mathrm{cc} ~ 3500 \mathrm{cc}$ となり， 4^{B} 部では，かたまりとなって，浮力の影響を受けるととが考え られる。てのため， 4^{B} 部は，浮力の影響で水素がスが上部へ移動すると仮定して，$\ell=150 \mathrm{~cm}$ ， $\mathrm{h}=10 \mathrm{~cm}, \mathrm{X}=10.0 \mathrm{~cm}, ~ \mathrm{D}=0.665 \mathrm{~cm}^{2} / \mathrm{sec}$ として計算を行なった結果を図 3.2 中の曲線（3）で示す。ての曲線と，Run6001B－3の試験結果と比較すると応答開始時刻，上昇曲線の形は， ほぼ一致している。また，先に解析した曲線（2）を平行移動したあのであることがわかる。

3.3 考 轱

試験結果抽よび解析より，本試験での水累のガス中挙動として次のてとが判る。
（a）水素は純粋な分子挔散というより，容器内の何らかの巨視的な流れにのって移動している。 その原因としては，水素のかたまりのもつ浮力およびがスの温度による対流が考えられる。 また，断热简内の流れにより吸い込まれて応答が早くなるととも考えられる。
（b）応答速度は注水素坥が多い程早い。とれは水素のかたまりのもつ浮力が大きいためと考えら れる。
（c）ガスゆの水素涀度上開率は注水素量が多い程大きいが，容器内のガスに流れがある場合は， ミキシング効果によりさらに大きくなる。

以上のととから，実機蒸気発生器のカバーガス空間での水素検出評価に際して次のてとか判明 した。
（a）実機のガス空間では，各部の温度差がかなりついている為，対流がありミキシング効果が期待出来る。従って，水素検以計の応答時間が早く，しかもがス中の水素㵋度上昇率が大きいて とが予想される。ところが，初期通水時等のガス空間の温度差が小さい場合はミキシング効果 が少ないととが考えられる。従ってカバーガス中水素計の応答時間の評佂に際し，ガスの対流 によるミキシング効果を考慮する必要がある。
（b）カバーガス中水素計の応答時間の評仰に際して分子拡散の効果は無視して差支えない。

4．バックランド水素䍡度測定試験

 を推定するための基榳データを得るととを目的に，Run 6002試験として実施した。

4.1 栻験采件及び騳験方法

ナトリウムーカバーガス体系において，水素の移行は次の 2 点が考えられる。
（a）ナトリウム液面 ↔カバーガス間の水素移行
水索移行

カバーガス中の水㮦餦度は，上記移行現象の速度に依存する。この速度に影響を及ぼすパラ ータを考えると，（a）に対しては，ナトリウム温度，ナトリウム中水素分仼，ナトリウム液面表面積等，（b）に対しては，カバーガス温度，カバーガス部壁面表面棈等が考えられる。従って本試験 では，ナトリウム温度，カバーガス温度，コールドトラップ温度をパラメータとしてカバーガス中水素分圧及びナトリゥム中水素分圧を測定した。各試験に共通する主な武験条件を下記に示す。 ナトリウム循環流量 $200 \mathrm{l} / \mathrm{min}$ ナトリウム中水系計及びカバーガス中水素計ニッケル膜温度 $500{ }^{\circ} \mathrm{C}$ CGHMタンク内カバーガス圧力 $\quad 1.0 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{G}$ CGHMタンク内ナトリゥム液位 FL＋7700mm

カバーガス中水素澌度の測定は，動的測定モードで，試験条件を設定後数归間放置して，イオ ンポンプ電流，超高電離真空計の指示が充分安定した後（最適測定レンジで指示変化が1時間に フルスケールの 0.5% 以下），静的測定モードに切換え，静的平衡互力を測定して，カバーガス中水素分圧を求めた。ナトリリム中水暮分圧は，PNC型ナ゙トリゥム中水素計により測定した。

4.2 試験結果

各試験の条件及び試験結果をまとめた表を表4．1～4．3に示す。表4．1は，カバーガス部温度 を $300^{\circ} \mathrm{C}$ ，コールドトラップ濫度を $120^{\circ} \mathrm{C}$ ——定とし，ナトリウム温度をパラメータとして300 $~ 500^{\circ} \mathrm{C}$ に変化させた結果である。表4．2は，ナトリウム温度を $450{ }^{\circ} \mathrm{C}$ ，コールトトラップ温度を $120^{\circ} \mathrm{C}$ 一定とし，カバーガス部温度をパラメータとして， $300 \sim 500^{\circ} \mathrm{C}$ 亿変化させた時の結果である。表4．3は，ナトリゥム温度を $450{ }^{\circ} \mathrm{C}$ ，カバーガス部温度を $300^{\circ} \mathrm{C}$（Run 6002－2－7， 8 のみ $400^{\circ} \mathrm{C}$ ）一定とし，コールトトラップ温度をバラメータとして 120 ～ $180^{\circ} \mathrm{C}$ に変化させた時の結果である。以上の結果を図4．1～4．3にまとめた。図中の矢印は試験の順番を示している。また，数字は試験番号を示している。

図4．1～4．3に共通する特徴を以下に挙げる。
（1）気液平衡を仮定すると，カバーガス中の水素分任（闵中では静的平衡圧と記述している。）は ナトリゥム中の水柡分圧と一致するはずであるが，各式験はいずれもカバーがス中の水亚分王 はナトリウム中より2～3オーダ髙いものとなっている。
（2）カバーガス中の水素分王は，各試験毎には充分安定した後に測定したにもかかわらず，全体的には，試験時間とともに減少している。
図4．1に示した試験の前半では，ナトリゥム温度の高低によりカバーガスゅ水素分圧はそれぞ れ減少增大する。しかし後半では，変化は少なく，ほぼ一定値を示している。
図4．2には，カバーガス温度の上昇および下降にともないカバーガス中水素分圧がそれぞれ上昇および下降する傾向か明らかに表わされている。
図4．3からは，カバーガス中水素分圧がナトリゥム中の水素分圧によらないととが理解される。

4.3 考 䋈

前記試験結果から，以下の点が明らかとなった。
（1）一傕の試験では，試験の経過とともに徐々にカバーガス中水素分圧が減少する。特にCGHM タンクに初めてナトリゥムをチャージした直後の試験（図4．1 の前半）では，その傾向が著し い。
（2）ある程度運転を継続すると，カバーガス中水素分圧は一定の値に近づくが，気液平衡を伩定 した値より2～3オーダ大きい。
（3）カバーガス中の水素分圧は，ナトリウム温度およびナトリゥム中の水素分任にあまり影響さ れず，本試験体系でカバーガス温度 $300^{\circ} \mathrm{C}$ ，圧力 $1 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ のとき， $3 \sim 4 \times 10^{-2} \mathrm{Torr}$ となる。
（4）カバーガス中の水素分圧は，カバーガス温度とともに増大減少し，本試験体系ではカバーガ ス温度を $300^{\circ} \mathrm{C}$ から $500^{\circ} \mathrm{C}$ に上昇させると，約 1 オーダ水素分圧が上昇する。上記した傾向を説明するため，右図に示すよ うなモデルを考える。すなわち，CGHMタンク の上部フランジや内壁面に NaH として付着し た水素は，温度によって決まる解離圧でHに解離し，カバーガス空間に放出される。カバーガ ス空間で泿合された水素はナトリウム液面を通 してナトリゥム側に吸収される。てのとき次の式が成立する。

$$
\begin{equation*}
V_{\mathrm{OO}} \frac{d P_{\mathrm{HOO}}}{d l}=A\left(P_{H W}^{a}-P_{H O G}^{a}\right)-B\left(P_{H O G}^{b}-P_{H N a}^{b}\right) \tag{4.1}
\end{equation*}
$$

とこに
$\mathrm{P}_{\mathrm{HOO}}$ ：カバーガス中水溸分圧
P_{HW} ： NaHO の解離庄
$\mathrm{P}_{\mathrm{HNa}}$ ：ナトリウム中水素分圧
Vua：カバーガス体䠝
$\mathrm{A}, \mathrm{B}:$ 比例係数
$a, b:$ 反応機構による定数（通带 0.5 あるいは1）
本試験の範囲では，カバーガス中水亚分圧 $\mathrm{P}_{\mathrm{HOG}}$ は， NaH の解離圧 P_{HW}（例え皆 $30.0^{\circ} \mathrm{C}$ で 7．7Torr）より十分小さく，またナトリウム中の水素分压 $\mathrm{P}_{\mathrm{H}, \mathrm{Na}}$ より十分大きい。さらに，水素分圧が時間的に大きく変化しない準定常状態では，（4．1）式の左辺は 0 となるため，次式が成立する。

$$
A \cdot P_{H W}^{a}-A \cdot P_{H O a}^{a}-B \cdot P_{h C G}^{b}=0
$$

すなわち

$$
\begin{equation*}
P_{H C G}\left(1+\frac{B}{A} P_{H O} Z^{\prime a}\right)=P_{H W}^{a} \tag{4.2}
\end{equation*}
$$

となる。
（4．2）式によれば，カバーガス中の水素分圧は，CGHMタンクに付着した NaH の解離生す なわちカバーガス温度の高低により，増大あるいは減少する。また，カバーガス中の水素分圧は ナトリゥム中水奚分圧に依存しない。ナトリゥム温度の影響は，たとえば温度を上げると，水素 が液面を通してナトリウムに吸収される速度が大きくなる。すなわち係数Bが大きくなる。一方 それと同時に液面付近のアルゴンガスは過熱されて上昇し，CGHMタンク内の対流を促進して NaH から解離した水索の拡散混合をうながす。すなわち係数Aが増大する。その結果AとBとの増大の効果は相殺され，カバーガス中の水素分理はナトリゥム温度にあまり影響されないととが考えられる。

上記した結果の考察は，本試験体系に対してなされたものであるが，同様の傾向は実機 S G に対しても成立するものと考えられる。
一方， 50 MW 蒸気発生器試験施設において実施された注水素試験 で蒸発器カバーガス中水素蓃度が測定されており，その結果によると，カバーガス中水素分圧は最低で $3 \times 10^{-2} \mathrm{Torr}$ （ナトリウム温度 $450^{\circ} \mathrm{C}$ ，カバーガス温度 $380^{\circ} \mathrm{C}$ ，コールドトラップ温度 $110^{\circ} \mathrm{C}$ ）であった。 とのデータは，数日間同一運転条件で運転した結果得られたあのであり，本試験体系で得られた

値とほぼ同—である。また，ANLにおけるカバーガス中水業に疑する研究報告 ${ }^{(18)}$ によれば， （1）カバーガス中の水絭分圧はコールドトラップ温度に弾く倲存し，ナトリウム中水然分理よりも
付近で同分㞔のナトリゥム温度依存性に変曲点が生じる（図4．5）上されている。しかし，今回 の試験では，カバーガス中の水素分訨は 2×10^{2} Torr以上であり，ANLの報告より1ォーダ高く，上訊i），（ii）の現象は児られなかった。との原因は今後の検討課題であるが，1つには，実験装置の大小の差が，上けられるだろう。すなわち，ANLの試験はナトリゥム全容䭪約 4ℓ と非常にコンパクトな装置であり，気液平衡に達する時間か短い軘か源因であるかもしれない。換言 すれば，本試験体系では，もつと長期間，同一試験条件で試験を行なえばバックグランド水菜㵋度はもっと低下するであろう。

