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Analysis of beam envelope by transverse space charge effect

Shin’ichi Toyama*

Abstract

It is important for high current accelerators to estimate the contribution of the space charge effect
to keep the beam off its beak up. The application of an envelope equation is examined in previous
report in which the beam is just coasting beam(non accelerating). The analysis of space charge effect
is necessary for the comparison in coming accelerator test in PNC,

In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters
which are input to the equation for the evaluation are developed and make it ready to estimate the
beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for
advanced code calculation.

After the preparation of the analytic expression of transverse motion, the non-linear differential
equation of beam dynamics is solved by a numerical method on a personal computer. The beam
envelope from the equation is estimated by means of the beam emittance, current and energy.

The result from the analysis shows that the transverse beam broadening is scaresely small around
the beam current value of PNC design. The contribution to the bearn broadening of PNC linac comes
from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of
transverse space charge effect.

Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the
problem for RF supply is out of consideration here. It is important to estimate other longttudinal
effect such as beam bunch effect which is lasting unevaluated.

* Frontier Technology Development Section, Advanced Technology Division, Oarai Engineering
Center |
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1. Introduction

The one of the major development items for the accelerators used for the transmutation is to
stabilize very high current beam in its acceleration "3, The mishandling of the intense beam leads to
the hazardous condition such as the contamination of the air in an accelerator room and the fatal
destruction of accelerator structure itself at last. The stable supply of the beam from an irradiation
system to target volume is a necessary condition as an industrial device. It is partly achieved as
irradiation machines in the market, but its beam current and quality are just for low current operation.

It is important to calculate the beam dynamics when we analyze the high power current beam
acceleration M. There are various ways to evaluate the beam characteristics. Some methods consist
of calculation of the sets of the phase development of single particle like in PARMELA! code, while
the others relates to collective dynamics like in TRANSPORT! code. Particles in a beam transport
are essentially governed by the classical mechanics, special theory of relativity and quantum theory
of radiation. Quick calculating the beam shape with finite beam emittance and current sometimes
makes sense even when we execute simulation codes.

The purpose of this report is to analyze beam behavior by means of the envelope equation which
includes the effect of not only a beam emittance but also a space charge effect. The beam envelope
equation employed in this report is reconstructed so as to contain the beam acceleration dynamics
unlike the usual state of the coasting beam. It is more important when the accelerator gradient is
lower like PNC linac.

To begin with, the property of a relativistic particle is reviewed to understand the behavior in the
phase space. The property of single particle and multi particle dynamics are succeedingly reviewed,
which are all potentially checked and modified to be applicable for the evaluation in this report, after
the explanation of the emittance and the beam envelope used for the actual evaluation. The beam
envelope equation is finally established for the realistic dynamics in an accelerator structure. The
results from numerical calculation of this nonlinear equation are discussed in the view of the beam
current for the cases of the variation of the beam emittance. In appendix, beam loading
characteristics in a linac is summarized in order to calculate the accelerator gradient of PNC linac.
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2. Dynamics of relativistic particles

The equation of motion is derived from Lagrange equation which is originated by Hamilton’s
principle by means of Lagrangian. We here describe only some result from intricate covariant
Lagrangian approach. The action integral for free particle is

t
S={ “L__dt. (1)

free
31

The Lorentz invariance demands to reformulate eq. (1) as follow:

_ T
S_f-[ . 2YLfreedT ! (2)

where a proper time T is assumed simply increasing fnction. This means also that we can employ
t beside t. Actually, Lagrange equation here is as follows ' ;
d ., on _ on
dt op,/m dgq,

y=0 ,A=vL. (3)

The zero-th component of p, represents total energy divided by ¢. From eq. (2), taking into account
to low velocity limit, the Lagrangian for free particle is

=~imc2=-mc2\/1—[32, (4)

where m is the rest mass of a particle. Then, we consider a particle in an external field. The
mathematical form of the interaction Lagrangian is the scalar product of 4-momentum and 4-
potential, because the non-relativistic limit means simple electrostatic interaction, That is

o .
L. == Aa,r
int™ " o P (5)
where
p"‘=(£,P) PR (6)
C
A%=(®,A). (7)

