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Abstract

A large-scale sodium spray fire test (RUN-E1) has been conducted in
an air atmosphere using the SOLFA-2 test vessel (111 m3 made from 5US304)
of the SAPFIRE facility.

The major test conditions are as follows:

Spray Rate 510 g/sec
Spray Period 1800 sec
Sodium Temperature 505 °C
Spray falling Height 4 n

As sodium spray started, the gas pressure and temperature rose rapidly
and reached maximums of 1.24 kg/cml -g and 700 °C after about 1.2 minutes.
The oxygen in the test vessel was consumed completely after 4 minutes.

From the oxygen consumption rate, the burning rate of sodium was calculated
to be 160 g-Na/sec, equivalent to about 30% of the sodium spray rate {(under
the assumption of 100% Naj0Os production).

Many thermocouples installed in the spray core region failed due to

# Plant Safety Engineering Sec., Safety Engineering Div., OEC
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the high temperature (above 1000 °C), which suggested the existence of a

burning zone around the sodium droplets.

No remarkable vertical concentration distribution of oxygen was
observed in the vessel during the spray, indicating that the gas in the
vessel was well mixed by natural convection due to gas temperature differ-
ence between the outside and the inside of the spray core.

Aerosol concentration reached a maximum of 17.5 g/Na/m3 after 5 min

then decreased below 1 g—Na/m3 after 20 min.

i
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1. INTRODUCTION

In the prototype reactor Monju, a sodium spray fire from a leak hole
having a diameter equivalent to 1/4 Dt of the sodium piping is postulated
as the design basis sodium leak accident. The temperature and pressure
transients in the event of such an accident were analyzed using the sodium
fire analysis code, ASSCOPS.

ASSCOPS has been validatedl) by spray fire experimentsz):3). However,
the spray durations were short (less than 20 seconds) in these experiments.
Therefore, a longer and larger—scale spray fire test was recommended for
realistic evaluation of the accident. Table 1.1 compares the scale of the
sodium spray fire tests conducted so far together with the present test and
the design basis sodium leak acecident in Monju.

This report presents a long—duration and large—scale spray fire test
which is called Run-El. In the second chapter of the present report, the
SOLFA-2 test vessel is explained. A water spray test, which aimed to
determine the droplet size distribution of the generated spray, is also
presented in it. The third chapter describes the test procedure and test
conditions of Run-El. The fourth contains the test results and discussion,

and the fifth presents the conclusion.
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2. TEST APPARATUS

2.1 Test Rig

The large~scale sodium leak and fire test facility used in the present
test consists of a sodium heater, a test vessel named SOLFA-2, a storage
tank, a drain tank, and a nitrogen gas supply system. This test rig is
a part of the SAPFIRE facility. Figure 2.1 shows the flow diagram. The

components are explained below.

2.1.1 Sodium Heater

The sodium heater heats sodium up to the test temperature and pres-‘
surizes sodium. Sodium is supplied to SOLFA-2. The sodium supply flow
rate 1s controlled by controlling its cover gas pressure and is measured by
an electromagnetic flow meter installed in the middle of the sodium piping
that connects the sodium heater with the test vessel.

The specifications of the sodium heater are given below.

Sodium heater specifications

Type A vertical cylindrical container
with an upper flange.

Inner volume 5.36 m3

Dimensions 1300 mm(ID) x 4300 mm(H)
Thickness of outer wall 10 mm

Material ~ SUS 304

Heater capacity .70 kW (200 V-AC, 3 ¢, 50 Hz)
Max. working temperature 550 °C

Max. working pressure 5 kg/em® g

2.1.2 Storage Tank
The storage tank stores the sodium used for the test. If needed, the
sodium in the storage tank can be purified by operating a cold trap. Its

specifications are given below.
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Sodium tank specifications

Type Vertical cylindrical container
Capacity 20 m3

Dimensions 2500 mm(ID) x 4480 mm(H)
Thickness © 14 mm

Material SUS 304

Max. working temperature 550 °c

Max. working pressure 5 kg/cm? g

2.1.3 Drain Tank
After the experiment, the sodium collected below the fire suppression
plate is returned to the drain tank through the drain piping at the bottom
.of the test vessel.
The drain tank is a horizontal cylindrical container installed in the

floor pit of the test building. Its specifications are given below.