5．気泡の上昇速度

5.1 解析モデル

小リーク・ナトリゥムー水反応で発生する水索ガス気泡の上昇速度を推定するための簡単な解析モデルを作成した。

気泡の上昇速度は，気泡の大きさ，形状，周井の構造などの影響を受け，その上舁速度を正傕 に計算するととは容易ではない。特にナトリゥムー水反応により発生する水素がス気泡は，大き さの異なる多数の気泡が存在すると洘えられ，これらが合体や分離などの相互干渉をしながらナ トリウム中に溶解していくという非常に複雑な挙動をする。

ことでは，まず単一気泡の挙動を解析するモデルを作成し，とれを実験的に検証することによ り将来の多気泡モデルに拡張していくことを考える。
（1）単一気泡の挙動モデル
液体中に存在する単一気泡の上昇速度は，気沲の持つ浮力と液体の抗力のつり合いによって求められる。気体の浮力 F_{V} は

$$
\begin{equation*}
F_{V}=g \cdot V_{B} \cdot\left(\rho_{1}-\rho_{g}\right) \tag{5.1}
\end{equation*}
$$

で表わされ，液体の抗力 F_{R} は次式で表わされる。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{R}}=\mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{\mathrm{P}} \cdot \frac{\rho_{1} \cdot \mathrm{U}_{\mathrm{B}}{ }^{2}}{2} \tag{5.2}
\end{equation*}
$$

ことに
A_{Γ} ：気泡の上昇方向投影面積
C_{D} ：抗力係数
g ：重力加速度
V_{B} ：気泡体積
U_{B} ：気泡上昇速度
ρ_{g} ：気体の密度
$\rho_{1}:$ 液体の密度

気泡の浮力と抗力はつり合うため（5．1）式と（5．2）式を等しいとおいて気泡上昇速度を求めると

$$
\begin{equation*}
U_{B}=\sqrt{\frac{2 \cdot g \cdot V_{B} \cdot\left(\rho_{1}-\rho_{g}\right)}{C_{D} \cdot A_{P} \cdot \rho_{1}}} \tag{5.3}
\end{equation*}
$$

となり，液体と気体の密度差，$\rho_{1} \gg \rho_{\mathrm{B}}$ を考えると（5．3）式は

$$
\begin{equation*}
U_{B}=\sqrt{\frac{2 \cdot g \cdot V_{B}}{C_{D} \cdot A_{P}}} \tag{5.4}
\end{equation*}
$$

となる。抗力係数 C_{D} と気泡の形状に依存する投影面稍 A_{P} に関しては，液体の物性と気泡上昇速度に依存するととが知られており，種々の液体について実験的に求められている。 9 （ ${ }^{(10 X 11)}$液体の物性はMorton数

$$
\begin{equation*}
M=\frac{g \cdot \mu_{1}{ }^{4}}{\rho_{1} \cdot \sigma_{1}{ }^{3}} \tag{5.5}
\end{equation*}
$$

ことに μ_{1} ：液体の粘性係数

$$
\sigma_{1}: \text { 液体の表面張力 }
$$

を指標として使用し，気泡の上畕速度は気泡レイノルズ数

$$
\begin{equation*}
\mathrm{Re}_{\mathrm{B}}=\frac{\mathrm{D}_{\mathrm{B}} \cdot \mathrm{U}_{\mathrm{B}}}{\nu_{1}} \tag{5.6}
\end{equation*}
$$

ことに D_{B} ：気泡直径

$$
\nu_{1}: \text { 液体の動粘性係数 }
$$

を指標として使用することが多い。
本解析モデルの抗力係数 C_{D} には，褳々の静止液体中を上昇する気泡の上昇速度から実験的 に求めた只木 $5^{(11)}$ の整理式を使用した。

$8 \cdot M^{0.068}>K$	$C_{D}=18 \cdot \mathrm{Re}_{\mathrm{B}}-0.82$
$6>\mathrm{K}>8 \cdot \mathrm{M}^{0.068}$	$\mathrm{C}_{\mathrm{D}}=0.076 \cdot \mathrm{~K}^{1.82}$
$16.5>\mathrm{K}>6$	$\mathrm{C}_{\mathrm{D}}=1.25 \cdot \mathrm{~K}^{0.26}$
$\mathrm{~K}>16.5$	$\mathrm{C}_{\mathrm{D}}=2.6$

とてに $K=\operatorname{Re}_{B} \cdot M^{0.23}$
気泡の投影面樍 A_{P} を決める気泡形状は，気泡の大きさに依存し，小さい気泡は球形を保つ が，体積が増加するにつれて楕円体から笠形（きのて形）に変るといわれている。（10）（11） この場合の気泡形状と体樍および表面積の関係を表5．1に示す。
只木ら ${ }^{(11)}$ は実験的に，気泡の球相当直徍と気泡レイノルズ数の関係を求めており，本解析 モデルではとの整理式を使用した。

球 形

$$
2>K \quad \mathrm{D}_{\mathrm{B}} / \mathrm{a}=1.0
$$

楕 円 体
$6>K>2 \quad D_{B} / a=1.14 \cdot K^{-0.176}$
$16.5>K>6 \quad D_{B} / a=1.36 \cdot K^{-0.28}$
笠 形（きのと形）
$K>16.5$

$$
D_{B} / a=0.62
$$

ことに $K=\operatorname{Re}_{B} \cdot M^{0.23}$

$$
\begin{aligned}
& \mathrm{N}=\mathrm{D}_{\mathrm{B}}: \text { 球相当直径 }=\left(\frac{6 \mathrm{~V}_{B}}{\pi}\right)^{1 / 3} \\
& \mathrm{a}: \text { 投影直径 }=\left(\frac{A_{P}}{\pi}\right)^{1 / 2}
\end{aligned}
$$

以上の式加ら流体ゅの初期気泡体積あるいは相当直径を与えると，（5．4）～（5．8）式か ら気泡の上舁速度が計算される。
（2）物性の検討
解析モデルに使用している実験式は，㮔々の流体による実験から求められているとはいえ， それらはすべて水や有機液体などによって代表される透明な液体によるものであり，液体金属 による実験はない。気泡挙動に影率を与える流体の物性を，水，有機液体（代表例），ナトリウ ムについて比較したものが表5．2である。ナトリゥムは多少表面張力が大きい程度で，各物性値ともてれらの実験式が適用できる水や有機液体とそれほど相違はない。したがって，この解析モデルは十分妥当性があると考えてよいであるう。
（3）計算結果
以上の解析モデルを用いて，ナトリゥム中における単一気泡の上昇速度と気泡の相当直径の関係を求めたものを図5．1に示す。ナトリゥム温度が $200^{\circ} \mathrm{C}$ と $500^{\circ} \mathrm{C}$ の場合について計算し ているが上算速度のナトリウム温度依存性は大きくない。

上昇速度は相当直径が約 15 mm のあたりで極小値をもっているととが判る。

5.2 試 験 結 果

5．2．1 水中武験

ナトリウム中での気泡上昇速度測定試験を行う前に，水中での予備試験を行なった。この試験の目的は，
（1）気泡検出器の性質上，上下のセンサコイル間の気泡は 1 個以下が望ましい。そのため，ガ ス注入装置からの最適注入量の確認
（2）気狍体樻一ノズル径の関係の確認
（3）水中での気泡の挙動の確認
試験方法は，図5．2に示すように長さ約 5.5 m ，内径約 55 mm の透明ポリカーボネイトチュ一ブの中に水を入れ，底近くのノズルよりアルゴンガスを注入して気泡の挙動を酭察した。／ ズルの向きは下向きとし，水面近くまで上昇した気泡を数十個メスシリンダに補獲して体積を求めた。また上昇速度は，媒体が水であるため，電磁誘導式気泡検出器による気泡検出ができ

ないので，目視により 1 m の標点間の通過毗間から求めた。標点はノズルのレ約 1 m と 2 m に

 の寗化も迎らなかった。また気泡形状はいずれも笠形で予伴解析の結果と一致した。

5.3 ナトリウム中試験

水中試験において，使用ノズルからの発生気泡の均—性と苌適実験条件が倠かめられたため， アルゴンガスおよび水染ガス注：入による発生気泡の上昇速度測定武験が実邡された。本試験の目的は，収扱いの谷易なアルゴンガスを志として用い，気泡上寓速度の各稙パラメータの体存性を求め，解析モデルの妥当性を検証するととである。
（1）試験方法
試験はガス注入装㯰（2．2笷参膲）により，水中試験で使朋された 3 種類のノズルを用いナ トリゥムゅにガスを注人した。
時間より求め，気泡体䅡はガス流㥽と気泡発生頻度より平均体䐝を求めた。

試験のパラメータは，ノズル径，気泡（カバーガス）生力，ナトリウム流速，ナトリウム温度，注入ガスの種類である。
（2）試験条作と試験結果
試験条件と試験結果を表5．4に示す。各試験パラメータの範㓝は以下の通りである。

ズル 径	$4.35,8.0,12.0 \mathrm{~mm} \varnothing$
気 泡 圧 力	$0.45 \sim 2.3{ }^{3} \mathrm{~km} / \mathrm{cm}^{2} \mathrm{G}$
ナトリゥム流速	$0 \sim 21.3 \mathrm{~cm} / \mathrm{sec}$
ナトリゥム温度	$200 \sim 500{ }^{\circ} \mathrm{C}$
注入ガス流䁑	$9 \sim 0.8 \mathrm{~cm}^{3}$（ NTP ）／min
ガスの種類	アルゴン，水業

このうち，4．35m径のノズルについては気泡検出ができなかった。上笔速度は数10個の気泡が 1 m 間隔の気泡検出器を通過する峙間の平均から求めたが，各気泡の上舁速度の分布はた とえば図 5.3 に示すような正規分布の形をしており，変動ゆも小さい。

また気泡検出器は，ナトリウム温度 $500^{\circ} \mathrm{C}$ まで満足に作動し，各気泡の識別性も非常に良好であったし，気泡発生頻度あ安定しており均一な径の気泡が発生していることをうかがわせ た。
（3）解析結果との比較
図5．4に測定された気泡上舁速度と， 5.1 節の解析モデルで計算された上舁速度の比較を示

す。図中の実線はナトリウム流过せロの場合の解析結果を示し，破線は $5.3 \mathrm{~cm} / \mathrm{sec}$ の㓭合も
 は良好である。ただ，解析では上界速度に気泡径の依存性が若干みられるのに対し，実験では ほとんど変化かない。また水絮ガスとアルゴンガスの進いは上舅速度に影喑しないようである。次にナトリウム流速の効果をみたものを図5．5に示す。気泡上舁速度の減少ぶんとナトリゥ ム流速の增加分は完全に一致しており（図ゆの実線），気泡の相対速度はナトリゥム流速にか かわらず一定であると胃える。
そのほか，気泡圧力，ナトリウム温度に関してはほとんど影睤かなく，解析的にもその結果 を真付けている。

5.4 考 洯

単一気泡のナトリゥム中上猆速度を䀦算する解析モデルを作成し，それをナトリウム中試験に よって確かめた。との結果，測定された気泡径の䇚囲はあまり広くないが，解析と実験の一致は良好である。

また，ナトリゥム流速の効果に関しては，気液間の相対速度が静止流体中の気泡上㑑速度に等 しいというととが示され，ナトリゥム流速による気泡の変形や上舁経路の変化はあまりないと考 えてよい。