We employ CGS unit system entire in this report. Equation (5) corresponds to the interaction
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Lagrangian -V because electromagnetic potential is independent of the velocity of a particle. Hence,
total relativistic Lagrangian L in external field is

1 e e
I htreetLine =" (e 22D, A%] == [mc?y/1-p2+e0- Zura), (8)

where we remember the Lagrangian is originally a function of the coordinates, the velocity and time
only. Now this means a relativistic Lagrangian is a function of 4-coordinate, 4-momentum and the
proper time. It is notable that the Lagrangian accepts the addition constant and we are enough to
care utmost quadrant order for a momentum vector because Euler-Lagrange equation originates from
an action integral.

The Hamiltonian A (we here call H Hamiltonian even though working in classical mechanics) for
relativistic particles is presented by Hamilton’s principle from following;:

H-_'P'U_Lp (9)
oL e
- =p%+ = AC
Gae BTt (10)

where P is a canonical momentum beside P, component which means total energy of the particle.
It is notable that P, and P is not independent. Total energy F is

E?=p2c?4m2ct. (11)

At last, total Hamiltonian H is

H=y/ (cP-eA)Z+mZci+eo, (12)

where P is a canonical 3-momentum,

The state of a particle is defined by its position ¢ in generalized coordinate and momentum pin
generalized momentum, which are implicitly related to canonical coordinate ¢ and momentum P.
That is

q=£(Q, P, t}), (13)

pP=g(Q, P, t). (14)

From Hamilton's principle, a canonical transformation imposes on two Hamiltonian X and H that

. : dar
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where A, F, H and K are a constant, an integrand which second derivative is continuous and
Hamiltonians before and after the transformation, respectively. If / is independent of £, equation (15)
leads a simple scale transformation

0’=ng,, P'=vp,. (16)

With this relationship and Hamiltonian (12), we get following scalar canonical transformation:

Ql=B_q 1
P’:p,
K=mc?,

(17)

which means that a relativistic velocity normalized by [y is canonical transformation which transfers
from an observer system to an on-mass system. This concerns a normalized beam emittance in a
phase space.
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3. Phase space
3.1 Poincare invariance in phase space

It is well known that two volume elements d and dn in two phase spaces which are each other
connected by a canonical transformation reveals following relationship:

di=|M|dH, (18)

where iMii is Jacobian determinant of the transformation. If we take this sequentially

[242] 7] =] |, | (19)
_.=[ ;_g), . {20)

where J is a matrix which dimension is 6 N, which N is a number of particles. Equation (19) clearly
means that the volume element under a canonical transformation is invariant. That is

Jn=f. . .fdﬁ=invariant, {21)

which is known as the integral invariance of Poincare.

3.2 Liouville's theorem

The invariance of Poincare integral shows us an elementary quantity in phase space approach. If
the motion of multi-particle is in a canonical ensemble, there is clearly no incoming or outgoing
particle beyond the volume boundary. Particle number inside the volume is conserved during the
motion. Liouville's theorem summarize this into the proclaim that the density in a phase space is a
constant under a canonical transformation, as shown in Fig. 1. :

It is important to take a look into Poisson bracket in order to get further meaning,

dAa cA

—Z=(a,H -22,
dt L4, 4 ot . (22)

In this case, the total time derivative is zero, then

_dA
[A, H]—a_t! (23)
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When the state is in equilibrium,
(A, H] =0. (24)

Hence, A is turned out to be constant of motion, like the density in this case. It means that Poisson
bracket is potentially a strong tool to analyze the particle motion under the conservative force.
Actually its versatility is beyond a classical mechanics.

It is also important to remember that above consideration is based on conservative force only ",
If we have non-conservative force like a friction loss, Liouville's theorem is not perfectly right. The
predominant nature of non-conservative system is seen in the electron circular accelerator or light
source which produce radiation. It is indispensable to pay attention the canonicality for the motion
which is on the spot.

3.3 Vlasov equation

The canonical transformation assures the Liouville's theorem in a phase space. Apart from this for
a while, here let us consider the volume element for & particles.