Drain tank specifications

Type Horizontal cylindrical container
Capacity 6 m3

Dimensions 1500 mm(ID) % 3582 mm(H)
Thickness 9 ﬁm

Material SUS 304

Max. working temperature 450 °C

Max. working pressure 3 kg/cm? g

2.1.4 WNitrogen Gas Supply System

The nitrogen gas supply system controls the cover gas pressure in the
sodium heater, the test cell, the storage tank, and the drain tank. This
system also serves as a vacuum system. During tests, the system controls
the gas pressure in the heater to supply a constant sodium flow rate to the
test vessel through a spray nozzle. It also supplies the inert gas to the

test vessel after the test.



PNC-TN9410 86-124 Tr

The nitrogen gas supply system specifications are given below.

Nitrogen gas supply system specifications

Material 5GP

Piping 2 inches
Max. working pressure 5 kg/cm? g
Fluid Nitrogen gas

2.2 Qutline of Test Vessel SOLFA-2

The specifications of SOLFA-2 and its components including the fire
suppression plate and the sodium spray nozzle will be explained below.

Figure 2 shows the construction of the SOLFA-~2 test cell.

2.2.1 SOLFA-2 Vessel

SOLFA-2 is a stainless steel, verticallcylindrical vessel with a volume
of 111 md. It has a maintenance manhole fixed to its body and the upper
flange with bolts and nuts. The sodium spray nozzle, the fire suppression
plate and the fire suppression bucket are installed in it. The body is
covered with a water cooling jacket to protect the vessel from the over-
heating and over-pressure due to a spray burning. A rupture disk is
provided to release over-pressure, if necessary.

The specifications of the test celi, the water cooling jackets, and

the rupture disk are shown below.

Test cell specifications

Type ' Vertical cylinder with a flange
for opening the top.

Capacity
Total volume 111 m3
Volume above the fire 95.5 m3

suppression plate

Volume below the fire 15.5 m3
suppression bucket

Dimensions 3600 mm(D) x 10816 (H)
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Wall thickness 25 mm
Material SUs 304
Max. working temperature' 400 °C
Max. working pressure 2 kg/cm2 g

Water coecling jacket specifications

Type Double cylindrical coatainer

Volume 6.18 m3

Dimensions 3800 mm(OD) x 3659 mm(ID) x 7040 mm(H)
Thickness 6 mm

Material 88 41

Rupture disk specifications

Type A reversible type (mfd. by Niigata BS

& B Safety System Inc. RB-90)
Material Nickel/alloy 200
Size 8§ inch
Design rupture 1.71 kg/cm?
pressure

2.2.2 Fire Suppression System

The purpose of Run~El is to obtain the data on a spray burning. A
fire suppression system is provided at the bottom of the vessel to minimize
the influence of podl burning.

As shown in Fig. 2.3, the fire suppression system consists of a fire
suppression bucket made of carbon steel (5M4128) and a fire suppression
plate made of common carbon steel (SS41). The spray sodium from the nozzle
burns and drops onto the fire suppression plate.

The sodium which dropped onto the fire suppression plate flows into
the fire suppression bucket along the 1/100 slope and is self-extinguished
there.

The mechanism of the self-extinguishment within the fire suppression

bucket is explained in Fig. 2.4.
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The specifications of fire suppression system are given below.

Fire suppression system specifications

(13 Fire suppression bucket

Material SM41B
Dimens ions 3400 mm(ID) x 250 mm(H)
Thickness 6 mm

(2) Fire suppression plate
Material S541

Diameter 3400 nm

2.2.3 BSodium Spray Nozzle (Fig. 2.5)

The sodium spray nozzle specifications are shown below.

Sodium spray nozzle specifications

Material SUS 304
Number of nozzles ‘ 1

Spray cone angle 35 °
Height of spray nozzle 3980.mm

The diameter of the sodium droplets generated by the spray nozzle
was determined in a spray performance test using water. The volume mean

diameter determined was 2 mm.

Fig. 2.6 shows an outline of the spray nozzle test using water and

its results.