その他の実験パラメータ，たとえばナトリゥム媪度やがスの種類の影製はみられなかった。 この解析モデルを，小リーク・ナトリゥムー水反応による発生水索気泡の挙動や溶解割合を計算できるようなモデルに抁張する場合には，以下のようなモデルの改良をする必要があるう。 ○ 構造物（壁面）の効果

せまい流路における気泡の上昇速度は，広い流路に比べて一般的に小さくなる。これは気泡周囲の液体の下向きの速度が大きくなることや，気泡が周眀の構造物に接触することなどによ る。との相互干涉は気泡径が流路直径の的 $1 / 10$ 程度以上大きくなると用視できなくなると言わ れている。実際の蒸気発生器のナトリゥム流路には，多数の伝熱管群が密集しており，この効果を考慮する必要があるう。
○多気泡の効果
実際のナトリゥム一水反応では，巽なった径の多数の気泡が連続的に発生すると考えられ，気泡間の合体や分裂などの相互干渉があり，その現象をミクロに記述するのは不可能である。 したがって，ある気泡径分布を仮定し，その挙動をマクロ的にとらえるようなアプローチが必要となろう。

6．ナトリウム中注水絜韧験

ナトリウムー水反伈によっで発生する水薬ガスひ」ナトリ『ム中での溶解割合，カバーガス夗の

6．1 式験方法及び条件

 3 栮類のノズルおよび， $0.3, ~ 0.5 \mathrm{~mm} \varnothing$ のノズルを用いて水榡ガスを注入した。注入方法は，ガ
出す方法とした。

執験のパラメータは，ノズル径，ナトリウム温度，注水索连，ノズル位䟚である。試験パラメ一タ及びきな試験条件を以下に示す。
$ノ$ ズル 径 $0.3,0.5,4.35,8.0,12.0$ m⿴囗口 \varnothing
ナトリウム温度 $200,270,330,400,500^{\circ} \mathrm{C}$
注 水 素 率
$6.13 \times 10^{-5}, 5.37 \times 10^{-3}, 2.32 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$
ノズル位省ナトリウム液面下 $3710,2700 \mathrm{~mm}$
ナトリウム循噮流腸 $25 \mathrm{l} / \mathrm{min}$
CGHMタンク内カバーガス压力 $0.2 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{G}$
CGHMタンク内カバーガス温度 ナトリウム温度と同一
CGHMタンク内ナトリウム液位 FL +7700 mm
ナトリウム中水素計及びカバーガス中水素計ニッケル膜温度 $500^{\circ} \mathrm{C}$
全 注 水 素 锶 0.0134 g

6． 2 試 験 結 果

表6．1に注水素試験の試験条件と試験結果を示す。表中の試験結果の各項目は次のように定義 した。
（1）ナトリウム中水素濃度
超高真空圧力計の読み上較正式より求めた。較正式は次式を使用した。

$$
\begin{equation*}
\mathrm{C}_{\mathrm{Na}}=3.0 \times 10^{4} \cdot \mathrm{P}_{\mathrm{GNa}} 0.751 \tag{6.1}
\end{equation*}
$$

C_{Na} ：ナトリウム中水素漊度 ppm
$\mathrm{P}_{\mathrm{aNa}}$ ：超高真空圧力計O読み Torr
 めた。
 であり，次式より求めた。

$$
\begin{align*}
& \varnothing_{\mathrm{Na}}=\frac{\left(\mathrm{C}_{\mathrm{Nat}}-\mathrm{C}_{\mathrm{Nai}}\right) \cdot V_{\mathrm{Ni}} \cdot \Theta_{\mathrm{Na}} \times 10^{-6}}{W_{\mathrm{H}_{2}}} \times 100 . \% \tag{6.2}\\
& \mathrm{~V}_{\mathrm{Na}} \text { : 系内ナトリウム容秒 } 245 \text { \& } \\
& \rho_{\mathrm{Na}} \text { : 系内ナトリゥム平均密度 } \mathrm{g} / \ell \\
& \mathrm{W}_{\mathrm{H}_{2}} \text { : 全注水素最 } \quad 0.0134 \mathrm{~g}
\end{align*}
$$

（2）カバーガス中水素分匤
試験前 P_{Hi} ：注水素直前のカバーガス中水索分圧であり，カバーガス中水素計の超高真空圧力計の読みと挍正式より求めた。
較正式は次式を使用した。

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{H}_{1}}=1.93 \times 10^{6} \quad \mathrm{PaO}_{\mathrm{aO}}{ }^{1.32} & \\
\mathrm{P}_{\mathrm{H}_{2}}=2.57 \times 10^{7} \quad \mathrm{PaC}^{1.33} & \tag{6.4}\\
\mathrm{P}_{\mathrm{H}_{1},}, \mathrm{P}_{\mathrm{H}_{2}}: \text { カバーガス中水索分庄 } & \text { Torr } \\
\mathrm{P}_{\mathrm{GO}} \quad: \text { 超高真空仼力計の読み } & \text { Torr }
\end{array}
$$

$\mathrm{P}_{\mathrm{H}_{1}}$ は試験番号 $1 \sim 11$ までに， $\mathrm{P}_{\mathrm{H}_{2}}$ は12～23に使用する。との理由は試験番号11 の後，カバーガス中水業計のイオンボンプ取换により，イオンポ ンプー超高真空王力計間のオリフィスガスケットを取りはずしたためである。
試験後 P_{Hf} ：注水素後に生じたカバーガス中水素分圧の最大値であり， P_{Hi} と同栏較正式 より求めた。

水素検出割合 $\varnothing_{O G}:$ カバーガス中水素計によって検出された水素の総䭪と全注水素買の比 であり，次式により求めた。

$$
\begin{aligned}
\phi_{\mathrm{CG}} & =\frac{\left(\mathrm{P}_{\mathrm{Hi}}-\mathrm{P}_{\mathrm{Hi}}\right) \cdot \mathrm{V}_{\mathrm{G}}}{31.18 \cdot\left(\mathrm{~T}_{\mathrm{a}}+273\right) \cdot \mathrm{W}_{\mathrm{H}_{2}}} \times 100 \% \\
\mathrm{~V}_{\mathrm{G}} & : \text { カバーガス部容俏 } \ell \\
\mathrm{T}_{\mathrm{G}} & : \text { カバーガス部煴度 }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

カバーガス中水索分圧上昇率による水素検出割合 $\varnothing_{\mathrm{rc}}$ ：
カバーガス中の水素分任は注水素率が低い場合注水素中一定の上門率で增加 する。との上昇率と注水素率より，次式で求めた検出割合である。

$$
\begin{align*}
& \phi_{\mathrm{rc}}=\frac{\mathrm{R}_{\mathrm{Cd}}}{\mathrm{G}_{\mathrm{II}_{2}}} \tag{6.6}\\
& \mathrm{R}_{\mathrm{CO}}=\frac{\Delta \mathrm{P}_{\mathrm{H} 2} \cdot \mathrm{~V}_{\mathrm{d}}}{31.18 \cdot\left(\mathrm{~T}_{\mathrm{G}}+273\right)} \times 100 \% \tag{6.7}
\end{align*}
$$

$R_{\text {OU }}$ ：単位峙開あたりのカバーガス中水素ガス增加㳯 $\mathrm{g} / \mathrm{sec}$ $\Delta \mathrm{P}_{1_{2}}$ ：渞位時間あたりのカバーガスリ水素分怇增加深 Torr／sec $\mathrm{G}_{\mathrm{H}_{2}}$ ：注水菜䋉

6． 3 試験結果の考察

（1）ナトリウム中水絭計による水亚検出割合
図6．1にナトリゥム中水素計による水亚検出割合とナトリゥム温度の逆数との候係を示す。今回の注水素試験では，ナトリゥム中水素計による水素检出割合の下限は約 2%（水絜婊度で $1 \mathrm{ppb})$ であるため，水素漈度の変化が検出されなかった試験については，1．5 \％以下とし て灯印で示した。

水素検出割合は，ナトリウム温度が高いほど高くなっており，ナトリゥム温度に依存すると とがわかる。また，注水菜率も水索検出割合に影響を与そていることがわかる。すなわち，注水菜率の低い試験（ $6.13 \times 10^{-5} \mathrm{~g} / \mathrm{sec}$ ）では，気泡は1秒間に1～3個発生しており，気炮相互の影整はほとんどないものと考えられ，気泡上毇速度測定武験で得られた気泡上舅速度，気泡径であると考えられる。一方，注水乷率の高い試験（ $5.37 \sim 2.32 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$ ）では，気泡は連続的に多数発生している。いわゆる気泡流となっているよ考えられる。この気泡流の状態では，単気泡の侍に比べ気泡の相互干涉による，気泡上都速度の增非や，気泡の合体によ る気泡表四積の相対的な減少か起き，ナトリゥム中への水素の溶解橭が減少したちのと考えら れる。
（2）カバーガス中水索計による水素検出割合
図6．2にカバーガス中水素計による水素検出割合とカバーガス温度の逆数との図係を示す。本図には，試験前後のカバーガスゆ水素分生の差から求めた水索検出割合 $\varnothing_{\mathrm{CO}}$ とカバーガス中水素分生の上舁率から求めた水素検出割合 $\boldsymbol{ø r c}_{\text {r }}$ の 2 つの水素検出割合が求められる試験につい ては，水素検出割合にゆを持たせてプロットした。また，ナトリウム温度 $500^{\circ} \mathrm{C}$（カバーガ ス温庭 $480^{\circ} \mathrm{C}$ ）の場合の水亚検出割合は 0.04% であったが， 1% 以下として矢印で示した。本図から，カバーガス中水素計による水索検出割台は，カバーガス温度が呂いほど低くなっ ており，ナトリゥム中水素計による水素検出割合と逆の傾问を示している。一方，注水素率の逊いによる，水素検出割合の遡いは，ナトリウム中水素計による水絮推仙割合ほど顕者に垷わ

れていないが，カバーガス盢度 $400^{\circ} \mathrm{C}$ 付近では注水䋈率が大きい方が水索検时割合が胃くな っている。
（3）ナトリウム中水繁斯およびカバーガス中水䒺汁による水業検出制合の関係
ナトリウム中水蒵計による水素検出割合とカバーガス中水綦汁による水䋕検出割合との関係
 である。試験結果は，図中の実線（理想値）と大きく離れている。図中破線は，ナトリウム中
 は全体の 20% であるとした曲䌉である。すなわち，$\phi_{\mathrm{Na}} / 0.8+\phi_{\mathrm{OG}} / 0.2=10096$ となる曲線である。試験結果はこの破線とよく一致しており，データのバラツキもさ 15% 以内である。 また，法水素级の連いによる桧出割合の遘いは琴われていない。てれらの本より，合回の注水䋕試験の体采においてナトリウムゆ水素計では，ナトリウム中へ溶解した水素の約 80% ，力 バーガス中水絭計では，カバーガス空間へ出て来た水亚（末溶解水素）の約 20 O6が検出可能 であると考えられる。この原因は，ナトリウム中水素潉度では，CGHMタンクの構造，上，ナト リゥムのタンクへの入口がナトリゥム液闻より約1mFにあり，ナトリゥム入口より上部のナ トリウムは静止しているため，その部分で溶解した水䋕はループ途中にある水素計では検出で きないものと考えられる。一方カバーガス叫水素瀼度では，カバーガス空間へ出た水素は，タ ンク内カバーガス部壁面の蒸着ナトリウムやナトリウムミストに吸着されるため，検出運が減少するものと考えられる。
（4）水索ガス気泡の溶解割合
水素ガスのナトリウムへの溶解制合は，悓在まで報告例 ${ }^{(12)}$（ ${ }^{(13)}$ が少ない。とてでは，まず Whittingham ${ }^{(13)}$ の溶解速度式について考察を行う。

