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ABSTRACT

The proper control of the outlet steam temperature of the evaporator is of
major importance for improving the overall performance of the balance of
plant of a nuclear power reactor. This report presents a predictive and an
anticipatory control algorithms based on the artificial neural network (ANN)
technique. The two control algorithms are embedded on a model reference
adaptive control system based on the ANN technique, defined as MRAC,,. It
has already been illustrated that nonlinear dynamical systems such as the
evaporator of a nuclear power plant can be controlled by an MRAC,, system.
However, little attention has been devoted on exploiting the forecasting
potential of the ANN technique for enhancing the accuracy and improving
the efficacy of the control action of the MRAC,, system. The improved
MRAC,, system has been tested to simulate the behavior of a fast breeder
reactor (FBR) evaporator and to control its outlet steam temperature. The
simulation results indicate that the performance of the MRAC,, system
substantially improves when the predictive and the anticipatory control
algorithms are activated.
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1.INTRODUCTION

The conscious generation of predictive models for the purpose of control
is one of the basic characteristics of human intelligence!. Man performs no
action without forecasting in sufficiently precise form the consequences and
the effects of the action.

The ANN technique, a mathematical method tending to represent the
behavior of the brain cells, seems the best instrument to simulate this
inherent quality of the human thinking.

Generalized predictive control systems2 and anticipatory control
systems3.4 are two means of implementing a forecasting behavior in the
control action of linear and nonlinear dynamical systems. However the
application of such control systems highly depends on the input/output data
transfer relationship of the system being controlled whose mathematical
model representation in the case of complex nonlinear systems is quite often
difficult if not impossible to attain with traditional mathematical tools.

Although the implementation of the ANN technique for the identification
and control of dynamical nonlinear systems has already been suggestedS, its
forecasting and learning capability has not yet been exploited for the
purpose of enhancing the performance of these control systems.

This report focuses on the development of a predictive and an
anticipatory control algorithms based on the ANN technique. The two control
algorithms have been embedded in the control process of an MRAC,,
system6, a model reference adaptive control system with ANN identification
and ANN control mechanisms. Simulation and performance tests of the
improved MRAC,, have been performed on a nonlinear dynamical
mathematical model of an FBR evaporator.

The remainder of the report is organized as follow. Section 2 presents a
succinct description of the types of multilayer ANN which are used
throughout this report. The ANN based predictive and anticipatory control
algorithms are illustrated in section 3. Their implementation on an MRAC,,
system is described in section 4. In section 5 the simulation results and the
performance of the MRAC,, improved by the two ANN control algorithms in
controlling the outlet steam temperature of an FBR evaporator are presented
and discussed. Finally, some conclusive remarks are proposed in section 6.
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2 .MULTILAYER ARTIFICIAL NEURAL NETWORK

The principal characteristics of multilayer ANN7 a fast-emerging branch
of the science of artificial intelligence, are briefly summarized in this section.
ANNs are nonlinear data processing systems with efficient input-output
mapping capability, composed of many nonlinear computational elements
called nodes that can be grouped and connected in several modes.

In a multilayer ANN the nodes are grouped in layers. Each node of a
layer is fully connected with those of the adjacent layers, while no
connection exists within each layer. These connections are defined as
connecting weights. The connecting weights are adjustable and adaptive
parameters that represent the input/output relationship of the system. The
structural architecture of a multilayer ANN can be configured in a
feedforward and in a recurrent scheme. In a feedforward multilayer ANN
the nodes of the input and the output layer are not connected. On the other
hand a recurrent multilayer ANN has its output nodes connected with the
related input ones. The multilayer ANN used in this report consists of one
input, one hidden and one output layer.

The input/output mapping can be achieved with a variety of linear and
nonlinear transfer functions. Here, the hypertangent sigmoidal activation
function8, which maps the inputs to the nodes from the interval (-eo,+e0) to
the interval (-1,1) is used in the input and in the hidden layer and a linear
activation function is used in the output layer8. The tuning of the connecting
weights, that is of fundamental importance for a successful performance of
the ANN technique, is obtained with the classical back-propagation method?,
improved with momentuml0 and adaptive learningl0, to overcome local
minima problems and to reduce the ftraining time respectively. The
algorithm is shown in the following expression,

w e+ 1) = wh(e) v X" wpulwm () -wre-1) ], (1)
where,
w™ = connecting weight of layer m,
n = gain factor of the learning rate,
i = gain factor of the momentum,
6" = generalized delta value (i.e. error of the node of the mth layer),
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X" = output of a node of the mth layer, and
t = presentation number of the learning iteration.

The complete definition of the ANN structure (i.e. the number of nodes for
each layer) highly depends on the characteristic of the problem at hand.
There is not yet an established mathematical method to determine the
number of nodes for each layer. However, since the calculation time
increases with the number of nodes it seems wise to keep their number as
low as possible, particularly when dealing with the on-line monitoring and
control of real-time environments.

3. ANN PREDICTIVE AND ANTICIPATORY CONTROL
ALGORITHMS

This section describes the development of the predictive and the
anticipatory control algorithms using the ANN technique.