2.3 Measuring Instruments

The data to be obtained in Run-El are the temperature transient at
each part of the vessel, the heat fluxes, the pressure transients, the
oxygen concentration changes, and the aerosol concentration resulting from

the spray burning. Their measurements will be explained below.
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(1) Measuring the temperature transients at each part of the vessel

As shown in Fig. 2.7, thermocouples for measuring the temperature were
placed at 15 points within the spray cone, and the 10 sets of three thermo-
couples were placed outside of the spray cone. -

The thermocouples in the spray cone measure the temperatures of the
sodium liquid droplets, their flame, and the gas. These temperatures,
however, are difficult to distinguish from one another and are mixed
somewhat in the measurement results. -

With each set of three thermocouples outside the spray cone, the
correlation of one thermocouple to another is determined, then the gas
convection velocity is determined from the function at their respective
positions. The time constant of thermocouple is comparatively large,
therefore, fast gas velocity cannot be measured. The sets of thermocouples
were therefore placed at 10 positions. The distance between thermocouples
in a set was varied from 5 cm to 20 ecm, so as to find the optimum spacing.

Five thermocouples were placed in the fire suppression bucket to
measure the depth and temperature of the sodium in it, three to measure the
volume and temperature of the sodium within the bucket, and two to measure
the temperature of the fire suppression bucket.

Furthermore, a total of 29 thermocouples were installed to measure the
temperatures of the vessel walls and of the water~cooling jacket.

All thermocouples are grounded type C-A (chromel-alumel) thermocouples

with a diameter of 1.0 mm.

(2) Measurement of the radiation heat flux

To measure the convective and the radiative heat transfer from the
high-temperature spray cone to the vessel wall, two heat flux meters were
attached side by side at the same position (at the same height as that of
the spray nozzle) on the wall surface. One of them was covered with a
shield plate to shield from the radiation (Fig. 2.8 shows these meters)
and to measure only the convective heat flux. The heat flux due to radia-
tion was determined from the difference of the measured values by the two

meters.

(3) Measurement of the oxygen concentration change

The spray burning rate during a test is determined from the oxygen
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concentration changes within the test vessel. The oxygen concentration was
measured by two magnetic oxygen concentration meters; a gas chromatograph,
and an automatic gas sampling device.

When a sodium spray burns in the lower half of SOLFA-2, oxygen con—
centration distributions may vary in the vertical direction. An automatic
sampling device was therefore placed in the upper part of the test vessel,
a magnetic oxygen concentration meter in the middle part, and an other
magnetic oxygen concentration meter and an on—-line gés chromatograph in the
lower part to measure the oxygen concentrations in the respective areas.

Figure 2.2 shows the arrangement of these oxygen concentration measur—

ing instruments, of which specifications are shown below.

1. Magnetic oxygen concentration meter

Type 6395 type magnetic oxygen analyzer
(mfd. by Mitaka Industries, Ltd.)

Measuring range 0 to 25 volX%

Response About 20 sec/90% response

(an independent analyzer)
Indication Continuous

2. On-line gas chromatograph

Type 370T type oxygen & hydrogen analyzer
(mfd. by Gas Chromatography Inc.)

Column Molecular sieve

Resolution 1 to 30%

Indication An intermittent measurement system

{minimum interval of 5 minutes)

3. Automatic gas sampling device

The automatic gas sampling device samples the gas into a 2,000 ce
cylinder through the gas sampling nozzle provided at the vessel. The
sampling interval can be freely set by a timer. There can be a maximum of
15 sampling ecylinders.

The gas is analyzed by taking the sampled gas from the automatic
sampling device and putting it in the gas chromatograph.
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(4) Measurement of transient gas pressure in the vessel

The atmospheric gas pressure transients within the vessel associated
with sodium burning were measured by a pressure gauge at the upper part of
SOLFA-2. This pressure gauge was also used to generate a feedback control
signal to maintain a constant differential pressure between the test vessel
and the sodium heater and thus- supply a constant sodium flow rate to the

test vessel. The pressure gauge specifications are shown below.

Pressure gauge specifications

Type An electronie pressure transducer
(mfd. by Yokogawa Hokushin Electric
Co., Ltd.)

Measuring range -1 to 3 kg/cn? g

Measurement + ~0.25% of full scale

precision .

(5) Observation instrument
To observe the sodium spray burning, video cameras were placed so as
to view the spray nozzle from the upper part of the test vessel and from

the side of the spray nozzle.

(6) Measurement of the mass and composition of the reaction products

The concentration of the aerosol generated by the spray burning, the
mass of the setting aerosol, and the mass of the aerosol deposited on the
wall were measured in the following ways:

1. Aerosol concentration was measured by taking the gas sample from time
to time by an automatic aerosol sampler. About 2,000 cec of gas was sucked
by the sampler and filtered through a sintered filter having a two~micron-
meter pore size to collect the aerosocl. The filtered aerosol was then
dissolved in water, and its sodium content was determined by titration with
the standard acid solution.