Whittinghamは水素ガスのナトリウム中への溶解速度を次式で与えている。

$$
\begin{equation*}
\log _{10} \mathrm{Ka}=4.17-4130 / \mathrm{T}_{\mathrm{K}} \tag{6.8}
\end{equation*}
$$

K_{a} ：水素ガス溶解速度 $\mathrm{cm}^{3} \mathrm{NTP}^{\circ} \cdot \mathrm{cm}^{-2}{ }^{2} \mathrm{Na}^{\bullet} \mathrm{atm}^{-1} \mathrm{sec}^{-1}$
T_{K} ：ナトリウム塭度 K
したがって，水素ガス気泡がナトリウムゆを $\Delta \mathrm{L}$ 上昇する時の体積減少量 $\Delta \mathrm{V}_{\mathrm{B}}$ は，

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{B}}=\mathrm{Ka} \cdot \mathrm{P} \cdot \mathrm{~S}_{\mathrm{B}} \cdot \frac{\Delta \mathrm{~L}}{\mathrm{U}_{\mathrm{B}}} \tag{6.9}
\end{equation*}
$$

P：気泡圧力 atm
U_{B} ：気泡上昇速度 $\mathrm{cm} / \mathrm{sec}$
S_{B} ：気泡表面䅡 cm^{2}
となり，ナトリウム中溶解割合めは

$$
\begin{equation*}
\phi=\Sigma \Delta V_{B} / V \tag{6.10}
\end{equation*}
$$

V：全注水蔡竩

で表わされる。
$\mathrm{U}_{13}, \mathrm{~S}_{\mathrm{B}}$ ，は5．1項の気泡上焺速度の解析に使用した式を使用して，战験番号2～6，8～ 11，の場合について，解析を行う。解析を行う注水糹試験は，気泡相当淔径，気泡上無速度 か， 5 章の解析と実験で確認されておおり，また注水素窂が小さいため，気泡は 1 個铂に安定し て発生しており，気泡自体の分裂，合体の影勳を排視できる。
解析の結果，各ケースの溶解割合は，試験結果のナトリゥム中水素検出㨽合と大きく異なっ ており，溶解速度が大きすぎることがわかった。そのため，溶解速度に係数 η を求めた。表 6.2 にその結果を示す。同表より，クの値は，0．1～0．24の間にあるととがわかる。また，十ト リウム温度 $500^{\circ} \mathrm{C}$ の場合においては，$\eta=0.1$ とした場合でも溶解割合は 10096 となり，実験においても 100 \％溶解したと考えられる。

次に，日本機械学会ナトリゥム加熱蒸気発生器調査研究分科会の報告 ${ }^{(12)}$ による，溶解割合式について考察を行う。上記報告では，溶解割合めは以下の式で表わしている。

$$
\begin{equation*}
\phi=1-\left\{1-\frac{\mathrm{k} \cdot \rho_{1} \cdot\left(W_{\mathrm{S}}-W_{\infty}\right) \cdot \mathrm{L}}{\rho_{\mathrm{g}} \cdot \mathrm{r}_{\mathrm{o}} \cdot \mathrm{U}}\right\}^{3} \tag{6.11}
\end{equation*}
$$

k ：物質移動係数 $\mathrm{cm} / \mathrm{sec}$
ρ_{1} ：ナトリゥムの密度 $\quad \mathrm{g} / \mathrm{cm}^{3}$
$\rho_{\mathrm{g}}:$ 水素気泡の密度 $\quad \mathrm{g} / \mathrm{cm}^{3}$
W_{s} ：気泡の接しているナトリゥムの水素湛度
W_{∞} ：気泡から䫽れた位置のナトリゥムの㯰度
L ：気泡発生点の深さ cm
r_{0} ：気泡の捌期半径 cm
U ：気炮の上昇速度 $\mathrm{cm} / \mathrm{sec}$
そして，SWAT－2のナトリウムー水反応試験結果加ら，気泡半径 r_{o} ，気泡上舁速度 U ，物質移動係数 k の実験式を求めている。すなわち， $\mathrm{K}=0.01 \mathrm{~cm} / \mathrm{sec}, \mathrm{r}_{\mathrm{o}}=\mathrm{G}^{0.7} / 2$（ $\mathrm{G}:$ 水リ一ク率 $\mathrm{g} / \mathrm{sec}$ ），U＝130－u（u：ナトリウム流速）としている。しかし，前述したよう に，気泡径，気泡上䒜速度が碓認されているケースがあるので，（6．11）式を使用して，物質移動俰数kを求めた結果を表6．3，図6．4に示す。図6．4より，物質移動係数には，若干の温度依存性が見られるが，ナトリゥム温度が $30^{\circ} \mathrm{C}$ 以上では 0.01 としてよいことがうかが える。データのバラツキは，測定値のバラッキとナトリゥム中溶解水素の検出割合が 0.8 であ るとした事によるものと思われる。また， $500^{\circ} \mathrm{C}$ の場合の物質移動係数の値は， $400^{\circ} \mathrm{C}$ の場合より低くなっているが，溶解割合を 100% 以上とすれば 0.01 以上となる。
以上，気泡径，気泡上昇速度が実験により得られた試験ヶースについてナトリウム中八の水

素の溶解割合について検封を行なったが，今後，気泡径気泡上舁速度が実験により得られなか ったケースについても解析を行なう予定である。

7．ナトリウム中注水試験

ナトリウムゆ注水試験は，注水素試験と同一時期に0．3ø，0．5 \varnothing ノズルを使用して水（蒸気） 1 1 g をナトリウムゆへ注入する試験を 4 回行なった。注入法は，内径 10.22 の，長さ 4810 mm ステンレスパイプゆに水1gを入れ，これをヒータで加熱後，ガス注入装㯰からのアルゴンガスで押し出す方法とした。

7． 1 賦験条件

武験条件は， $0.5 \varnothing ノ$ ズルでナトリウム温度 $270^{\circ} \mathrm{C} お よ ひ ゙ ~ 400^{\circ} \mathrm{C}, ~ 0.3 \varnothing ノ$ ズルでは 330 ${ }^{\circ} \mathrm{C} お よ ひ ゙ ~ 400{ }^{\circ} \mathrm{C}$ とした。注水率は， $0.5 \varnothing$ ノズルで $4.6 \times 10^{-2} \mathrm{~g} / \mathrm{sec}, 0.3 \varnothing ノ$ ズルで $2.0 \times$ $10^{-2} \mathrm{~g} / \mathrm{sec}$ とした。

主な試験条件を以下に示す。
ノズル径 $0.3,0.5 \mathrm{~mm} \varnothing$
ナトリウム温度 $270,330,400^{\circ} \mathrm{C}$
注 水 率 $2 \times 10^{-2}, 4.6 \times 10^{-2} \mathrm{~g} / \mathrm{sec}$
ノ ズル位置 ナトリウム液面下 2700 mm
ナトリウム循環流湦 25 £／min

CGHMタンク内カバーガス凩力 $\quad 0.2 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{G}$
CGHMタンク内カバーガス温度 ナトリウム温度と同一
CGHM タンク内ナトリウム液位 FL＋7700 m
ナト：リウム中水素計及びカバーガス中水素計ニッケル膜温度 $500^{\circ} \mathrm{C}$
全 注 水 量 1 g

7． 2 騳 験 結 果

表7．1に注水試験の試験条件と試験結果を示す。表中の試験結果の各項目は次のように定義し た。
（1）ナトリウム中水素莀度
試験前 $\mathrm{C}_{\mathrm{Nai}}$ ：注水試験直前のナトリウム中水素㷂度である。
試験後 $\mathrm{C}_{\mathrm{Naf}}$ ：注水試験後に静定したナトリウム中水素濃度である。
検出水素量 $\mathrm{W}_{\mathrm{HNa}}$ ：ナトリウム中水素計によって検出された，水素の総兾であり，次式より求めた。

$$
\begin{gathered}
\mathrm{W}_{\mathrm{HNa}}=\left(\mathrm{C}_{\mathrm{Na} \ell}-\mathrm{C}_{\mathrm{Nai}}\right) \cdot \mathrm{V}_{\mathrm{Na}} \cdot \rho_{\mathrm{Na}} \times 10^{-6} \\
\mathrm{~V}_{\mathrm{Na}} \text { : 系内ナトリウム容積 } \quad 245 \ell
\end{gathered}
$$

$\Omega_{N a}$: 系内ナ゙トリウム取均嘧度 $\quad \mathrm{g} / \ell$
$\mathrm{W}_{\mathrm{HiNn}}$: 検出水䒺共 g
（2）カฺパーガス中水素分王
鶁験前 P_{Hi} ：注水試験值前のカバーガス中水素分生である。
較正式は次式を使用した。

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{H}}=2.57 \times 10^{7} \cdot \mathrm{PaO}_{\mathrm{GO}}{ }^{1.33} & \\
\mathrm{P}_{\mathrm{H}}: \text { カバーガス中水素分圧 } & \text { Torr } \\
\mathrm{PaC}_{\mathrm{GO}}: \text { 越高真空圧力計の㹸み } & \text { Torr }
\end{array}
$$

試験後 P_{HI} ：注水試験後に生じたカバーガスゆ水素分圧の垠大値である。
検出水素量 $\mathrm{W}_{\mathrm{HOG}}$ ：カバーガス中水萦計によって検出された水素の総躴であり，次式より求 めた。

$$
W_{\mathrm{HCO}}=\frac{\left(\mathrm{P}_{\mathrm{HI}}-\mathrm{P}_{\mathrm{Hi}}\right) \cdot \mathrm{V}_{\mathrm{G}}}{31.18 \cdot\left(\mathrm{~T}_{\mathrm{G}}+273\right)}
$$

注水の途卬経過は，ガス注入装置の流昜計でモ二タが可能であり，蒸気からアルゴンガスに変化すると，流䍚計の指示も変化する。この結果，注水率は，初期の試験条件と同じ注水膟で注入されたととが確認された。また，注水総棤は，注水継続時間より求めたものである。試験畨号W－2の試験においては，注水途中で完全にノズルが閉塞し，注水総用は， 0.73 g であっ た。あとの3ヶースの試験においては，流量計の指示よりノズル閉塞は起らなかったが，W— 4 の矛験は，総注水量は 0.89 g と予定より約 1 割少なかった。

7.3 試験結果の考䕓

ナトリゥム中注水試験は，4回行なっただけであるので，ナトリゥムー水反応時のナトリゥム一カバーガス体系での水素挙動を完全に把握するととは困難であるが，ナトリゥム中水亚計およ びカバーガス中水素計での水素検出割合，発生水素ガス量についての考察を行なう。
（1）ナトリゥム中水素計およびカバーガス中水索計での水素検出割合
ナトリウム水反応が起きた場合，反応は

$$
\begin{align*}
\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2} \tag{1}\\
2 \mathrm{Na}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \tag{2}
\end{align*}
$$