3.1 ANN Predictive Control Algorithm

Predictive controllers are designed to calculate future control signals
which minimize a multistage cost function defined over a specific time
interval.  Their applications is limited to system whose future desired
outputs are known (i.e. when a fixed set point or a trajectory must be
attained during operation).

An ANN predictive control algorithm is defined by a cost function J,,

N

Jo= % [¥an, (e +i) - Yrm (¢ +i) @

i

where,

Np = range of prediction,
Ynny = ANN output of the variable to be controlled, and
Yrm = reference model output.

The range of prediction N, settles the distance between the actual time
and the future time output of the system. The reference model output Yrm
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represents the prescribed future outputs of the system.

The control action is performed wusing the ANN with recurrent
configuration. The recurrent iterative procedure is based on the range of
prediction N, and it is performed at each time step of the control action. The
optimization of N, is determined with a trial-and-error procedure.

3.2 ANN Anticipatory Control Algorithm

An anticipatory system is one whose present behavior depends in some
fashion upon future inputs. Suppose we have a system A and another
system B whose time parameters can be chosen arbitrarily with respect to
the real-time of A such that the present state of one or more of the variables
b(t) representing B describes the state of one or more variables a(i+h)
representing A at same later instant of real-time k. In this case A
represents the anticipation time interval separating system A from B. If we
allow the output of B to be an input of A, we originate a situation in which a
future state a(t+h) of A controls the present transition in A4,

An ANN anticipatory control algorithm is defined by a cost function Jg,

N
fa=):[Ynnk(t+i)- Yrm(t+i)]2, 3)
i=1
where,
Ny = anficipation time,
Ynny = ANN output of the variable to be controlled, and
Yrm = reference model output.

with the condition that at each time step,

v (t) =B,(t-N,), 4

a
where,

Y, = input variable of A related to the anticipatory system B,
B, = output variable of B related to the controlled system A.

The pertinent variables of the anticipatory system B (i.e. those coupled
with the system A) are introduced as input to the ANN.
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The ANN anticipatory control algorithm is applied using the ANN with
recurrent configuration in the same fashion used for the predictive control.
The recursive iteration is based on the anticipatory time N,, whose optimal
value cannot exceed the time interval dividing the two systems. The ANN
anticipatory control can and will be performed only if a variation occurs in
the anticipatory system.

4 . IMPLEMENTATION ON AN MRAC,, SYSTEM

The development of an MRAC,, has already been discussed by the author
in the report PNC ZN9410 94-069.

The ANN predictive and the anticipatory control algorithms are combined
together and inserted in the ANN control process of the MRAC,, through the

cost function J,p,

J, = 1 +J +J, o)

ap

where J,, and J, are the cost functions of the predictive and of the
anticipatory control algorithm, and J,,

N
5, =% [w, avlc+i)?)], (6)
i=/
with
N, = control horizon, determining the numbe_:r of future control actions to

be calculated,
W,= control weight of the control horizon,
A = differencing operator, and
U = conirol variable,

and with the condition that

AUt +i) = 0, if i>N , (7
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is a cost function that acts as a smoothing mechanism for the control action
and has the role to avoid large variations of the control variable U between
two or more consecutive time steps. The control input U is calculated with
the “downhill simplex method” due to Nelder and Mead (1965).

The two control algorithms are performed sequentially at each time
step of the simulation. The ANN control process checks if a variation occurs
in one of the anticipatory variables B, and initiates the ANN anticipatory
control algorithm. Once the calculation of the anticipatory control algorithm
has been completed, the ANN predictive control algorithm is started. If there
is no variation in B, the ANN control process sets N, equal to zero and
directly activates the predictive control algorithm.

5.SIMULATION RESULTS AND DISCUSSION

The performance tests have been performed on a nonlinear mathematical
model of an FBR evaporator using the MATLAB High-Performance Numeric
Computation Software on a Unix work-station. The boundaries of the model
are the inlet and outlet nozzles of the liquid sodium and the inlet nozzle of
the feedwater and the outlet nozzle of the steam. A detailed mathematical
description of the FBR evaporator model can be found in Referemce 6.

The intermediate heat exchanger (IHX) has been regarded as the
anticipatory system linked to the FBR evaporator. Its outlet sodium
temperature is the anticipatory variable and it is coupled to the inlet sodium
temperature of the FBR evaporator with anticipation time N, inversely
proportional to the flow rate of the secondary sodium and directly
proportional to the physical distance separating the two compoments. It is
assumed that a variation of the sodium temperature in the outlet nozzle of
the THX will appear after a time interval N, in the sodium inlet nozzle of the

FBR evaporator.