N=ff. . .f‘deldxz. . .dx’n_ldx’n. {25)

where ¥ is a density.
We consider the square like in Fig. 2 in which area 4, is AwAdp,,. If we have the following time
development for area 4

W =f (w,P,t),

. 26

=9, (w,p,t). (26)
Because of the conservation of particles,

Y{w+l AL, p +AL, t+AL) A=Y (w, D, t)AQ. (27)

Applying Taylor's expansion for A, and changing into the expression for the phase volume, we get,
AV =ArAp[1+V fAt+A ght]. - (28)

Also applying Taylor's expansion again to equation (27), finally we get

ov
ﬁ-1*er1P-+-gVPl§I=~ (Vrf+Vpg) v, (29)

This equation is called Vlasov equation which describes the time development of a phase volume.
The right hand side is called a dumping term, then
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df, dg,
+ =-q ,
dw p, v (30)

. . 4
+ =
w+2o ww  w=0,

Therefore if there is no dumping in the system, we have

df, dg,
=0, (31)

ow p,

It is apparent that a phase volume is conserved if there is no dumping in the system. This is
assured by the transformation (26) which may not be canonical but an enlarged transformation than -
that. It means that Viasov equation involves a expanded transformation rather than Liouville's
theorem does.

3.4 Beam emittance
3.4.1 Particle distribution in phase space

Any periodic motions have closed orbits in phase space. The simplest example is basically
- harmonic motion which has a ellipse form in the phase space. Let us check some useful analytic
characteristics of a motion in phase space.
An ellipse in phase space in x and x' is presented by

yox02+20(0x0x0’+B0x(§2:e, (32)

where area € is called beam emittance, and each parameter has following geometrical relationship;
By-o=1, (33)

Frequently like here € is normalized by .

The geometrical picture is presented in Fig. 3. It is easy to remember the quantity in beam optics,
if we consider the condition of each point in the figure. € is invariant by Liouville's theorem if there
is only conservation force and no inter-particle interaction, In the case of acceleration particles get
to have relativistic effect. Therefore, it is better to use multiplied x' by By. We call the multiplied
emittance €y in following expression normalized emittance:

€, =Bve. (34)

Hence, unless there is transverse force in the accelerating beam line, observed emittance looks like
smaller and smaller, This phenomena is called a adiabatic dumping,
As the conservation of emittance comes from Liouville's theorem, it is notable that we should
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check if the motion is canonical.

3.4.2 Statistical emittance

In an actual case, beam phase space could not be expressed by the clear cut model mentioned in
previous section. This leads to have a statistical treatment of the beam practically.
P Lapostolle!® proposed following statistical expression:

& =4\/x:23("’2—(}5(/)2:4\/<x2><x’2>—<xx’>2, (35)

which is called effective emittance or r.m.s. emittance.

The effective emittance is suitable to using in simulation codes and practical purposes. This
equation means that the emittance comes from the sum of all N(¥-1) triangle areas which consist of
any two points in phase space and the origin 1. Therefore we should be careful of the contribution
from far solitude particles and the case of an emittance filamentation.

We can deduce equation (35) by using standard deviations o, and o, as

&=4o 0,/ y1-r? (386)
where

o <xx>

e x> (37)

is called a correlation constant. It means that if the total mapping of area is axis symmetric, r.m.s.
emittance is equivalent to the emittance mentioned previous section beside factor 4.

It is expected that r.m.s. emittance is conserved under the some kind of conditions. This will be
mentioned in the section of collective beam dynamics.
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4, Single particle beam dynamics
In this section, the property for the beam dynamics including no particle-particle interaction is

summarized for a practical purpose. Important formulation such as a transverse motion is seen in
next chapter for its total convenience.

4.1 Phase stability

When a synchrotron is proposed '®'"l as a high energy accelerator for electrons or heavier ions,
the phase stability is also studied ™ for an electron linear accelerator. Here, the dynamics in phase
space for relativistic particle is described elementarily.

We consider the particles which synchronous velocity and rest velocity are v, and v, Then we can
have the following expansion without a space charge effect.