であり，上記（1）の反応はナトリゥム温度が NaOH の融点である $318.4^{\circ} \mathrm{C}$ 以下の場合，（2）の反応はナトリウム温度が $318.4^{\circ} \mathrm{C}$ 以上の場合に支配的であるといわれている。 そてで試験は $318.4^{\circ} \mathrm{C}$ 以下で行なったケースああるが，ことでは（2）の反応だけか起きるとする。すなわち水 1 g に対して水素は 0.111 g 発生し，注水率を注水素率に换算すると， $4.6 \times 10^{-2} \mathrm{gH}_{2} \mathrm{O}$ $/ \mathrm{sec}$ は $5.1 \times 10^{-3} \mathrm{gH}_{2} / \mathrm{sec}, ~ 2 \times 10^{-2} \mathrm{gH}_{2} \mathrm{O} / \mathrm{sec}$ は $2.2 \times 10^{-3} \mathrm{gH}_{2} / \mathrm{sec}$ となる。乙の値
生水絜巽）を求めた結果が表7．2 である。

図7．1，図7．2にナトリゥム中水葉乵とカバーガス中水葉計による水亚検出割合と温度の関
 ル口径，ナトリウム温度等の条件が同じような試験の結果も合わせて示している。図7．1より， ナトリウム中水新計での水絭検出割合は，注水試験の方が数倍高くなっており，ナトリウム温度が低くなっても水素倹出割合はあまり低くならない。一方， 50 MW 蒸気発生器試験施設に おいて夷施されたミドルレグ注水試験 ${ }^{(15)}$ 及び注水素試験 ${ }^{(16)}$ の結果では，ナトリウム温度が $300 \sim 350^{\circ} \mathrm{C}$ 以上では，水素検出割合は，注水，注水素試験共ほぼ同じとなっているが， $200{ }^{\circ} \mathrm{C}$ の注水，注水素試験では水素众出割合は注水試験の方が高くなっておら，今回のSWAT － 2 での試験と同じ傾向を示している。

カバーガス中水素計での水素検出割合は，図 7.2 より注水試験の方が注水素試験より低くな っているが，検出割合の差は，大きくない。
（2）発生水素ガス量について
6 章で述べたように，注水索試験において，水素検出量は，ナトリウム中水素湢では溶解水素の 80% ，カバーガス中水素計では末溶解水素の 20% しか検出できないととが判明した。注水試験においても水索検出買は同じ割合であるとしてトータル水素量を求めた結果を表7．3 に示す。各項目は以下の式で求めた。
$\mathrm{W}_{\mathrm{HTNa}}=\mathrm{W}_{\mathrm{HNa}} / 0.8$
$\mathrm{W}_{\mathrm{HTCO}}=\mathrm{W}_{\mathrm{HOG}} / 0.2$
$\mathrm{W}_{\mathrm{HT}}=\mathrm{W}_{\mathrm{HTNa}}+\mathrm{W}_{\mathrm{HTCQ}}$
$\phi \mathrm{t} \quad=\mathrm{W}_{\mathrm{HT}} / \mathrm{W}_{\mathrm{H}_{2} \mathrm{O}} \cdot \frac{2}{18}$
$\mathrm{W}_{\mathrm{HrNa}}$ ：ナトリゥム中溶解水素量（g）
$\mathrm{W}_{\mathrm{HNa}}$ ：ナトリゥム中水素計での检出水素量（g）
$\mathrm{W}_{\mathrm{HITOQ}}$ ：カバーガス中水素量（g）
$\mathrm{W}_{\mathrm{HOO}}$ ：カバーガス中水素計での検出水菜䭪（g）
$\mathrm{W}_{\mathrm{H} T \mathrm{~T}}$ ：トータル水素量（g）
$\varnothing \mathrm{t}$ ：トータル水素検出割合
$\mathrm{W}_{\mathrm{H}_{2} \mathrm{O}}$ ：全注水量（g）
一方，ナトリウムー水反応においては，モル転換比という係数が使われる。このモル転換比 F は，前項の（1）と（2）の反応が両方同時に起きるとした場合，水1モルから発生する水素がスの モル数である。

すなわち，

$$
\begin{align*}
& \alpha \mathrm{Na}+\alpha \mathrm{H}_{2} \mathrm{O} \rightarrow \alpha \mathrm{NaOH}+\frac{\alpha}{2} \mathrm{H}_{2} \\
& \frac{2(1-\alpha) \mathrm{Na}+(1-\alpha) \mathrm{H}_{2} \mathrm{O} \rightarrow(1-\alpha) \mathrm{Na}_{2} \mathrm{O}+(1-\alpha) \mathrm{H}_{2}}{(2-\alpha) \mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \alpha \mathrm{NaOH}+(1-\alpha) \mathrm{Na}_{2} \mathrm{O}+\left(1-\frac{\alpha}{2}\right) \mathrm{H}_{2}} \tag{3}
\end{align*}
$$

で表わされる反応式に括いて，モル転換比Fは（1－$\frac{\alpha}{2}$ ）で表わされ， 1 a $F \geqq 0.5$ である。 また上記反応で発生した NaOH は，そのままではナトリウム中水亚計で検出されないが， Na OH の融点以上の $500^{\circ} \mathrm{C}$ に加熱されるととにより，

$$
\begin{equation*}
\mathrm{NaOH}+\mathrm{Na} \rightarrow \mathrm{Na}_{2} \mathrm{O}+\frac{1}{2} \mathrm{H}_{2} \tag{4}
\end{equation*}
$$

の反応が起り，ナトリウム中水素計で検出される。そして，トータルの水素検出割合は，（4）の反応が完全に起きるとすれば 100% となるはずである。ところが，表7．3より；トータル水素検出割合は，ナトリウム温度が $400^{\circ} \mathrm{C}$ 試験では，ほぼ 100% であるが，ナトリウム温度が $330^{\circ} \mathrm{C}$ と $270^{\circ} \mathrm{C}$ の 2 ケースの試験ではナトリゥム中水素計で溶解水素の 80% ，カバーガ ス币水奨計で未溶解水紫の 20% しか検出されない（匡 6.3 による）という仮定が約士 15% の器差を含むととを考攄しても 100% とならない。との原因を推則すると，この2ヶースの試験は， NaOH の融点近くか，融点以下の温度条件であり，上記（3）式の反応で発生した NaOH の一部は，ノズン付近へ付着（ノズル閉塞の原因），したり，固体のまま，ナトリウムより喠い ため，ナトリウムゅ水素計までの途中の配管に沈潵，付着したためであると考えられる。
一方， $400^{\circ} \mathrm{C}$ の試験では， NaOH が発生してあ触点以上であるため，ナトリウム中水楽計 へ出て来たあのと思われる。以上，ナトリゥムー水反応における水奨がスの挙動について述べ てきたが，今回の4ケースだけで全てを解明するととは雉しく，今後の武験が待たれる。

8．ま と め

直接抽入型力バーガス中水素計をSWAT－2装置に設惪し，ナトリウム中水業計とともに，ナト リウム／カバーガス体系下での水素ガスの挙動を砛究するための試験を行ない，得られた成果は以下の通りである。
（1）值接抽入型カバーガス中水素㳆の性能は安定しておらり，水素㵋度測定用として充分な機能を持 つ。
（2）アルゴンガスゆでの水素ガスの挙動は，分子拡散より水䜿がスのかたまりの持つ浮力および容器内の対流によるミキシング効果の方が支配的である。
（3）ナトリウム／カバーガス体系下でのカバーガス中のバックグランド水索濃度は，カバーガス温度の変化に影響を受けるが，ナトリウム温度，ナトリウムゆ水素堅度には，ほとんど影響を受け ない。
（4）カバーガス中水素分玨は，ナ゙トリウム中水素分庄より2～3オーダ高く，10－2 Torr以下には下がらなかった。
（5）ナトリゥム中単気泡の気泡径一上畀速度の関係は，解析と実験がよく一致した。
（6）注水素試験の結果，今回の試験の体系では，カバーガス中へ出た水素ガスの検出割合は約 20 \％であった。また，ナトリウム中で溶解した水素ガスの検出割畣は約 80 \％ 6 であった。
（7）水素がス单気泡のナトリウム中への溶解割合は，ナトリウム温度に依存するが，溶解速度は Whittinghamの溶解速度 ${ }^{(13)}$ の約 $1 / 4$ であった。また物質移動係数を使用した溶解割合式（12） は，気泡径，気泡上昇速度に実験値を使用した場合，ほぼ実験と一致した。
（8）水素ガス多気泡のナトリゥム中への溶解割合は，単気泡に比べ低くなる。
（9）注水試験の結果，ナトリウム中水素計での水素検出割合は，注水素試験に比べ数倍高くなる。 ナトリウム／カバーガス体系での水素挙動について得られた研究成果は，まだ定性的な部分も多 いので，実機 SGに対応できるような定揘的なデータを得るために，垷在も試験を実施ゆである。最後に，ナトリウム／カバーガス体系での水素挙動試験を実施するに当って貴重な助言を答せら れた，元蒸気発生器開発部堀雅夫部長，プラント安全工学室山出敏夫主査，高速実験炬部原子炬二課井上設生の各氏に感謝の意を表す。なお，試験の実施，データの整理等，東興機械工業（株）派遣貝の手で行なわれた事を付記する。

参 考 文 献

試験一第4報—直接式Ni．隔膜型力バーガス川水索計の開烷」 PNC SN94178－36 （1978．3）
（2）J．L．Quinet and L．Lannou＂Leak Detection by Hydrogen Measurements in Sodium and Argon－Application to the Super Phenix Scale Model－＂IAE Λ Specialists＇Meeting on Leak Detection and Location in LMFBR Steam Generators，Dimitrovgrad USSR（June 1978）
（3）P．M．Magee et．al．，＂LMFBR Steam Generator Leak Detection Development in the U．S．＂ibid．
（4）鋟ヶ江，池本，大後，井上，堀「PNC型ナトリウム中水素検出計1号機一小リーク・ナトリ ゥム・水反応陚験研究 第14報一」PNCSN941 78－85（1978．6）
（5）鎬ヶ江，池本，大後，汫上，堀「PNC型ナトリゥム中水素検出計2号機－動的室•静的室分離型—（小リーク・ナトリゥム・水反応試験研究一第15報）」 PNC SN941 78－91 （1978．7）
（6）黒羽，井上，大後，佐藤「オリフィス付ナトリゥム中水業計の性能特性試験および最適設計 の検討（リーク検出計開発試験一第1報）」 PNC SN941 79－188（1979．10）
（7）黒羽，奥村，佐藤他「直接捅入型隔膜式力バーガス中水絜計の開発（リーク検出計開発試験 －第3報）」 PNC SN941 78－91（1978．7）
（8）鐘ヶ江，池本，橋口，堀「二ッケル膜—イオンポンプ型ナトリゥム中水素検出計におけるニ ッケル膜および真空部最適設計法」 SN941 76－30（1976．3）
（9）Haberman，W．L．and Morton，R．K．，Proc．Amer．Soc．Civ．Engr．80－387 （1954）
（10）Peeble，F．N．and Garber，H．J．，Chem．Engng．Progr．，49－2（1953）
（11）只木䁚力，前田四郎，化学工学，25－4（1961）
（12）日本機械学会 Na －加熱蒸気発生器調查研究分科会「高速增殖炉蒸気発生器の安全性，信頼性向上に関する調查研究」 S J 254 75－02（1975）
（13）A．C．Whittingham＂The Lequid Sodium－Hydrogon System and Kinetic Mesurements in The Temperature Range $610-677^{\circ} \mathrm{K} n \mathrm{RD} / \mathrm{B} / \mathrm{N} 2550$ ， Aug． 1974
（14）根井，氏原，大内，他「小リーク・ナトリゥム・水反応試験研究 第3報—蒸気ウェステー ジと検出計の応答一」 PNC SN943 73－02（1973．8）
垈験 第7報一注水跴験一」 PNC SN941 81－23（1981．4）
 ム評仰試験 第5報—注水䇣試験—」 PNC SN941 78－50（1978）
（17）棉見，則羽，高橋，奥村「50MW蒸気発生器試験施投における水リーク検出システム評侣試験 第8㪕一注水索試験 I－」 PNC SN94181－259
（18）姫野「米国，アルゴンヌ国立研究所留学報告」 PNC SN960．79－12
（19）日本機械学会「伝熱工学凅料改訂第3版」