The structure of the multilayer ANN simulating the FBR evaporator
mathematical model consists of three layers with respectively seven input,
ten hidden, and four output nodes. The input variables are the feedwater
flow rate, the outlet temperature, enthalpy, and pressure of the steam, the
outlet and inlet sodium temperature, and the outlet sodium temperature of
the THX. The output variables are the outlet temperature, enthalpy, and
pressure of the steam, and the outlet sodium temperature.
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The application of the MRAC,, to the FBR evaporator is straightforward.
An initial training of the ANN is performed off-line with the FBR at nominal
full reactor (100%) power by introducing random perturbations to the inlet
sodium temperature and to the feedwater flow rate. The training of the ANN
is kept active at each time step during normal operation. The output of the
reference model Yrm 1is the prescribed set point of the outlet steam
temperature. The controlled variable Ynn, is the outlet steam temperature
whose value should follow a constant set point allowing an optimal utilization
of the connected FBR superheater. The control variable U is the feedwater
flow rate.

The FBR evaporator has been tested starting at steady state conditions at
100% power inducing several ramp transients in the inlet sodium
temperature and in the sodium flow rate. However, in this report, the tests
presented are limited to variations of the anticipation time N, and of the
range of prediction N,, based on a 10% ramp increase in the inlet sodium
temperature at 8% per minute rate. The ramp transient of the inlet sodium
temperature 1s kept unchanged during all the subsequent tests and used as
benchmark to verify the efficiency and the efficacy of the predictive and the
anticipatory control algorithms within the MRAC,, system. The control
horizon N, and its weighting factor W, have been set to 1 and .8
respectively. The figures show the normalized values of the variables.

Figure 1 (top of the next page) shows the trend of the inlet sodium
temperature (upper part) and the trend of the related outlet steam
temperature (lower part) when the predictive and the anticipatory control
algorithm are not applied to the MRAC,, system.

Figure 2 (bottom of the next page) shows the trend of the outlet steam
temperature with anticipatory control and without predictive control in the
MRAC,, system. The anticipation time N, is set to 2.5, 5, and 10 seconds.

It is possible to notice how the action of the anticipatory control smooths
down the outlet steam temperature at the beginning of the tramsient. The
MRAC,, acts based on the information from the IHX provided through the
anticipatory control algorithm. The rise of the outlet steam temperature is
prevented by increasing, ahead in time, the feedwater flow rate. The
performance of the MRAC,, increases with the anticipation time interval N,.
However, a large anticipation could be counterproductive. Therefore the size

of N, should be optimized using a trial-and-error procedure.
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Figure 1. Normalized outlet steam temperature for a 10% increase
in inlet sodium temperature with no anticipatory and
predictive control.
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Figure 2. Normalized outlet steam temperature for a 10% increase
in inlet sodium temperature with no predictive control
and with anticipation control time of 2.5, 5, and 10 sec.
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The anticipatory control has, as expected, a minimal effect toward the end
of the transient were no anticipating information is provided to the MRAC,,.

Figure 3 shows the trend of the outlet steam temperature with predictive

control and without anticipatory control. The range of prediction N, is set to
1.25, 2.5, 5, and 10 seconds.

Normalized OQutlet Steam Temperature

1.004
%l az a3
1.003} 4 -
1.002F .
1.001r Range of Prediction ’
al=10
az=5
1 a3=2.5
ad=1.25
0.999
0 25 50 75 100 125 150

time (sec.)

Figure 3. Normalized outlet steam temperature for a 10% increase
in inlet sodium temperature with no anticipatory control
and with range of prediction of 1.25, 2.5, 5, and 10 sec.

The action of the predictive control smooths down the outlet steam
temperature through all the transient but it is particularly effective toward
the end of the transient. Also in this case the performance of the MRAC,,
increases with the range of prediction N,. However, there is an upper bound
saturation threshold for the value of N,. Thus, when the N, is larger than 10
secdnds, the action of the MRAC,, does not show any appreciable
improvement.

Figure 4 (next page) shows the trend of the outlet steam temperature
when the predictive and the anticipatory control are applied together. The
anticipation time N, is set at 2.5 seconds and the range of prediction N, is set
to 0, 1.25, 2.5, and 10 seconds.
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As expected the best results are obtained with the combined action of the
anticipatory and the predictive control. The anticipation interval N, has been
chosen equal to 2.5 seconds because larger values did not show appreciable
improvement when combined with a predictive action. It is worth noting
that the action of the predictive control progressively smooths, with the
increasing of the range of prediction N,, the peak located near time 100
seconds in the tramsient. Subsequent increments of N, did not bring any
considerable improvement to the control action of the MRAC,, system.

Normalized Outlet Steam Temperature
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Figure 4. Normalized outlet steam temperature for a 10% increase
in inlet sodium temperature with anticipation control time
of 2.5 sec. and range of prediction of 0, 1.25, 2.5, and 10 sec.

The improvement introduced in the performance of the MRAC,, system

by the anticipatory and conmtrol algorithms is evident and it can be quantified
by comparing the results of Figure 1, where no predictive and anticipatory
control action are performed, with the ones of the remaining figures.

6 . CONCLUSIONS

The development of a predictive and an anticipatory control algorithm
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using the ANN technique to enhance the performance of the control action of
an MRAC,, system has been presented in this report. The control action of
the improved MRAC,, has been validated to confrol the outlet steam
temperature of a stand alone model of an FBR evaporator. The results show
that the performance of the control action improves when the ANN
predictive and anticipatory control algorithms are both implemented and
activated in the ANN control process of the MRAC,, system.
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