2. The settling aerosol flux was measured by the settling aerosol sampler.
The settling aerosol on the plate was collected. The mass of aerosol
collected was determined by atomic absorption analysis or by titration
after dissolving the collected aerosol in water.

3. After the test, 50 cm? area of the aerosol deposits on the inner wall

of the test vessel were scraped off from various parts of the wall and
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subjected to quantitative analysis.

The combustion products from sodium remaining in the fire suppression
bucket were weighted and the remaining sodium thickness was measured.

The signals of temperature, the radiation heat flux, the oxygen con-
centration by the magnetic oxygen meter, the gas pressure within the vessel,

and the sodium spray flow rate were recorded using a computer (HP1000).

- 10 -
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3. TEST METHOD AND CONDITIONS

3.1 Test Method

Table 3.1 shows the test procedures of Run~El, which was conducted on
September 1985.

First, the sodium in the sodium heater was heated to the predetermined
temperature. Next, the pressure difference between the cover gas of the
sodium heater and that of the test vessel was controlled. After these, the
sodium valve at up-stream from the spray nozzle was opened, then sodium was
supplied to the spray nozzle. |

The tést data was recorded on a magnetic tape using a degital data
acquisition system for 1l hours from the start of sodium spray. The data
recording interval was 50 msec (20 Hz) during the first ome hour and 500
msec (2 Hz) for the last 10 hours. Two video cameras were operated to
observe the spray form and spray burning.

The sodium spray was terminated when the total sodium mass reached
920 kg (determined by integrating the sodium flow rates over time).

After the termination of the sodium supply, the automatic aerosol
sampler and the automatic settling aerosol sampler were started taking care
not to disturb the gas convective flow within the test wvessel.

The sodium recovered within the fire suppression bucket was drained
into a the impurities sedimentation tank after it cooled below 450 °C.

After the temperatures of the sodium combustion products in the test
vessel cooled to the room temperature, about 50 kg of dry ice (COp) was
thrown into the vessel to stabilize the sodium. The manhole was then opened

to collect the remaining sodium and aerosol to measure their weight.
3.2 Test Conditions

The test conditions are summarized in Table 3.2. The rationale for
these conditions is shown below.
(1) Sodium temperature : 505 °C
This temperature corresponds to the rated operating conditions of

the Monju secondary cooling system.

- 11 -
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(2) Sodium spray flow rate : 36.7 /min
This was determined based on the results of pre-analysis using a mean
droplet size from the water spray test. This flow rate may generate the
maximum permissible pressure in SOLFA-2 due to the combustion.
(3) Total sodium supply mass : 1 ton
This was determined to facilitate sodium disposal.
(4) Spray expansion angle : 40-degree
Though the spray expansion angle depends on the characteristics of
the spray nozzle, this is the maximum angle at which no generated spray

droplet strike the inner wall of SOLFA-2.

- 12 -
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4. RESULTS AND DISCUSSIONS

4.1 Gas Pressure

Fig. 4.1 shows the gas pressure transient together with the sodium
spray flow rate.

The gas pressure rapidly increased with the start of spray burning,
reaching a maximum of 1.24 kg/cm2 —-g about 1.2 minutes after, then decreased
slowly. At 350 seconds, a slight change was observed in the pressure
decreasing rate. This is because the sodium flow rate suddenly increased.
As mentioned previously, the spray flow rate was intented to keep constant
" by controlling the cover gas pressure of the sodium heater and by adjusting
of the sodium valve opening ratio automatically. However, this was un-
successful, so the actual control was made manually resulting slight changes

in the flow rate.
4.2 Gas Temperature

Many thermocouples were placed in the test vessel, as shown in Fig.
2.7. Figure 4.2 shows the results of measurement made by the thermocouples
in the gas space. The gas temperature (B) (thermocouple TE-2082) inside
the spray cone rapidly rose beyond 1,000 °C after the start of sodium spray.
Meanwhile, the gas temperature (A) (TE-2085) outside the spray cone reached
a peak of over 700 °C at the upper part of the vessel and exceeded 600 °C
even on the vessel side (C). The high gas temperature in the upper part (A)
would be caused by the heated gas which rose by buoyancy.