		注 水 索					容器内アルゴンカス												カバーガス中水蔟け		沲
		$\begin{gathered} \text { ノスル } \\ \text { Ni } \end{gathered}$	$\begin{aligned} & \text { ノスルル } \\ & \text { 位 置 } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { 率 } \\ (\mathrm{g} / \mathrm{sec}) \end{gathered}\right.$	時 間 （ sec ）	$\begin{gathered} \text { 盟 } \\ (\mathrm{g}) \end{gathered}$	$\begin{aligned} & \text { ㅍ 力 } \\ & \text { (atg) } \end{aligned}$	温 度（C）											ガス入し昷度（ C ）	Ni膜温 度（C）	
								$1{ }^{*}$	$2 *$	$3{ }^{*}$	4	5	6	7	8	9	10	11			
				0.01	3.5	0.035	185	120	183	200	10	10	10	12	22	25	40	95	58	300	
1	$6001 \mathrm{~B}-1{ }^{2}$	$(0.3 \varnothing)$	容器下部	0.01	5	0.05	185	－	－	－	－	－	－	－	－	－	－	－	60	300	
	3			0.01	50	0.5	1.90	127.	188	202	10	10	10	12	25	28	47.	106	67	300	
2	$\begin{aligned} & \text { Run } \\ & 6001 \mathrm{~B}-2 \end{aligned}$	$\begin{gathered} 2 \\ (1.0 \varnothing) \end{gathered}$	容器下部	0.005	20	0.1	1.85	305	373	373	198	199	202	200	198	202	222	252	232	500	
3	$\mathrm{Run}_{6001 \mathrm{~B}-3}$	$\stackrel{2}{(1.0 \phi)}$	容器下部	0.01	50	0.5	1.80	304	382	381	198	200	202	202	198	200	215	234	220	500	
4	$\mathrm{Run}_{6001 \mathrm{~B}-4}$	$\stackrel{3}{(10 \varnothing)}$	容器下部	0.008	60	0.05	1.77	195	197	203	195	200	200	200	195	195	195	193	198	500	サブヒータ おみで熟
5	$\begin{aligned} & \mathrm{Run}_{6001 \mathrm{~B}-5} \end{aligned}$	$\stackrel{2}{(10 \varnothing)}$	容器下部	0.005	10	0.05	1.80	310	382	380	298	279	259	232	213	213	227	249	236	500	自然効流を考模

＊）カパーガスゆ水素計断熱筒内温度

表3．2 試 験 結 果

（1）注水素量は注水素配管内残留分を差引いたちの。
（2） 3 回目の注水素より。

浸4．1 ナトトリウム濫度をパラメータとした時の战検条件及び結果

Run．No：	測定日時	ナトリウム温度 （ ${ }^{\circ} \mathrm{C}$ ）	埆的 碞 衡 日（Torr）	
			$\begin{aligned} & \text { ナトリウムゆ } \\ & \text { 水 素 計 } \end{aligned}$	カハーーガス中 水甞计
6002－1－1	6月18日 81特	296	2.11×10^{-4}	3.84×10^{1}
$6002-1-2$	6月18目22時	370	2.11×10^{-1}	3.83×10^{-1}
6002－1－3	6月19E12時	471	1.76×10^{-4}	7.11×10^{-2}
6002－1－4	6月20日 2 時	506	1.79×10^{-4}	3.19×10^{-2}
6002－1－5	6月20日22時	418	1.28×10^{-4}	8.53×10^{-2}
6002－1－6	6月21日 15 時	329	1.19×10^{-4}	1.59×10^{-1}
6002－2－1．	6月22日 12 洔	448	1.20×10^{-4}	3.63×10^{-2}
6002－1－7	6月27日 2 時	354	1.21×10^{-4}	3.93×10^{-2}
6002－1－8	6月27日11時	390	1.17×10^{-4}	3.19×10^{-2} ．
		試験条件：	バーガス温度 $\begin{aligned} & \text { ールドトラップ温 } \\ & \text { バーガフ圧力 } \end{aligned}$	$\begin{aligned} & 300^{\circ} \mathrm{C} \\ & 120^{\circ} \mathrm{C} \\ & 1 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g} \end{aligned}$

表4：2－カパーガス㳑庭をバラメータとした時の棫検条件及び結果

Run．No．	測 完 日㭙	カバーガス温度 （＂C）	静 的 平 衡 生（Torr）	
			ナトリウム中水 笑 計	$\begin{aligned} & \text { カバーがス中 } \\ & \text { 水 綦 } \end{aligned}$
6002－2－1	6月22日 12 時	296	1.20×10^{-4}	3.63×10^{-2}
6002－3－1	6月23日 0時	350	1.21×10^{-4}	8.96×10^{-2}
6002－3－2	6月23日16時	423	1.27×10^{-4}	1.59×10^{-1}
6002－3－3	6月24日 4 時	492	1.17×10^{-4}	2.38×10^{-1}
6002－3－4	6月25日 3 洔	450	1.22×10^{-4}	1.23×10^{-1}
6002－3－5	6月25日10時	3.26	1.25×10^{-4}	2.57×10^{-2}

$$
\begin{array}{rlrl}
\text { 試験条件: } & \text { ナトリウム温度 } & 450^{\circ} \mathrm{C} \\
& \text { コールトトララッブ昷度 } & 120^{\circ} \mathrm{C} \\
\text { カバーガス圧カ } & 1 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}
\end{array}
$$

装4．3コールドトラッブ温度をパラメータとした時の試験条件及び結果

Run．No．	測定目封	コールドラップ	静 的 平 衡 圧（Torr）	
			$\begin{aligned} & \text { ナトリウム中 } \\ & \text { 水 索 計 } \end{aligned}$	カバーがス中 水 䒺 計
6002－2－1	6月22日 12 時	120	1.20×10^{-4}	3.63×10^{-2}
6002－2－2	8月2日21時	140	4.07×10^{-4}	5.96×10^{-2}
6002－2－3	8月3日 10 時	160	1.71×10^{-3}	5.44×10^{-2}
6002－2－4	8月 4日14時	180	6.42×10^{-3}	5.04×10^{-2}
6002－2－5	8月 5日 6時	150	7.40×10^{-4}	4.69×10^{-2}
6002－2－6	8月 5日23時	120	9.32×10^{-5}	4.09×10^{-2}
6002－2－7	8月 6日 7時	120	7.81×10^{-5}	6.78×10^{-2}
6002－2－8	8月 6日 21 時	180	5.50×10^{-3}	5.77×10^{-2}

試験条件：ナトリウム温度 $450^{\circ} \mathrm{C}$
カバーガス温度 $300^{\circ} \mathrm{C}$
（2－7，2－8のみ $400^{\circ} \mathrm{C}$ ）
カバーガス圧力 $\quad 1 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$

表5．1 気泡形状と体程およよび婊而模

形 状	体 棈 V $\mathrm{V}_{\text {B }}$	表 湎 䅡 S_{B}
球 形	$V_{B}=\frac{1}{6} \pi \mathrm{a}^{3}$	$\mathrm{S}_{\mathrm{b}}=\pi \mathrm{a}^{2}$
楠 H 体 T \downarrow	$V_{B}=\frac{1}{6} \pi \mathrm{a}^{2} \mathrm{~b}$	$S_{B}=\frac{1}{2} \pi\left\{a^{2}+\frac{a b^{2}}{2 \sqrt{a^{2}-b^{2}}} \cdot \log \left(\frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}\right)\right\}$
笠形（きのて形）	$V_{B}=\frac{1}{6} \pi b\left(\frac{3}{4} a^{2}+b^{2}\right)$	$S_{B}=\pi\left(\frac{1}{2} \mathrm{a}^{2}+\mathrm{b}^{2}\right)$

表5．2 水，有機液体，ナトリウムの物性比較

流 体	比 重 量 （kg／m m^{3} ）	粘 性 係 数 （ $\mathrm{kg} \cdot \mathrm{S} / \mathrm{m}^{2}$ ）	表 面 張 力 （kg／m）
水（ $\left.20^{\circ} \mathrm{C}\right)$	998	1.02×10^{-4}	7.39×10^{-3}
アセトン（ $20^{\circ} \mathrm{C}$ ）	790	3.5×10^{-5}	－
ナトリウム（300 $\left.{ }^{\circ} \mathrm{C}\right)$	880	3.52×10^{-5}	1.81×10^{-2}

㳖5．3 水中予備試験結果

ノズル直径 〔mm	ノズル部背圧 〔 $\mathrm{kg} / \mathrm{cm}^{2} \mathrm{G}$ 〕	ノ ズル部気泡体䅡〔cc〕	ノズル部気泡相 当 直 垎〔m】	気泡上䒜速度 $[\mathrm{m} / \mathrm{sec}]$
4.35	0.55	0.15	6.7	22.8
8	0.55	0.32	8． 5	22.3
12	0.55	0.66	10.8	23.4

表5．4（1）ナトリウム中気泡上昇試験結果

番 号	$\begin{gathered} \text { ノズル径 } \\ (\operatorname{mon} \varnothing) \end{gathered}$	気泡圧力 $\left(\mathrm{kg} / \mathrm{cm}^{2} \mathrm{G}\right)$	Na 流 速 （ $\mathrm{cm} / \mathrm{sec}$ ）	Na 温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { がス流量 } \\ \left(\mathrm{cm}^{3} / \operatorname{minNTP}\right) \end{gathered}$	気泡体積 （ cm^{3} ）	相当直径 （cm）	平均上昇速度 （ $\mathrm{cm} / \mathrm{sec}$ ）	$\begin{aligned} & \text { 備考 } \\ & \text { (使用ガス) } \end{aligned}$
1	8.0	0.5	0	200	2.06	0.45	0.95	27.3	Ar ガス
2	＂	1.3	＂	＂	4.12	0.57	1.03	29.1	＂
3	8.0	2． 35	＂	＂	6.18	0.55	1.02	29.4	＂
4	12.0	0.5	＂	＂	3.09	1.09	1.28	27.6	＂
5	＂	1． 3	＂	＂	5.36	1.23	1.33	28.6	＂
6	12.0	2．35	＂	＂	9.06	1.25	1.34	28.1	＂
7	8.0	0.45	5． 3	＂	1.65	0.49	0.98	23.1	＂
8	＂	＂	10.7	＂	1.65	0.49	0.98	17.2	＂
9	＂	＂	10.7	＂	1.24	0.50	0.99	17.5	＂
10	＂	＂	10.7	＂	0.82	0.35	0.87	16.8	＂
11	＂	＂	16.0	＂	1.24	0.43	0.94	11.4	＂
12	＂	＂	21.3	．＂	1.24	－	－	5.8	＂
13	＂	＂	21.3	＂	0.82	0.33	0.86	6.1	Ar ガス
14	8.0	＂	5.3	＂	1． 65	0.55	1.02	23.0	H_{2} ガス