(38)
(39)
where
m
_ Q
T 2 40
(l_f_o_)3/2 ( )
2
c

is the mass increased by the longitudinal motion. This Hamiltonian leads an equation of motion in
the field -eEsinws’/v, which synchrotron frequency is,

e w Véz 2/3
@y, | =B (1--2) 23, (41)
m, vy c

From above equations, it is clear that the separatrix has considerable elongation in a velocity axis
and that the synchrotron frequency: goes quite small, which situation is seen in F ig. 4. This figure
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shows that if the electron injected in the origin of the phase which energy is bigger than critical
energy, it is quickly reaches the final fixed phase position. This is a one of the characteristics of the
particle with speed of light. Of course, it is apparent that if electrons have high injection energy, their
phases are fixed easily tight.

The dynamics of particles with graduating their speed is basically similar to the dynamics of
synchrotrons. A space charge effect for a high current linac sometimes limits a actual beam current
because of its divergent force against a phase stability. The phase stability relates the transverse
defocusing as mentioned following section.

4.2 Beam defocusing in a linac

The accelerator theory and technology made a remarkable progress after the World War II. One
of the greatest achievement among them is the principle of Alternate Gradient focusing™ (AG
focusing or strong focusing) discovered by Brookhaven National Laboratory and other laboratory.
Since then, This idea is basically still alive as a lattice structure which is called separate function in
all high energy circular accelerators.

AG focusing was quickly applied™ in a linac in order to converge the beam radially, Up to now,
this stems the basic focusing structure of modern linear accelerators.

Let consider traveling wave acceleration by TM,,, mode for example. The more far from the
reference axis is, the weaker the electric field is. This means that the electric field is a function of
power series of inverse of the radial displacement » from the reference axis. Panofsky Wenzel

“theorem!’® requires that the transverse divergence of a longitudinal force is proportional to the
derivative of a transverse force by the reference axis. This manifest impose that longitudinal force
and transverse force have opposite sign each other. Therefore, in TM;,, mode, it is turned out that
there is a divergent force if beam has a phase stability.

Actually the transverse force has » dependence according to Panofsky Wenzel theorem, thereafter,
it is clear that a quadrupole fields is enough to cancel the defocusing. It is interesting to notice that
the quadrupole focusing system has the relationship with RF field which has » dependence. In
realistic beam transport systems, higher multipoles are frequently used for canceling out the chromatic
aberration in a beam transport line.
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5. Collective beam dynamics
5.1 Transverse motion

In a linear beam transport theory!!%, a particle trajectory u is described by following equation:
u+k(s)yu=0, (42)

where k(s) is a focusing function of the system. This equation was studied in last éentury for
astromechanics and called Hill's equation. The general solution for k(s) < 0 is solvable by Lagrange's
method of variation of integration constant. This is

u(s) =/eyBcosie(s)-o,1, (43)

where €, and [} are a beam emittance and one of beta functions. The physical meaning of € and B is
obvious, if we consider the comparison with the derivative of u(s).

Equation (42) governs the beam line with reference energy because there is no parameter for the
statistics of the particle energy. The dispersion system, which we call system having energy
distribution in a transport line, is described as

u+k (s) u= =1, (44)

p(s)

where 8, p and 1 are quantities called the dispersion, and the bending radius, and the 1 function in
a periodic system if exists, respectively. It should be noticed that equation (44) is mathematically
equivalent to one which describes a motion with nothing for the focusing system but general external
force. _

The solution of equation (44) is composed of the particular solution from the homogenous
equation (42), thereafter, by the usual method!'” then the solution is

o u d u '
2 1
u=ulc-|— _ds]l+u e - - — ds
e fpﬂ(ulruz) 1+u,[c, fpﬂ(ulfuz) 1, (45)

where A(u,,1,) is 2 Wronskian consists of #, and 1t,. ¢ 15 a constant parameter. At last, the solution
of equation (44) is, in popular form, '

u(s) :aC(s)+bS(s)+§fos-Fl;[S(s)C(§)—C(s)S(é)]d§~,' (46)
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where S(s) and C(s) are particular solutions of equation (42), that is, the contantless solutions
presented by equation (42). The last term in this equation is called 8D(s). Considering an initial
condition,

u(s)= B£(coscp+cxosincb) Uoﬁ/BB_OSiﬂ(P ul+3D(s) (48)

0

where ¢, is one of beta functions in initial state. The actual shape of D(s} is determine after the
definition of k(s). Apart from the dispersion phenomena, equation (44) and its solution is sometimes
useful for the analytic search of beam evolution. Equation (44) presents a single particle dynamics
without a particle-particle interaction.