A more detailed examination will be made on temperatures (A), (B), and
(C). There are many thermocouples in the gas space above the spray nozzle.
Figure 4.3 shows the outputs of those thermocouples (TE2040, 2041, 2042,
2046, 2052 and 2058) on the center line, and Fig. 4.4 shows the outputs of
those (TE2043, 2044, 2049, 2055 and 2061) on a line laterally 90 cm away
from the center line. As can be seen from these figures, gas temperatures
from these thermocouples were nearly equalling on upon another, and gas
temperature on the center line showed almost the same behavior as on the

other line. This suggests that the gas was well mixed by a strong convec—

- 13 -
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tion in the space above the spray nozzle, and there was nearly uniform
temperature distribution.

Below the spray nozzle, the thermocouples are arranged as shown in
Fig. 4.5 to estimate the scope of extension of the sodium spray droplets
during their falling. Sodium spray drops can naturally be expected to
collide with the thermocouples-below the spray nozzle. Consequently, the
thermocouples marked with (F) (i.e., TE-2075, 2076, 2077, 2078 and 2080)
in Fig. 4.5 were burnt and damaged during the spray éxperiment.

Figure 4.6 shows the outputs of the four thermocouples (TE-2082, 2083,
2084, and 2085) arranged at the fourth level from the top, i.e. 3.114 m
down from the nozzle, and Fig. 4.7 shows those of the five (TE-2027, 2086,
2087, 2088, and 2089) thermocouples arranged at the 5th level, i.e. 3.984 n
down from the nozzle. The figures indicate that the maximum temperature
exceeded 1,000 °C. Because the boiling point of sbdium is about 900 °C,
~ these temperatures should be those of flames in the burning zone around the
sodium droplets. Furthermore, the temperature in the spray cone rapidly
dfopped 200 to 300 seconds after the start of sodium spray because oxygen
had completely been consumed around that time, as mentioned later.

The spread of the falling sodium spray droplets can be estimated using
these temperature distributions.

It is reasonable to think that a spray droplet touched the thermocouple
if the temperature shown is over 800 to 900 °c, considering that the maximum
gas temperature in the space above the nozzle is about 800 °C and that the
boiling point of sodium is about 880 °C. Based on this and Fig. 4.6, the
border of the spread spray droplets can be judged to lie between TE~2083
and 2084 in Fig. 4.5 or near TE-2087 in Fig. 4.7. Figure 4.8 shows the
temperatures of the remaining three thermocouples which survived. The
figure indicates that the sodium spray passed over TE-2079 and 2081.

From this, the zone occupied by the spray droplets is estimated as
shown by the dotted line in Fig. 4.5. The falling zone is formed in a
church bell shape rather than a conical shape. Figure 4.9 shows the gas
temperature distribution in the test vessel 40 seconds after the start of
sodium spray. This figure clearly shows the sodium spray (the nozzle
position is represented by and the sodium is falling upward in the figure).
In the figure, the femperature differs even within the spray zome and is

lower at the center than at the edge. This is probably attributed to the
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oxygen concentration depletion by the burning in the inner part of the spray
cone, which then reudces the burning rate. This is the same phenomenocn

as observed in a candle flame.
4.3 Temperatures of Structural Components

Figure 4.10 shows the outer surface temperatures of the ceiling (4)
and side wall of the test vessel (B). At the ceiling; the temperature rose
to a maximum of 130 °C, while at the side wall, it rose only 10 °C due to
the water cooling jacket.

Figure 4.11 shows the temperature of the structural material around
the protection steel, which prevents the high-temperature sodium droplets
from directly contacting the vessel wall. Shown in the figure are the
inner surface temperatures of the protection steel and the test vessel,

which are strongly affected by the gas temperature at just inside the steel
surface. The figure indicates that the temperature is higher in the upper
part than in the lower part. Furthermore, there is a temperature difference
between the steel and the test vessel (about 200 °C) for TE-2011, and about
150 °C for TE-2026 and TE-2014.

Figure 4.12 shows the outer surface temperature of the lower plate of
the fire suppression system. The temperature at the center of the bottom
plate of the system is about 600 °C at the highest, exceeding the spray
sodium temperature of 505 °C. The temperature at the periphery of the
plate is lower than that at the center because of the heat loss to the
supporting structures. Many other thermocouples were arranged in the system
to measure the sodium temperature, but they were burnf as the sodium liquid
front (i.e., the hot burning face) passed over their lead wires.