表5．4（2）ナトリウム中気泡上昇試験結果

番 号	$\begin{gathered} \text { ノズル径 } \\ \text { (m⿴囗十一 } \end{gathered}$	気泡圧力 $\left(\mathrm{kg} / \mathrm{cm}^{2} \mathrm{G}\right)$	Na 流 速 $(\mathrm{cm} / \mathrm{sec})$	Na 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	ガス流量 （ $\mathrm{cm}^{3} / \operatorname{minNTP}$ ）	気泡体積 $\left(\mathrm{cm}^{3}\right)$	相当直径 （cm）	平均上昇速度 （cm／sec）	備 ${ }^{\text {（使用ガス）}}$ 考
15	12.0	0.45	5． 3	200	3.09	1.16	1.30	22.4	Ar ガス
16	＂	＂	10.7	＂	1.65	1.04	1.26	16.5	＂
17	＂	＂	16.0	＂	＂	0.90	1.20	11.3	＂
18	＂	＂	21.3	＂	＂	0.94	1.21	5.7	＂
19	＂	＂	5． 3	＂	＂	1． 39	1.38	21.7	H_{2} ガス
20	8.0	＂	＂	267	1.55	0.51	0.99	22.4	Ar ガス
21	＂	＂	＂	330	1.67	0.50	＂	21.8	＂
22	＂	＂	＂	395	1.70	0.46	0.96	22.1	＂
23	＂	＂	＂	504	1.42	0.43	0.94	21.8	＂
24	12.0	＂	＂	270	3.20	1.08	1.27	22.0	＂
25	＂	＂	＂	340	3.00	1.12	1.29	21.9	＂
26	＂	＂	＂	396	3.00	1.05	1.26	22.0	$"$
27	＂	＂	＂	500	2.67	0.99	1． 24	21.7	＂

裴6．1 ナトリゥム中注水奖試験条件および結果

表6．2 水素ガス溶解割合の検討
－LD -

試験番号	$\begin{gathered} \text { ノズル径 } \\ \text { 卵 } \varnothing \end{gathered}$	ナトリゥム温度 ${ }^{\circ} \mathrm{C}$	ナトリウム中水素溶解割合 ${ }^{*}$ ）$\%$	Ka 値 $\mathrm{cm}^{3} \mathrm{NTP} / \mathrm{cm}^{2} \cdot \mathrm{~atm} \cdot \mathrm{sec}$	Ka 値による溶解 割 合 \％	η	Ka $\cdot \eta$
2	12	269	2.5	3.55×10^{-4}	16	0.15	5.3×10^{-5}
3	12	330	18.5	2.09×10^{-3}	63	0.23	4.8×10^{-4}
4	12	330	25.8	2.09×10^{-3}	63	0.33	6.9×10^{-4}
5	12	402	74.5	1.13×10^{-2}	100	0.27	3.1×10^{-3}
6	12	500	98.7	6.72×10^{-2}	100	<0.1	$<6.7 \times 10^{-3}$
8	8	270	<2.0	3.67×10^{-4}	20	<0.1	$<3.7 \times 10^{-5}$
9	8	340	20.3	2.71×10^{-3}	79	0.16	4.3×10^{-4}
10	8	396	70.8	9.92×10^{-3}	100	0.2	1.9×10^{-3}
11	8	500	96.5	6.72×10^{-2}	100	<0.1	$<6.7 \times 10^{-3}$

（＊）ナトリウム中水素溶解割合は，未検出分（静止したナトリウムによる）を考慮したものである。

表6．3 水素ガス気泡の溶解割合の検討

試験 番号		ナトリウム温度 ${ }^{\circ} \mathrm{C}$	ナトリウム中水素溶解割合＊）${ }^{*}$	気 泡 径 cm	気泡上昇速度 $\mathrm{cm} / \mathrm{sec}$	（6．11）式による物質移動係数c．a／s	$\begin{aligned} & \mathrm{K}=0.01 \text { Łした時の } \\ & \text { 溶解割合 } \% \end{aligned}$
2	12	269	2.5	1． 3	22	4.2×10^{-3}	6
3	12	330	18.5	1.3	22	9.1×10^{-3}	20
4	12	330	25.8	1． 3	22	1.3×10^{-2}	20
5	12	402	74.5	1.3	22	1.5×10^{-2}	58
6	12	500	98.7	1.3	22	7.7×10^{-3}	100
8	8	270	<2.0	1.0	23	2.7×10^{-3}	7
9	8	340	20.3	1.0	23	6.8×10^{-3}	25
10	8	396	70.8	1.0	23	1.1×10^{-2}	67
11	8	500	96.5	1． 0	23	5.4×10^{-3}	100

（＊）ナトリウム中水素溶解割合は，未検出分（静止したナトリウムによる）を考庿したものである。

表7．1 ナトリウム中注水試験条件及び結果

$\begin{aligned} & \text { 試 } \\ & \text { 擥 } \\ & \text { 番 } \end{aligned}$	式			験	条	件			試 験			結 果		
		ナトリウム			ノズル位置	カバーガス	カバーガ	カバーガス	ナト	リゥム中水亲	誩度	カハー	－ガス中水	素分生
	$\operatorname{mm} \varnothing$	${ }^{\text {温 }}$	$\mathrm{g} / \mathrm{sec}$	g	（ Na 液面下） m	$\begin{array}{cc} \text { 压 } & \text { 力 } \\ \mathrm{kg} / \mathrm{cm}^{2} \mathrm{G} \end{array}$	温 度 c	部 容 積 ℓ	試験前 $\mathrm{C}_{\mathrm{Nai}} \mathrm{PPb}$	試験後 $\mathrm{C}_{\mathrm{Nai}} \mathrm{PPb}$	$\begin{aligned} & \text { 検 } \\ & \text { 水素董 } \\ & \mathrm{C}_{\text {HNa }} \end{aligned}$	試剱前 P_{Hi} Tort	式医後 P_{Hf} Tort	
W－1	0.5	270	4.61×10^{-2}	1.00	2700 ± 00	0.198	260	93.1	199	352	0.029	0.129	1.685	0.0087
W－2	0.3	330	1.98×10^{-2}	0.73	2700_{-70}^{+0}	0.197	317	93.1	216	372	0.029	0.331	1.425	0.0055
W－3	0.5	402	4.56×10^{-2}	1.00	2700_{-70}^{+0}	0.204	386	93.1	303	572	0.049	0.118	2.153	0.0092
W－4	0.3	399	1.97×10^{-2}	0.89	$2700{ }_{+0}^{+70}$	0.201	384	88.2	236	489	0.046	0.052	1.592	0.0066

（注）W－2試験は注水途中でノスル閉塞

表7．2 注水試験における水素検出割合
（水 1 モルから水素 1 モル発生するとした場合）

試験番号	ナトリウム温度 ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { ノズル口径 } \\ \min \varnothing \end{gathered}$	注 水 素 率 $\mathrm{gH}_{2} / \mathrm{sec}$	注 水 総 量 g	全 注 水 素 量 g	ナトリウム中水素計 水素検出割合 وó	カバーガス中水素計水素検出割合 \％
W－1	270	0.5	5.1×10^{-3}	1	0.111	26.1	7.8
W－2	330	0.3	2.2×10^{-3}	0.73	0.081	35.8	6.8
W－3	402	0.5	5.1×10^{-3}	1	0.111	44.1	8． 3
W－4	399	0.3	2.2×10^{-3}	0.89	0.099	46.5	6.7

表7．3 注水試験における発生水素ガス量

試験番号	ナトリウム温度 ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { ノズル口径 } \\ \text { mm } \varnothing \end{gathered}$	全注水量 $\mathrm{W}_{\mathrm{H}_{2}} \mathrm{og}$	ナトリゥム中 溶解水素量 $\mathrm{W}_{\mathrm{HTNa}} \mathrm{~g}$	カバーガス中 水 素 量 $\mathrm{W}_{\mathrm{HTCG}} \mathrm{~g}$	トータル水素量 $\mathrm{W}_{\mathrm{HT}} \mathrm{g}$	トータル水素検 出 部 合 $\varnothing_{\mathrm{t}}^{\boldsymbol{\%}}$
W－1	270	0.5	1	0.036	0.044	0.080	72
W－2	330	0.3	0.73	0.036	0.028	0.064	79
W－3	402	0.5	1	0.061	0.046	0.107	97
W－4	399	0.3	0.89	0.058	0.033	0.091	92

図2．3 ガス注入装置フローシート

図2．4 気 泡 検 出 器

図 2.5 電離誘導式 Na 中気泡検出器総合ブロックダイアグラム

図 2.6 気泡検出信号の一例

図 2.7 カバーガス中水素計較正曲線

図 2.8 ニッケル膜の水素透過率

図2．9 イオンポンプ部圧力と超高筪離真空計圧力の関係

図 3．1 Run 6001B－5 CGHMタンク内温度分布

図 3.2 カバーガス中水素計応答曲線

図3．3 カバーガス中水素計応答曲線

図 3.4 カバーガス中水素計応答曲線（想定濃度基準）

図4．1 バックグランド測定試験結果（ナトリゥム温度パラメータ）

図 4．2 バックグランド測定試験結果（カバーガス温度パラメータ）

図4．3バックグランド測定試験結果（コールドトラップ温度パラメータ）

Cold Trap Temperature (${ }^{\circ} \mathrm{C}$)

図 4.4 Hydrogen Pressures in Na and Cover Gas

図 4.5 Hydrogen Pressures in Cover Gas and Na as a Fuction of Pool
Temperature

図5．1 気泡上昇速度と気泡直径の関係（単一気泡）

図 5.2 水中予備試験概略

図5．3 気泡上昇速度と発生頻度の関係

図 5． 4 気泡上昇速度一解析と測定結果の比較—

図 5.5 気泡上舁速庋とナトリウム流速の関係

図6．1 ナトリウム中水素計による水素検出割合

図6．2 カバーガス中水素計による水素検出割合

觡易	ノズル柊	注 水 㴖 㴍
－	$12 \varnothing$	$6.13 \times 10^{-5} \mathrm{~g} / \mathrm{sec}$
Δ	$8 \varnothing$	$6.13 \times 10^{-5} \mathrm{~g} / \mathrm{sec}$
\square	$4.35 \varnothing$	$6.13 \times 10^{-5} \mathrm{~g} / \mathrm{sec}$
\bigcirc	$4.35 \varnothing$	$5.37 \times 10^{-3} \mathrm{~g} / \mathrm{soc}$
∇	$0.5 \varnothing$	$5.37 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$
\bigcirc	$0.3 \varnothing$	$2.32 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$

図6．3 ナトリウム中ふ素計およびカバーガス中水素計 による水素検出割合の関係

図6．4 物質移動係数

昩特	ノズル径		䛧 考
∇	$0.5 \varnothing$	$5.1 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$	注水 武 験
\bullet	$0.3 \varnothing$	$2.2 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$	
∇	$0.5 \varnothing$	$5.4 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$	注水数縒験
\bigcirc	$0.3 \varnothing$	$2.3 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$	

