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IMPLEMENTATION OF A MODEL REFERENCE ADAPTIVE
CONTROIL: SYSTEM USING NEURAL NETWORK TO
CONTROL A FAST BREEDER REACTOR EVAPORATOR

D. Ugolini®, S. Yoshikawa'; and A. Endou™™
ABSTRACT

This paper discusses the development of an indirect model
reference adaptive control (MRAC) system, using the artificial
neural network (ANN) technique, and its implementation to control
the -outlet steam temperature of a sodium to water helical-coil
once—through evaporator. The ANN technique is applied in the
identification process and in the control process of the indirect
MRAC system. The evaporator is simulated with a nonlinear dynamic
modular model representing a superheated cycle with three regions,
subcooled, saturated, and superheated, and moving boundaries.

The emphasis is placed on demonstrating the efficacy of the
indirect MRAC system in the control of the outlet steam temperature
of the evaporator model, and on showing the important function
covered by the ANN technique, whose adaptation and learning
capabilities, contribute to improve the performance of the control
action of the indirect MRAC system.

The implementation of the ANN technique in the indirect MRAC
system generates a strong control system. An important
characteristic of this control system is that it relays only on
some selected input variables and on the output variables of the
evaporator model. These are the wvariables that can be actually
measured or calculated in a real environment., Therefore, the
internal variables, which are needed to develop the model, but that
can be hardly measured or calculated in a real environment, are not
utilized during the control action performed by the indirect MRAC
system.

The results obtained applying the indirect MRAC system to
control the evaporator model are quite remarkable. The outlet
temperature of the steam is almost perfectly kept close to its
desired set point, when the evaporator model is forced to depart
from steady state conditions, either due to the variation of some
input variables or due to the alteration of some of its internal
Parameters.

The results also show the importance of the role played by the
ANN technique in the overall control action of the indirect MRAC
system. ' The connecting weights and the biases of the nodes of the
ANN self adjust to follow the modifications which may occur in the
characteristic of the evaporator model during a transient. The
efficiency and the accuracy of the control action highly depends on
the on line identification process of the ANN, which is responsible
for the upgrade of the connecting weights and of the biases of the
ANN nodes.

* P.N.C accepted STA fellow researcher (Frontier Technolgy Section, 0.E.C.).
Frontier Technology Section, Technology Development Division, 0O.E.C.
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1. INTRODUCTION

System identification® and control methods? for linear systems
based on mathematical system theory are well established. The most
widely used technique is the model reference adaptive control
(MRAC) system®. Similar studies for nonlinear systems have been
almost neglected mainly for their intrinsic complexity and for the
lack of proper mathematical tools.

-The artificial neural network (ANN) technique?, an artificial
intelligence method, based mostly on experimental techniques offers
the possibility to circumvent such obstacles. The association of
the ANN algorithm with the MRAC system provides a powerful tool for
controlling nonlinear systems. =

- This paper presents the implementation of an indirect MRAC
system using the ANN technigque to control the outlet steam
temperature of a sodium to water evaporator. In the next section
a brief description of the characteristics of the nonlinear dynamic
modular model of the fast breeder reactor evaporator is given. 1In
section 3, the direct and the indirect MRAC system are described.
The ANN technique and its utilization in the identification process
and in the control process of the indirect MRAC system are
described in ‘section 4 and 5. In section 6, the operation
procedure of the indirect MRAC system is exposed. The results
obtained applying the indirect MRAC system in the control of the -
evaporator model and the importance covered by the ANN technique
are discussed in section 7. Some conclusive remarks are presented
in section 8.

2. DESCRIPTION AND MATHEMATICAL FORMULATION OF THE
EVAPORATOR MODEL

The fast breeder reactor evaporator modelled in this study is
a once-through helical-coil type evaporator. It is a vertical,
sodium to water, counterflow shell and tube heat exchanger. The
boundaries of the model are defined by the inlet and outlet nozzles
of the liquid sodium and of the feedwater. The feedwater enters
the evaporator in the subcooled state. The steam leaves the
evaporator in the superheated state. '

The model, shown in Figure 1, consists of three sections
representing, the sodium, the feedwater, and the metal which
separates the sodium from the feedwater. FEach section is divided
into three regions, (1) the subcooled region, (2) the saturated
region, and (3) the superheated region, according to the state of
the water/steam mixture. The regions have moving boundaries, whose
locations is denoted, in the model, by the state variables L.., and
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Le, that represent the length of the subcooled region, and the
length of the saturated region respectively. The model equations
have been derived from the energy and mass conservation fundamental
equations using the method of control volumes.