Figure 4.13 compares the surface temperatures inside and outside the
ceiling of the test vessel; the temperature difference T between the inside
and outside surfaces initially exceeded 300 °C. As the vessel is 25 mm
thick at the ceiling, the het flux across the wall of ceiling at that time

becomes:

14
x 300 = 17x103  kcal/m2<hr

fa]
1]

25x10-3
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This is 10 times as large as the maximum heat flux (14,000 kcal/mZshr)
measured in the test (see the next section). This difference may be
attributed to the fact that the top of the thermocouples in the vessel are
only point-welded to the wall, so they are more likely to have measured
the gas temperature near the wall. This value is therefore shown here only
as reference data.

In the future, such procedures as providing a groove in the wall and
burying the top of each thermocouple into the groove.in order to measure

the inner wall surface temperature with accuracy should be taken.
4.4 Heat Flux to the Wall

As mentioned in Chapter 2, two heat flux meters were placed side by
side on the inner wall of the test vessel to measure the radiative and
convective heat flux during the spray. Figure 4.14 shows the resuts
obtained.

The natural convection heat transfer in a vertical plate is given by
the expressions below.

Nuy = 0.56 (GrgePr) 1/4

m
10° < Gry+Pr < 1011
Nup = 0.021 (GryePr) 2/5

108 < Gry-pr < 1014
In the present test, the representative length was 2 m, the gas
temperature was 700 °C (maximum), and the wall temperature was 100 °C,
therefore,

GrePr = 1.5x1012

From the above, Nuyp becomes about 2,000. Convective heat flux is

determined from this as

X 0.03
q = Nu - AT = 2000 x x (700-100) = 4000 kecal/m2<hr
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where, A is the thermal conductivity of air.
The result is only about 1/3 of the max. Qeony (11,000 kcal/mz-hr)
shown in Fig. 4.14. It is considered that this is because the aerosol
suspended in gas at such high temperatures as 700 °C releases considerable
radiation energy. Exposure of the heat flux meter to the multiple scattered
thermal radiation due to aerosols could not be prevented by the shield plate.
The qegny therefore includes the radiation energy. (The gas can freely
pass inside the shield plate.)

Let the emissivity of the aerosol suspended in the gas be Ege The

radiation energy from the gas is then expressed as,
q = € x 4.88 x [(700+273)/100]* = 44000 x ey keal/m’ehr.

Assuming €y = 1, q becomes maximum-(44,000 kcal/mz-hr). Though the
"actual €g is unknown, the q.opy in Fig. 4.14 is assumed to contain the
radiation heat flux from this gas, too.
 The upper limit of €g can be estimated to ‘be (14000-4000)/44000 = 0.23
because the maximum heat flux determined by the heat flux meter without the
shield plate was about 14,000 kcal/mZehr.

4.5 Oxygen Concentration Change

As pentioned in Chapter 2, an automatic gas sampler is provided at the
upper part of the test vessel and a magnetic oxygen concentration meter at
the middle and another one at lower parts to measure oxygen concentration
distributions in the vertical direction. The magnetic oxygen concentration
meter has an advantage over the automatic gas sampler in its ability to
continuously measure the oxygen concentration. It has some delay in the
measurement, however, because the test vessel has to be connected with the
measuring instrument by a gas line. So, the delay was compensated and the
corrected as shown in Appendix A.

Figure 4.15 shows the corrected oxygen concentration changes. As can
be seen from the figure, values (B) and (C) measured by the magnetic oxygen
concentration meter ineclude a time delay of about 3 minutes, but the data
(A) by the automatic gas sampler method contains no time delay. The time

delay of this 3 minutes is considered uncorrectable by the method mentioned
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in Appendix A. Important thing in the oxygen concentration changes is
their decreasing rate that 1s closely related to the oxygen consumption
rate. As shown in the figure, the oxygen consumption rate is nearly equal
at the middle and the lower parts of the vessel but is slightly higher at
the upper part. It is unclear whether this difference is attributed to the
difference of measuring methods or is reflecting some physical phenomenon®.

This difference, however, is not so large, so we can consider that the
spatial oxygen concentration sidtribution was generaliy uniform as a first
approximation. '

From this figure, we can judge that all oxygen in the vessel is con—
sumed in about 4 minutes.