Remember that this method presented by equation (46) is only valid for linear motion like equation
(44). If we the equation has a non linear term, there is no simple relationship between the
homogenous and inhomogeneous equations mentioned here.

5.2 Envelope Equation for a linac

Generally, equation (42) can be modified in order to take into account other interaction term g(p,s)
which for example means a space charge effect or a beam pipe interaction,

ul +k, (s)u, *E,  (p,5)=0. (49)

The transverse beam motion has both of x and y component because the focusing magnets essentially
cause to have a x-y plane asymmetry. In order to consider space charge effect here, £ is 47,7/ » g
(x+y) which is called space charge term, where / is the charge density of a beam.

We can write down the x component solution of equation (44) as following:

u(s)=a(s)cos¢x(s) . {50)

Hence it produces next two equations:

€ (o, 8)

a’’-a (¢!)%2=-K_(s)a-
x x a+h

’ (51)

ap”+2a'p’=0. (52)

The latter equation means
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o = | (53)

Finally, we get following equation:
2

. \
al’+k a-—x=5(Pr5) (54)
* a3 atb

This equation is called envelope equation.

Equation (53) is basically relativistic, but does not work for an accelerating system because
longitudinal momentum P is assumed constant. In linear beam dynamics, it should be noticed that
approximately we have

P.=px=mc fyx’,

where ' means taking the derivative by s as is said before, and that equations (50) has second order
differential term only. B y here are the relativistic parameters this time. It leads the thought that the
transformation

a - — (55)

will basically keep good framework under calculus for solving the equation of motion. It is
sometimes useful to keep the following in mind:

P_gy, (56)
m

YI
(Bv)’=—[-3-. (57)

Using latter one, an adiabatic dumping presents

! 2./
i« B~a . {58)
A4 a

Under the transformation (54), the envelope equation is turned to

e @y o BYE)E Byve(o, 5)

x , (59)
4BZY2 a3 a+hb

where o = (By)' = constant in the acceleration of relativistic particles. The emittance multiplied by
Py is just called normalized emittance. myc? Y 'is an accelerator gradient which is given in Appendix
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in this report, and it is considerably low for the case of PNC linac.

Equation (58) describes the general behavior of a beam envelope. Each terms in equation (58)
have physical meaning which comes from the order of @. For example, the two components in second
term mean an external focusing function mostly fitted to quadrupole focusing, and an intrinsic
defocusing action happened to be caused from by a beam acceleration. The latter component will be
considerably neglected if acceleration is relativistic enough. It is also notable to have emittance term
which has inverse of the third power of the envelope. We must be careful that the a dependence of
a space charge effect is not explicit here. Equation (58) is generally solved by means of a numerical
approach because of'its highly nonlinearity.

We can also define r.m.s. envelope

x=<x>7, ' (60)

Then, considering following formulae in combination with equation (44):

d
—<x?>=2<xx'>,
ds

d
= exPy=2<xx>
ds

=2k (s) <xx">+2<x’E>,

-—C-I-<xx’>:<x"2>+<xx”>

ds
=<x>-k () <xi>+<xE>,

(61)

The identity p = - 4(s) x + £ is used here. Finally we get the r.m.s. envelope equation as;

2

2>?+k(s))?- - =0, : (62)

This equation has completely the same form as the envelope equation (58). It means that in many
simulation codes we can r.m.s. envelopes as actual envelope.