The sodium section is described by the following three
equations, which respectively define the subcooled region,

dTNa,,_. - 2 WNA (TNa,,_. - TN.:,,) ~ Ussc (TNa,,_. - TM )

G

dt m L KNA,,_. My
Na I

! (1)

the saturated region,

dTNa,,_. = Wya (2 TNa;,, -2 TNa_ﬂ, + TNao - TNa_{) _ Usse (TNa,,_. - TM,‘_.)
d t m Ls!: K—Na,,_. mNa (2)
o "

and the superheated region,

dTNa,b - 2 Wya (TNai - TN&,,,) - Ussn (:r'l\a'a_ﬂ,x - TM_,,,)
dt m (L - Lg ~ L) Kya,, My, (3>
Na I

The metal section is described by the following three
equations, which respectively define the subcooled region,

dTM,c - Usse (TNa_,c - TH_,:,) = Unse (TM,G B TW,,;.) (4)
dt Ky Iy, '

the saturated region,

dTH” - Usse (TNa,t - TM,,;) = Upse (TM,, - TP/,,,)

(5)
dt K, my,

and the superheated region,
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d'TM’h = YUssn (TN"'JI: "~ TH_;.&) = Unsh (TH,I. ~ Twah) (6)

The feedwater region is described. by the following six
equations, which respectively define the subcooled region,

L
0 stc _dp _ [Ussc.(TNa” - TM”> Lsc] + [wa (Hi - Ht’)] (7)
sc"dt dt | AL ’
drL dp.. dH. 8p.. AP
0 s 41 (ZPse s se )y =0 , (8)
€ dt ¢ " 9H,, dt dP dt
the saturated region,
Lst: A
o dHy  gp _ [ (T = T) 7R ¢ e (e By ] (9)
st Tq¢ dc | AL ’
drL dp.. dH Opsr dP
p st . ( st st . st ) =0 , (10}
¢ de * " 9H, dt P dt
and the superheated region,
p dHSh _ dp =
shd¢ dt

(11)

. e~ Le) ) (wy, (- B
A (L-L,. - L)

(L -L_. - L
[Ussh (Tz«m,ﬂ - TH ) ==
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= Pan (

(L -IL

di,, . drL

SC) +

dt dt

- Lst:) (

(12)

OpPan dH@.PaPm dP)

3H, dt @ 8p dc’ "0 ¢

The state variables that describe the evaporator model are,

L 1 (T 1 IO

average sodium temperature of the subcooled region,
average sodium temperature of the saturated region,
average sodium temperature of the superheated region,
average metal temperature of the subcooled region,
average metal temperature of the saturated region,
average metal temperature of the superheated region,

‘average enthalpy of the subcooled region,

average enthalpy of the saturated region,
average enthalpy of the superheated region,
length of the subcooled region,

length of the saturated region,

average steam pressure,

The input variables of the evaporator model are,

1 VI

inlet sodium temperature,
inlet sodium flow rate,
inlet feedwater temperature,
inlet feedwater enthalpy,
feedwater flow rate.

The outlet variables calculated by the evaporator model are,

outlet sodium temperature,
outlet feedwater enthalpy,
outlet steam temperature.

The internal variables that describe the evaporator model are,

il

sodium to metal heat transfer coefficient, subcooled

region,

sodium to metal heat transfer coefficient, saturated
region,

sodium to metal heat transfer coefficient, superheated
region,

metal to water heat transfer coefficient, subcooled

region,
metal to water/steam heat transfer coefficient, saturated
region,
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metal to steam heat transfer coefficient, superheated
region,

sodium specific heat, subcooled region,

sodium specific heat, saturated region,

sodium specific heat, superheated region,

metal heat capacity,

average water temperature, subcooled region,

average water/steam temperature, saturated region,
average steam temperature, superheated region,
average water density, subcooled region,

average water/steam density, saturated region,
average steam density, superheated region,

water saturation enthalpy,

steam saturation enthalpy,

total height of the evaporator,

sodium mass,

metal mass,

average cross section of the water/steam channel.
differential equations,

system of six nonlinear

representing the feedwater region, is solved usihg a decoupllng
procedure, which generates the following system, (shown in a matrix