SOLFA-2's capacity is 95.3 m2. If the burning reaction is assumed to
be a 100% sodium peroxide producing reaction, the sodium burning rate is
calculated as below, by using the data which maximizes the oXygen consump-

tion rate.
2Na + 09 ——= Nag0s

2737293
955 X ————— x 0.21 x 2/(4%x60) x 23 = 160 g—Na/s
22.4x10-3

This rate corresponds to about 30% of the spray sodium flow rate (519 gNa/s).
4.6 Aerosol Concentration Change

The aerosol concentation changes within the test vessel were determined
from the samples taken by the automatic aerosol sampler. The results are
shown in Fig. 4.16. The maximum aerosol concentration was about 20 g-Na/m3.
After 20 minutes, the concentration decreased to 1 g-Na/m3 due to settling

and deposition. Figure 4.17 shows the measurement results for the mass

* More accurately, the gas with a lower oxygen concentration in the spray
‘cone 1s carried to the upper part by convection and makes the oxygen
concentration decrease more rapidly in the upper part than in the middle
and lower parts. '
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settling flux to the floor.
4.7 Gas Flow Velocity Distribution

The gas velocity in the test vessel (regions other than the spray cone)
can be evaluated by calculating the correlation functions among thermocouples.
The gas temperature fluctuations are measured by two thermocouples
spaced a certain distance from each other, and their cérrelation functions
is determined from the two different temperature fluctuation signals. When
the temperature fluctuation moves from T; to Ty with a velocity V in the

figure below, the relation between the temperature is expressed as

T T 2
t o —_ =
2(t) 1(t v)

T]_ D (m) _T2
V (m/s)
s VWAAAA AmMAAAAAA
T
¢ \\\3 : Correlation
] t .t

Thus the correlation function is defined as below.

T
jOTl(t - T)Ty(t)dt

©-
Iz
Mo

When the first equation above is substituted into the second equation,

it becomes

T D
d(t) = foTl(t - T)T;(t - ;)dt
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As this is autocorrelation function of signal Tj, it will be the
maximum when t = D/V.

The value D/V can be determined by calculating ¢(t) and reading its
maximum.

As shown in Fig. 2.7, the thermocouples are placed at 10 points in
the space above the spray nozzle. FEach three are circumferentially and
vertically spaced to determine the gas velocities in the circumferential
and vertical directions.

Figures 4.18 and 4.19 show the gas flow patterns 1, 2.5, 5, 10, 20,
and 27 minutes after the start of spray that were determined in this way.
As shown in the figures, the flow patterns are complicated and change with
time. The driving force of the flow depends on the balance between the
downward force of the sodium spray and the buoyancy force of the high-
temperature gas within the spray come. The force to pull the gas downward
' wiﬁh the sodium spray mainly depends on the sodium flow and can be regarded
as almost constant during the experiment. Consequently, the gas flow is
considered to change its patterns as shown in the figures as the buoyancy
due to the temperature difference between the upper and lower parts of the
spray cone changes with time.

Figures 4.20 and 4.21 show the gas flow vectors determined based on
the correlations among the thermocouples. Figure 4.18 and 4.19 were

estimated based on this data.
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5. CONCLUSION

A large-scale sodium spray fire test in an air atmosphere, Run—El,
was conducted as the first sodium fire experiment using the SOLFA-2 test
vessel of the SAPFIRE facility. The spray nozzle used was what is called
a full-cone type. Its characteristics were studied in the water test prior
to the present sodium test. From the water test, the values of important
experimental parameters were obtained as shown below. Furthermore, a
pre—test calculation by the sodium fire analysis code was made using these

values to evaluate the safety of the experiment in advance.
The spray flow rate 36.7 2/min

Average droplet size 1.6 mm (average area diameter)
2.2 mm (average volume diameter)

Cone expansion angle 36 °

The following sodium test conditions were set up considering the

pre—test analysis results:

Spray flow rate 36.7 &/min
Spray time 1800 sec
Spray sodium temperature 505 °C
Spray failing height 4 m

The experiment was completed satisfactorily without trubles and
following results were obtained:
(1) Immediately after the start of sodium spray, the gas pressure rapidly-
increased, reaching a maximum of 1.24 kg/cm2 g after 1.2 minutes.
(2) The temperature within the spfay cone exceeded 1,000 °C, and the
existence of a high—temperature burning zone around the falling sodium
drops was observed. We found that the gas temperature outside the spray
cone was more uniform than expected, and the gas within the test vessel
was well mixed by the natural convection due to the temperature difference
between the inside and the outside of the spray cone.
(3) The sodium spray burning rate determined from the oxygen consumption

rate was 160 g-Na/sec, if we assumed a 100% sodium peroxide producing

- 21 -




PNC-TN9410 86-124 Tr

reaction in the burning. This value is equivalent to about 30% of the
sodium spray flow rate of 510 g-Na/sec. We further found that the oxygen
concentration did not differ significantly in the vertical direction, and
the gas has been well mixed.