From the development of the square of r.m.s. emittance defined in equation (35) and relation (60),
in the case of no external focusing, we get

d£é2=2r| [<x?><x/E>-<xx/><xE>] . (63)
s

It leads an important suggestion that r.m.s. emittance is constant if interaction forces between the
particles are linear. Generally, r.m.s. emittance is not conserved under the presence of an external
force. These strange situations come from the fact that r.m.s. emittance does not satisfy a canonical
transformation.
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6. Beam broadening in PNC linac by space charge effect

Eq. (58) for a constant acceleration for a linac instantly makes it possible for PNC linac to estimate
the behavior of the beam by the space charge effect in addition to a general property given by a
mathematical structure of non-linear differential equations. The electron beam in CW linac is not
eventually DC beam, but it is good approximation in relativistic particles.

Let us consider eq. (58) in the case of no focusing & (s) = 0 for x and y components. Then we
write eq. (58) as

2
2l span (e,,) _Exlprs) ’ (64)
a? 2
az
A= vk e, =Bve, &,=BvE, (65)
A" .

where €y is called normalized emittance. € and € are 10 7t 10° cm rad and 2.665 10" for 1 mm beam
radius, respectively in CGS unit for PNC linac specification. The electron beam is assumed an annular
beam which radius is 1 mm.

A is not apparently negligible small though the accelerating gradient is small in PNC linac, because
g is at most 20 and the accelerator gradient is low seen in Appendix. Let us assume the right hand
side and the last term of the left hand side in eq. (63) are zero, and it is clear that the envelope does
not diverge but oscillate with the periodicy by A term. The contribution of this term is vanishing
when the periodic length gets considerably long in relativistic particles. Hence, A term shall be
negligible in order to keep the additional phenomena in eq. (63) off the beam broadening. Fig. 5
shows the contribution of A term to Eq. (63), in which A is 107, 10® and 10"'° and the emittance is
10 = mm mmrad with ne space charge effect. a, is beam x radius in the waste point. The shape of

beam envelope is divergent, parallel and vibrating by the critical value A = EN-

The beam dynamical dependence of accelerating electron beam in PNC linac is surveyed by means
of'a numerical analysis of equation (63) for some cases differing the beam emittance, the beam current
and the beam energy. The results for 10 and 100 MeV followed by 3 MeV are summarized including
parametrization of the beam emittance and current. All the calculation is achieved by NeXT STEP
Mathematica ver.3.00 on Pentium processor (133 MHZ). All the cases to be calculated are
summarized in Table 1. :

Fig. 6 shows the beam envelope of 10 MeV acceleration with 0.1 and 0 A electron beam with 0.1
7 mm mrad emittance. The dashed line corresponds to no space charge effect. Flight paths are
normalized by-initial waste radius o, and multiplied by 10° here. The beam envelopes for 7 mm mrad
are shown in Fig. 7, where the two solid lines for 0.1 and 10 A beam are presented and 0 current line
is essentially in accordance with 0.1 A line. There are no actual beam broadening and no difference
between each beam currents at normalized s is 0.1 (100 m in PNC linac). The total length of PNC
linac is about 20 m. Of course, the beam loading gives small gradient change in linac structure, but
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beam passes though well in the linac if the beam line center is precise enough.

The calculation for 100 MeV is summarized in Fig. 8 and 9. The difference by beam current gets
so scarce more than the case of 10 MeV that the dashed line presenting no space charge effect almost
over-wraps the solid line presenting 0.1 A electron beam in Fig. 8. The effect of space charge gets
quite weak in larger beam emittance at high energy acceleration, as seen in Fig 9. It means that the
beam size broadening by space charge for PNC linac eventually does not appears strongly and that
the transported beam in the regular section may looks stable after the making beam waste by magnetic
lenses in the electron gun system, if'the beam passes through exact transport center. This situation

~ will be held in the case of 10 A current and 10 mm mrad emittace. It is naturally notable that the wake
field effect should be estimated when beam bunch is coming short.

Fig. 10 shows the beam broadening by space charge for 3 MeV 0.1 A PNC linac. The emittance
is © mm mrad here in order to make the difference clear, although design value is 10 ® in the
electron gun. The beam broadening at 0.1 normalized distance (10 m in actual length) is less then 10
%. It corresponds to the broadening around AC1 in PNC linac, while 200 keV beam line has focusing
system by solenoid magnets to keep the beam waste radius.