form),

rdﬁ%&
“dt
dH;t
dt
dfgh
dt
dp
dt
dI@c
dt
dle‘.‘

dt |

with,

AL =

P e 0 0 -1 o o™
apsc apéc . .
fe g, ° 0 Leegp P 0| 1B
0 S 0 2 0 o0 B(8)
? 3 B | (13
0 Lstiﬁ%ﬁ 0 Lst*g§£ 0 pge| [BG2O)| S
st B(11)
0 0 Pan -1 o 0 B(12) ]
Gl 3P o1 -
0 0 AL =, AL ap P psb_

and where the column matrix, B(), represents the right hand side of
the related feedwater equations.
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In order to facilitate the implementation of the indirect MRAC
system, the nonlinear differential equations representing the
evaporator model have been transformed in a system of nonlinear
difference equations using a numerical difference to approximate
the derivative term,

df { x) L f{x+dt) - f(x)

: . 14
dt dt (14)
Therefore, a differential equation,
9X - g(x, £) +ule) , (15)
dt
is transformed in the following difference equation,
x{t+At) = [g(x,t) +u(t)] At +x(&) . , (16)

The evaporator model utilizes the specifications of the
evaporator. of the Monju prototype fast breeder reactor.

3. MODEL REFERENCE ADAPTIVE CONTROL SYSTEM

There are several adaptive control techniques for linear and
nonlinear systems® which provide a systematic approach for the on
line adjustment of controller parameters that vary during normal
operations. Adaptive control systems that make use of models for
the attainment of the control action are defined as model reference
adaptive control systems. The MRAC technique is relatively easy to
apply and, as it has been shown in several cases, it is capable to
provide quite good performances.

In order to avoid confusion in the terminology, the model or
the. system that we want to control is going to be defined as plant.
In this specific study the plant represents the evaporator model.

The objective of an MRAC system is, to minimize the norm of
the difference between the output of a plant, in this study, the
outlet steam temperature of the evaporator model, Ypr and the
desired prescribed output, y,, determined by a reference model,
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|y (&) - yu(t) | <€ , (17)

The'above expression must be satisfied for any time, t, and for any
specified constant € 2 0.

There are two classes of MRAC systems, the direct or explicit
MRAC system and the indirect or implicit MRAC system.

In the indirect MRAC .system®, the control process is
structured in two distinct processes the identification one and the
control one. The purpose of the identification process is to
generate a model of the plant, defined as the identification model,
which must be capable to reproduce the behavior of the plant.
Therefore, providing the same input to the plant and to the
identification model, the identification model and the plant should
generate the same output. It is the output of the identification
model, vy, rather than the output of the plant, y,, that is used in
the ' control process of the indirect MRAC system. The control
action is attained minimizing the norm of the difference between
the output of the identification process, ¥y, , and the desired
prescribed output, y,, determined by the reference model,

|y (E) =y, (E) | s . (18)

The result of expression (18) is also used to upgrade the
dynamic parameters of the control process and of the identification
process.

In the direct MRAC system, the parameters of the control
process are directly adjusted during the control action, since the
controller is applied directly on the plant. Therefore, it is not
necessary to develop an identification model of the plant.

Even if the structure of direct MRAC systems is clearly
simpler and more straight-forward than the indirect ones, the
application of direct MRAC systems is limited to nonlinear plants
whose dynamical parameters are all known. Unfortunately, this is
not always true, and, in reality, most of the time, some of the
parameters of the plant are unknown. In this condition it is
necessary to use an indirect MRAC system.

In this study, we use an indirect MRAC system, whose process
of identification of the plant and whose process of control of the
plant are constructed using the ANN technique.
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4. PLANT IDENTIFICATION USING.NEURAL NETWORK

The process of identification of the plant is obtained using
a series-parallel method!, shown in Figure 2, with the application
of the ANN technique.

The ANN®, used in this study and shown in Figure 3, is a
feedforward multi-layer neural network consisting of three neuron
or node layers, namely the input, the hidden, and the output one.
The number of nodes of each layer varies according to the
characteristic of the problem being studied. A connecting weight
and a bias are associated to each node link. . These two parameters
are both adjustable. The transfer function used in the -nodes of
the input and of the hidden layer is the hypertangent sigmoid or
tan-sigmoid which maps an input to the node from the interval (-
o0, 400} into the interval (-1,1),

p=l1-e™ tanh[%‘] ) (19)

The linear activation transfer function is used in the nodes
of the output layer. This function simply transfers the input to
the node to the output of the node,. without effecting any change,
except for upgrading the its bias.