(4) The aerosol concentration was about 20 g“Na/m3 at its maximum in the
early stage and decreased to 1 g-Na/m3 after 20 minute.

(3) The gas flow velocity was determined by taking the correlations of the
output fluctuation between two adjacent thermocouples. Patterns during the

sodium spray were found to show the complicated influence of turbulence.
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Table 1.1 Comparison of Spray Fire Tests Performed in Jaspan
and Design Basis Sodium Leak Accident Posturated

for MONJU
. Vessel Spray Average
Dii22i{on Volume Period Spray Rate
(u3) (sec) (g/sec)
Hitachi upward 1.93 8-20 20-30
Mitsubishi downward 21 60 300
OEC/PNC
(Present Test) downward 100 1800 500
'MONJU *
1/4Dt Pipe downward 2000 3800 3000
Leak of IHTS

- 24 -

(PSS-SFE-313)



PNC-TN9410 86-124 Tr

Table 3.1 Progression of RUN-E1l Test
Time Test Progression
9/26
14:33 | Sodium Charge in Sodium Heater Tank
15:19 | Start of Heating of Sodium in Heater Tank ..... 250 °C
9/27
9:50 | Input of Stop Conditions for CENTUN
13:22 | Start of Aerosol Scrubber
131 | Completion of Heating of 50dium seeeeececeevess 505 °C
:42 | Stop of Cover Gas Control
250 | Start of Cover Gas Control of Sodium Heater Tank
$52 | Switch off of SCR Control Heater
:54 | Start of Data Recording
:57 | Sodium Spray Start (Flow Rate : 36.7 £/min)
14:30 | Sodium Spray End (Total Supplied Sodium : 1101 &)
:32 | Stop of Cover Gas Control of Sodium Heater Tank
:41 | Change of Temperature Level of Pre-Heating of Sodium Piping
7 (505 °C » 250 °C)
:55 | Evacuation of Sedimentation Tank
15:01 | Drain Remaining Sodium in Fire Suppression Bucket
:01 | Stop of Aerosol Scrubber
9/28
0:17 | Start of Cover Gas Control of Test Vessel
:01

Stop of Data Recording

(PSS-SFE-314)
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Table 3.2 Test Conditions of RUN - El1

Spray Conditions

(1) Sodium Temperature ) 505 °C
(2) Spray Flow Rate 36.7 4/min
(3) Mass of Supplied Sodium 1101 &
{4) Spray Duration 30 min
(5) Height of Falling Nozzle 4.23 m

(6) Delibery Pressure at Spray Nozzle 1.5 kg/cmz—g
(7) Mean Droplet Diameter® 1.6 mm (Surface Mean Diameter)

2.2 mm (Volume Mean Diameter)

* These Data are obtained by the results of water spray test

Test Vessel Conditions

(1) Oxygen Concentration 21 %
(2) Gas Pressure atmospheric pressure
(3) Vessel Volume ' 95.5 m3

Sodium Drainage

After an hour from sodium spray discharge, sodium temperature

decreased below 400 °C and sodium was drained to the tank.

(PSS-SFE~315)
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Fig.4.18 Gas Flow Pattern (1)
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Fig.4.19 Gas Flow Pattern (2)
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Appendix A: Response delay of detecting oxygen concentration

Figure A-1 shows the sampling system for the magnetic
type oxygen meter,
The detection delay of the oxygen meter is modeled as

"Dead time" + "First-order lag," as shown below.

. -T. s
G ! _ - O

1+ T,8

If the output is taken as y(t) and the input as x(t),

dy(t)
2 dt

+ Y(t) = X(t—rl) (A-1).

To derive the input x from the output y, one can
calculate the following:

dy (£+75)

X(t) = T
2 at

+ y(t+T1i (A-2)

Figure A-2 shows the graph of x obtained by numerical

differentiation using the test data.

The figure also shows the values of the first and second

terms on the right side of the expression (A-2). The data
after the complete correction is, of course, the sum of the

first and second term. The figure indicates that the time
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delay in the second term (i.e., the dead time in the sampling

piping) is dominant.
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