図7．1 注水試験のナトリウム中水索計検出割合

肜㫛	ノズル徫	注水素率	䛧 考
∇	$0.5 \varnothing$	$5.1 \times 10^{-3} \mathrm{~g} / \mathrm{soc}$	注 水 㖪 験
\bullet	$0.3 \varnothing$	$2.2 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$	
∇	$0.5 \varnothing$	$5.4 \times 10^{-3} \mathrm{~g} / \mathrm{soc}$	注水索武験
\bigcirc	$0.3 \varnothing$	$2.3 \times 10^{-3} \mathrm{~g} / \mathrm{soc}$ ．	

図7．2 注水試験のカバーガス中水素検出割合

付録－I ニッケル膜の水素透過率の算定法についての考察

1．真空系における関係式

カバーガス中水索計における真空系の概念図は以下のとおりである。

1.1 動的平衡圧力測定時における関係式

ニッケル拡散膜を透過する水素の流量を Q_{H} とすると

$$
\begin{align*}
& Q_{H}=K \cdot{ }_{K}^{A}\left(P_{N H} 1 / 2-P_{M}^{1 / 2}\right) . \tag{1.1}\\
& Q_{H}=C_{M N} \quad\left(P_{M}-P_{N G}\right) \tag{1.2}\\
& Q_{H}=C_{N P} \quad\left(P_{N G}-P_{P}\right) \tag{1.3}
\end{align*}
$$

$$
\mathrm{K}:=ッ ケ ル \text { 膜水素透過率 (Tor }{ }^{\left.\frac{12}{2} \cdot \mathrm{~cm}^{2} / \mathrm{sec}\right) ~}
$$

A：＂面䅡（ cm^{2} ）
d：＂厚さ（cm）

以上の関係式が成り立つ，この場合，真空系壁面からの放出がスは充分少なく，また，真空計の自己排気能力も Q_{H} に比べ充分小さいととが条件である。
1.2 静的平衡圧力測定時における関係式

静的平衡圧力測定時には，静的平衡圧力測定バルブは閉となっている。

$$
\begin{align*}
& V \frac{d P_{M}}{d t}=K \cdot \frac{A}{d}\left(P_{N H}^{1 / 2}-P_{M}^{1 / 2}\right)-S_{F} \cdot P_{S G} \tag{1.4}\\
& P_{M}=P_{S G} \cdot F t \tag{1.5}
\end{align*}
$$

$$
\mathrm{V}: \text { :ニッケル膜—バルプ間の容積 (} \mathrm{cm}^{3} \text {) }
$$

S_{F} ：真空咕の自己排気速度（ $\mathrm{cm}^{3} / \mathrm{sec}$ ）
Ft：サーマルトランスピレーション補正値

$$
\left[F t=\frac{A \cdot P_{S G}{ }^{2}+B \cdot P_{S Q}+C \sqrt{P_{S G}}+1}{A \cdot P_{S_{G}}+B \cdot P_{S G}+C \sqrt{P_{S O}}+\sqrt{T_{2}^{\prime} T_{1}}}\right.
$$

A ： $1.24 \times 10^{5} \mathrm{D}^{2} / \mathrm{T}^{2}$
B ： $8.00 \times 10^{2} \mathrm{D} / \mathrm{T}$
C ： $10.6 \cdot \sqrt{D / T}$
D：ニッケル膜—電離真空㖕間の配管の内径（m）
$\mathrm{T}: \mathrm{T}_{2}+\mathrm{T}_{1} / 2 \quad$（K）
T_{2} ：ニッケル膜部温度（K）
T_{1} ：電離真空計部温度（K）
以．上の関係式が成り立つ。，乙の場合も真空系壁面からの放出がスは充分小さいてとか条件で ある。

2．従来用いていた水素透過率の算定法

2.1 動的平衡正力，静的平衡圧力より求める方法

上記（1．1），（1．2），（1．3）式より，$P_{M}, ~ Q_{H}$ を消去すると

$$
\begin{equation*}
K=\frac{d / A \cdot C_{N P} \cdot\left(P_{N Q}-P_{1 P}\right)}{P_{N H}^{1 / 2}-\left(1+\frac{C_{N P}}{C_{M N}}\left(1-\frac{P_{I P}}{P_{N G}}\right)\right)^{1 / 2} \cdot P_{N G}} \tag{2.1}
\end{equation*}
$$

となり， $\mathrm{P}_{\mathrm{NG}}^{1 / 2} \ll \mathrm{P}_{\mathrm{NH}}{ }^{1 / 2}$ より

$$
\begin{equation*}
\mathrm{K}=\mathrm{d} / \mathrm{A} \cdot \mathrm{C}_{\mathrm{NP}}\left(\mathrm{P}_{\mathrm{NG}}-\mathrm{P}_{\mathrm{IP}}\right) / \mathrm{P}_{\mathrm{NH}}{ }^{1 / 2} \tag{2.2}
\end{equation*}
$$

となり，動的平衡圧力 P_{Na} ，イオンポンプ篐流より求めるイオンポンプ部在力 $\mathrm{P} P$ および静的平衡理力 P_{NH} より求めるととができる。

2.2 静的平衡任測定時間加ら求める方法

上記（1．4）式において，真空計の自己排気速度を無視できるとすると， $\mathrm{SF}=0$ とおき， $\mathrm{t}=0$ のとき $\mathrm{P}_{\mathrm{M}}=0$ の初期条件で解くと
$\sqrt{\frac{P_{M}}{P_{N H}}}+\ln \left(1-\sqrt{\frac{P_{M}}{P_{N H}}}\right)=-\frac{K \cdot A}{2 \cdot V \cdot d \cdot P_{N H}^{1 / 2}} \cdot t$
の解が得られる。したがって， $\mathrm{P}_{\mathrm{M}} / \mathrm{P}_{\mathrm{NH}}$ となる時間 t sec より K を求めることができる。

2.3 水素透過率の篚定

上記（2．2）式を用いて水素㣂用率を求めた結果は，本文で述べたが，（2．3）式を用いて K を㴍めると，約 $3 \sim 4$ 割低い値かか得られる。

この原因を考えると，
（1）（1．4）式を解く時，真空計の自己排気速度 $\mathrm{SF}=0$ としている。
（2）拡散膜部圧力 P_{M} は測定するととができないので， P_{SG} を测定して P_{M} を求めるが，（1．4）式を解く時， Ft ，を考慮していない。
以上， 2 点の原因が考えられるので，以下にFt，SFを考慮して水素透過率の算出法につ いて検討を行う。

3．静的平衡圧力測定時における圧力上昇曲線より求める方法

（1．4）式加ら，
（2．2）式，
（1．5）式を用いて， $\mathrm{P}_{\mathrm{NH}}, ~ \mathrm{P}_{\mathrm{M}}$ を消去すると
（1．4）式は

$$
\begin{gather*}
V \cdot D F \cdot \frac{d P_{S G}}{d t}=\frac{K \cdot A}{d}\left(\frac{d / A \cdot C_{N P}\left(P_{N G}-P_{1 P}\right)}{K}-F t^{1 / 2} \cdot P_{S G}^{1 / 2}\right)-S F \cdot P_{S G} \\
D F=\frac{\left(\sqrt{T_{2} / T_{1}}-1\right)\left(2 A \cdot P_{S G}{ }^{2}+B \cdot P_{S Q}+\frac{C}{2} \sqrt{P_{S G}}\right)}{\left(A \cdot P_{S G}{ }^{2}+B \cdot P_{S G}+C \sqrt{P_{S G}}+\sqrt{T_{2} / T_{1}}\right)^{2}}+F_{t} \tag{3.1}
\end{gather*}
$$

となり，整理すると，

$$
\begin{equation*}
K=\frac{d}{A \cdot F_{t}^{1 / 2} \cdot P_{S G} 1 / 2}\left\{C N P\left(P_{N G}-P \cdot P\right)-S_{F} \cdot P_{S G}-V \cdot D F \cdot \frac{d P_{S G}}{d t}\right\} \tag{3.2}
\end{equation*}
$$

となり，K値は，動的平衡圧力測定時の超高電離真空計部生力，イオンポンプ部圧力，及び静的平衡圧力測定時の静的平衡圧力測定用バルブを閉とした後の電離真空計部圧力の上昇曲線よ り $\mathrm{dP}_{\mathrm{sa}} / \mathrm{dt}$ ， P_{SG} を求めるととにより算定できる。上記（3．2）式を使用して，バックグラ ンド測定試験（Run 6002 試験）において測定した静的平衡厓力上昇曲線より水素透過率を求めた例を付図－1 と示す。真空計の自己排気速度は $1.5 \mathrm{cc} / \mathrm{sec}$ という報（＊）があるかっと の値を使用すると，K値は負しなり，実情に合わなくなる。そとでSFをパラメータとして， Run 6002，Run 6001試験について計算した結果， $\mathrm{SF}<0.2 \mathrm{cc} / \mathrm{sec}$ となったため，付図 -1 では， $\mathrm{SF}=0.1, ~ 0.01$ としている。付図－1より，K値は静的平衡圧力測定用バルブ を閉とした直後を除いて，ほとんど一定であり，（2．2）式を用いて求めたK値とはぼ同一で ある。また，他のRun 6002 ；Run 6001試験ケースについても同様の結果が得られた。
（3．2）式は， $\mathrm{dP}_{\mathrm{sa}} / \mathrm{dt}=0$（消的平衡状息）の時には，

$$
K=\frac{d}{A \cdot F_{t}^{1 / 2} \cdot P_{S G}^{T / 2}}\left\{C_{N P}\left(P_{N G}-P_{I P}\right)-S F \cdot P_{S O}\right\}
$$

となり， $\mathrm{F}_{\mathrm{t}}{ }^{1 / 2} \mathrm{P}_{\mathrm{SQ}}{ }^{1 / 2}=\mathrm{P}_{\mathrm{NH}}{ }^{1 / 2}$ であり， $\mathrm{SF}=0$ とすれば（2．2）式と一致する。

4．まとめ
以上，ニッケル膜の水素透過率の計算式をまとめると
（l） $\mathrm{K}=\mathrm{d} / \mathrm{A} \cdot \mathrm{C}_{\mathrm{NP}}\left(\mathrm{P}_{\mathrm{NQ}}-\mathrm{P}_{\mathrm{IP}}\right) / \mathrm{P}_{\mathrm{NH}}{ }^{1 / 2}$
（2）$\sqrt{\mathrm{P}_{\mathrm{M}} / \mathrm{P}_{\mathrm{NH}}}+\ell n\left(1-\sqrt{\mathrm{P}_{\mathrm{M}} / \mathrm{P}_{\mathrm{NH}}}\right)=\frac{-\mathrm{K} \cdot \mathrm{A}}{2 \cdot \mathrm{~V} \cdot \mathrm{~d} \cdot \mathrm{P}_{\mathrm{NH}}^{1 / 2}} \cdot \mathrm{t}$
（3）$K=\frac{d}{A \cdot F_{t}^{1 / 2} \cdot P_{S G} 1 / 2}\left\{C_{N P}\left(P_{N G}-P_{I P}\right)-S_{F} \cdot P_{S G}-V \cdot D_{F} \cdot \frac{d P_{S G}}{d t}\right\}$

となる。とれら3つの計算式のらち，（3．2）式を使用して，静的平衡王力の上㴋曲線から求 める方法か，（2．2）式を使用する方法がよいと思われる。
（＊）銤ヶ江，大後，池本，井上「リーク梭出計開発研究プログレスレポート（その1）（小リーク・ナト リウム水反応試験研究 第12報）」 PNC SN94177－190（1977．11）

[^0]: 1＊大能工学センター，溦速好安金工学部，プラント方金工学室