The process of identification of the rlant, 1s obtained
training the ANN (i.e. upgrading the connecting weights of each
node), 'with a back-propagation algorithm, with momentum, which
helps to overcome local-minima problems, and adaptive learning
rate®, which decreases the training time, -shown in the following
expression,

wig (E+1) =wii (&) + 087%™ + plwh(£) - wih(£-1)] . (20)
where,
Wﬁ = connecting weight from the ith node of layer (m—1)

to the jth node of layer m,

| = learning rate gain,

B = momentum gain,
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531 = generalized delta value (error of the ith node of
layer m,
X = output of the jth node of the (m~1) layer,

calculated using the proper transfer function.

The identification process is performed with an iterative
procedure. At the beginning of ‘each iteration, (a) a random
perturbation is introduced in the plant, (b} the output variables
of the plant, resulting from such perturbatlon are used as input
variables for the ANN, (c) the connectlng weights and the bias of
each node of the ANN are adjusted, using the back-propagation
algorithm, minimizing the norm of the difference between the output
variables of the ANN and the corresponding output variables
generated by the plant with the gradient descent method’: _
A successful training is achieved when the sum of the square of the
errors (SSE) between the ANN output and the plant output is reduced
to an acceptable level.

Initially, the ANN identification process is performed off-
line, starting with the plant at steady state or stationary
conditions. Then, the ANN-identification process is kept active
during the control action of the 1nd1rect MRAC system.

In this study, the input varlables to the identification ANN
are the outlet steam pressure, the outlet steam enthalpy, the
average between the inlet and the outlet sodium temperature, the
outlet steam temperature, and the feedwater flow rate.  The
feedwater flow rate is also the control wvariable. The output
variables calculated by the identification ANN, that correspond to
the ocutput variables calculated by the plant, are the outlet stean
pressure, the outlet steam enthalpy; the outlet sodium temperature,
and the outlet steam temperature. The choice of the input and of
the output wvariables has been based on the fact that they can be
actually measured and calculated in a real environment. The
internal variable used to develop the mathematical model of the
evaporator, but that can hardly be measured or calculated in a real
environment, are not used during the performance of the control
action of the indirect MRAC systenm.

An example of the variation of the adaptive learning rate of
the ANN and of the variation of the SSE during a typical training
procedure i1s shown in Figure 4.

As previously stated, the same procedure is performed on line,

in order to adjust the parameters.of the ANN control process and of
the ANN identification process.
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5. CONTROL PROCESS USING NEURAL NETWORK

The ANN technique used for the identification process is also
used for the control process. The identification ANN and the
control ANN have the same architectural structure, i.e. the same
number layers and the same number of nodes for each layer, and use
the same mathematical operators, i.e. the same transfer functions
and the same learning back-propagation algorithm.

However, the two ANNs act, as part of the indirect MRAC
system, in two distinct and different fashions. While, the
identification .ANN is in charge of upgrading the value  of the
connecting weights and of the biases of each node of the ANN, the
control ANN is responsible for the control of the plant.

The control ANN calculates the output of the plant and the
difference Dbetween the output of the plant and the prescribed
-output oFf the reference model. The resulting wvalue is then
utilized to determine the control action. This is achieved
minimizing the following cost function, J,

T = [y t) = ya(E) ]2, - (21)
with, _

Yoo = output variable calculated by the control ANN,

Ym = output variable calculated by the reference model.

In this study, the output variable of the control ANN is the
outlet steam temperature, T,,, and the output of the reference model
is the desired set point of the outlet steam temperature of the
plant, T.,.. Therefore the resulting cost function is,

JBV':[Two(t) _T (t)]z . (22)

satb

The control action is obtained -acting on the feedwater flow
rate variable. '

6. MODEL REFERENCE ADAPTIVE CONTROL SYSTEM USING NEURAL
NETWORK

The overall control action performed by the indirect MRAC
system combines the action of the identification ANN and the action
of the control ANN.
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The control action of the indirect MRAC system begins with the
implementation of the control ANN. The cost function, J,
generated by the control ANN, is minimized using the Simplex
method®, which is a widely used method for minimization or
maximization of functions. The ‘Simplex method calculates the value
of the control variable, which minimizes the cost function, J,.
This value 1is wused as input for the plant and for the
identification ANN.

The subsequent output of the- plant, Ypr 1s used for two
purposes:
() as input to the identification ANN which, initiates an
iterative training procedure to find the new connecting weights and
biases of the ANN nodes that minimize the SSE, (this process is
performed on line), and which introduces the new set of values in
the control ANN and the identification ANN;
(b) as input for the control ANN, whose connecting weights and
biases have already been upgraded by the identification ANN, in
order to determine the action for the subsequent time step.

The action of transferring the values of the connecting
weights and of the biases of the nodes of the identification ANN to
the control ANN is achieved in the computer algorithm of the
indirect MRAC system storing them in the same address of the memnory
area.

The flow chart representing the control action of the indirect
MRAC system using the ANN technique is shown in Figure 5.

7. DISCUSSION AND RESULTS

The efficacy of the indirect MRAC system has been tested for
transients rélated to variations of some of the input variables and
for transients related to variations of some of the internal
parameters of the plant,.

In the first case two transients have been performed starting
from steady state conditions at 100% power. One transient results
in a 10% ramp increase in the inlet sodium temperature. The other
transient results in a 20% ramp decrease in the sodium flow rate
together with a-10% ramp decrease in the sodium inlet temperature.
The results of the above transients are shown in Figure "6 and
Figure 7 respectively.

In the second.case one transient has been performed. Starting
from steady state and 100% power a ramp decrease varying between
10% to 20%, has been introduced in each one of the heat transfer
coefficients. The results of this transient are presenteéed in
Figure 8.
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Both cases show that the indirect MRAC system is very
effective in keeping the outlet steam temperature close to its set
point. -

The same cases have been studied using a typical proportional
integral (PI) control system,

We, (E+1) = We, (E) +P(t) +I(E) , (23)

where P(t) is the proportional term,

P(t) = kl( ;,mc((z;)) "'l) ) (24)

I(t) is the integral term,

. 25
tt, EE, | (23)

and tt,, tt, and k,;, are the adjustable parameters of the PI
control system. In this study tt,, tt,, and k,, have been
determined using a trial-and-error procedure.

The results, shown in Figure 9 and Figure 10, show that the PI
control system 1is less efficient than the indirect MRAC system in
both cases.

i

The adaptation capability of the ANN has been tested with two

transients. One transient results in a 10% ramp decrease in the
sodium inlet temperature together with a 20% ramp decrease in the
sodium flow rate. The other transient results in an 10% ramp

increase and a subsequent 10% ramp decrease of the sodium inlet
temperature leaving the plant at steady state conditions.

Figure 11 shows the variation of the connecting weights of each
node of the hidden layer during the first transient. It is shown
that the connecting weights are adjusting to a new steady situation
determined by the action of the controller. ‘Figure 12 shows the
variation of the connecting weights of each node of the hidden
layer for the second transient. As expected the connecting weights
of the nodes adapt to the transient. and they return to their
previous values once the plant is brought back to the original
steady state conditions.

The importance of the on line adaptation mechanism has also

been tested changing the number of on line iterations performed by
the identification ANN during a transient. Since the computation.
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time of the transient highly depends on the number of the on line
iterations performed by the identification ANN, it is important to
try to minimize it, without affecting the efficiency of the
indirect MRAC system, The test shows that, if the number of
iteration is not large enough, the indirect MRAC system fails. For
the transient considered in this example, the indirect MRAC system
fails to control the plant if less than twelve iterations are used
for the on line identification. The efficiency of the .indirect
MRAC system depends on the number of on line iterations used. BAs
shown in Figure 13, the optimal number of on line identification
iteration is around twenty. For larger number of iterations there
is not an appreciable improvement in the efficacy of the indirect
MRAC system.

8. CONCLUSIONS

In this paper, a model reference adaptive control system using
ANN has been applied to control the outlet steam temperature of a
sodium to water once-through helical coil type evaporator.

A nonlinear dynamic model has been developed to simulate the
evaporator.

The efficacy of the model reference adaptive control system
has been tested with several transients. The response of the model
reference adaptive control system, when a transient is introduced
in the plant, is better than the response of a typical proportional
integral control system.

The capability of the ANN to modify its parameters, connecting
weights and biases, has been presented. The ANN intrinsic
characteristics perfectly suits the adjustment property required by
the adaptive control strategy.

Also it has been shown that the performance of the mo@el
reference adaptive control system strongly depends on the on line
adjustment of the parameters of the identification ANN.
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Figure 6. Outlet steam temperature, Ty,, feedwater flow

rate, Wgy, sodium flow rate Wy., and outlet
sodium temperature, Ty, during a 10% increase
in inlet sodium temperature, Tyai, transient.
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during a 10% decrease in inlet sodium temperature,
Tyair, and a 20% decrease in sodium flow rate, Wya,

transient.
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transfer coefficients transient.
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Figure 9, Qutlet steam temperature, T,,, feedwater flow

rate, We,, sodium flow rate Wy,, and outlet
sodium temperature, Tya.., during a 10% increase
in inlet sodium temperature, Ty,i, transient,
using a proportional integral control system.



PNC TN9410 94-069

110 . 375

WO

100 E 370k

B \
90 : 365

0 100 200 0 100 200

Wiw

[2)%
"
-
Q.
[+,

- — - ———"—— -]
-
-

-
-
.-,

Heat Tmsf. Coef. Na-M
;
)
)
Heat Tmsf, Coef. M-W
S

Figure 190. Outlet steam temperature, T,,, and feedwater
flow rate, Wg,, during a variation of the
sodium to metal and metal to fluid heat
transfer coefficients transient, using
a proportional integral control system.

ﬁ‘ 1.2 I-Iiddcq Layer ‘ :?: 11 I—Iiddcr_ll Y aver
% e _ >
T Ll - 1 8 105} ]
= =
s 5 /
== A
£ ! I : = ! e
g 09 : g o095 .
o 100 200 0 100 200
time time
1.1 Hidden Layer -
— (]
g 8
B 1.05+ 4 =
= =
k= /f/fF“HH_Hk— B
a2 1 R =
K 5
F 0.95 g o .
0 100 200 o 100 200
time timme
Figure 11. Hidden layer nodes normalized connecting weights

adjustment during a 10% decrease in inlet soditum
temperature, Tyai, and a 20% decrease in sodium

flow rate, Wya,transient.



PNC TN9410 94-069

w 1.2 Hidden Layer oo 1.05 Hidden Layer
') o
8
B LI /\ - 'g
=] =
E=) . o 1
&= - q T — ©
:@ \\_/‘/ @
£ 09 . £ 095 -
0 100 200 0 100 200
time time
2! 1.1 I—Iidaex?. T.ayer z_ 1.05 H’idder'l Lavyer
8 1.05f | : : 1 B
k=] k=]
2 1 =
£ 0095 . 2 0.5
0 100 200 0 100 200
time time '
Figure 12. Hidden layer nodes normalized connecting
weights adjustment during a 10% increase
and a 10% decrease in inlet sodium
temperature, Tyai, transient.
NN On Line Idnt.= 12 ' NN On Line Idnt= 16
£ 370} 1 & 370 S -
0 100 200 0 100 200
time time
NI On Line Idnt.= 20 NN On Line Idat.= 24
= 370 g 370 —
= — ] E~ .
0 100 200 0 100 200
time time
Figure 13. Outlet steam temperature, Ty,, during a 10%

increase in inlet sodium temperature, Tyai,
transient, using 12, 16, 20, and 24 on line
identification iterations.



PNC TN9410 94-069

9.

REFERENCES

T. Sdderstrdm, and P. Stoica, System Identification, Prentice
Hall International, London, 1989.

Y. Takahashi,. Adaptive Predictive Control of Nonlinear Time
Varving Systems using Neural Network, Kagaku-Gijutsusha,
Kanazawa-Shi Naga-Machi 3-1-57, Japan, 1992.

P.D. Wasserman, Neural Computing: theorv and practice, Van
Nostrand Reinhold, New York, 1989.

K.S. Narendra and K. Parthasarathy, Identification and
Control of Dynamical Svstems Using Neural Networks, IEEE

Trans. on Neural Networks, Vol. 1, No. 1, pp 4—-27, March 1990.

I.D. Landau, Adaptive Control — The Model Reference Approach,
Dekker, New York, 1979.

MATLAB User’s Guide, The MathWork Inc., 24 Prime Park Way,
Natick, MaA, August 1992,

R.L. Burden and J.D. Faires, Numerical Analysis, PWS, Boston,
1985,

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T.
Vetterling, Numerical Recipes, Cambridge University Press,
New York, NY, 1986.