In the analysis in this report, the broadening from the acceleration is estimated Iarger than the result
from non- accelerating calculation, because initial space charge parameter is stronger in a beam
acceleration. This confusing situation comes from the fact that in the calculation some energies are
used final or initial values arbitrary. It is important to calculate with the correct equation like the
envelope equation derived in this report in order to get enough precision,

The right hand side almost looks vanishing in PNC case, which solution is an analytic parabolic
function. It meas that the beam emittance in the electron gun is so large that beam is scarcely affected
from beam charge. The increase of emission density of thermionic cathode is encouraged because the
beam broadening is still small when the emission density is 10 times higher.



PNC TN9410 97—056

7. Summary

The effect of transverse space charge is surveyed. The beam characteristics in acceleration field
is examined. The longitudinal space charge gets weak in the relativistic region. The beam envelope
equation is formulated including the beam acceleration. The beam broadening by the space charge
effect is controliable up to 10 A, while the beam emittace for PNC linac design is dominant for the
beam broadening. The beam broadening of present PNC linac mainly comes from its beam emittance.
It is notable that the emittance of a thermionic cathode is determined by the area of the cathode and
high brilliance cathode with small size may cause hard beam broadening by a space charge when very
smaller beam emittance is necessary. It is mandatory for detailed survey to analyze other beam
instability such as a wake field and the longitudinal space charge in CW beanr which is neglected in
this report, in order to handle extremely brilliant beam.
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Appendix : Beam acceleration and beam loading

In this appendix, the formula of accelerating structure for not only traveling wave type but also
TWRR type is derived. The formula help deduce realistic parameters for an efficient calculation for
the beam. .

There are several types of accelerators of interest for generating a high beam current. The most
simple and straightforward is an induction linac beside an electrostatic accelerator. The electric
charge in one burst is very high; it accelerates more than a few tens of kA in peak current with energy
of a few tens of kW, The efficiency of an induction linac is relatively high because particles are
accelerated by electromagnetic induction so that a high-power RF generator is not essential.
However, the duty factor is still low. Achieving a longer pulse duration and a high repetition rate
needs revolutionary research on materials for the ferrite core that is used as a transformer'®.,

On the other hand, a CW technique for RF linac lately has shown remarkable progress as an
accelerating structure. There has been distinctive progress in the research and development of a high-
power CW klystrons. We can get the klystrons with high efficiencies in lower frequency RF.
Therefore, we designed a CW high-power electron linac for our basic study of how to generate a high
current beam with favorable quality. The CW beam has an advantage in the point that it is not only
possible to get high average current but also possible to reduce the long-range wake force and space
charge effect in beam bunches. Considerable progress has been made in developing of a
superconducting accelerator structure also, but at the first stage, we have employed a room-
temperature accelerating structure.

There are some applications to employ TWRRs in resonators or acceleratorstl,

A.1 A traveling wave structure
A.1.1 Constant impedance accelerator

First, let us consider beam acceleration in a constant impedance( CI ) traveling wave structure
because of the simplicity of the mathematical treatment. The constant gradient ( CG ) structure
actually can be broken down into a structure which has an exact CI structure. The energy
conservation in an accelerating structure is presented by following equation:

ow oP . '
-(,:)—E+ES-+PW+1E-O, (1)



PNC TN9410 97—056

where, W, P, P, 1, S and E are the stored energy per unit length, the power flow along s, the wall
loss per unit length, the elastance, the beam current and the beam accelerating field, respectively.
7, and o are the shunt impedance and the attenuation per unit length. Each quantities have the
following physical relationship:

E2 .
r.= 7 _ (2)
_ W
P /o . (3)
w
Vg=?&Q ’ (4)
v E? 2
p=v =9 _=_% (5)
g 3 2ar,
E2
Sy (e)

where 7, O, and v, are the shunt impedance, the quality factor and the group velocity in each. These
three quantities ideally are constant anywhere in a CI structure. In equilibrium, equation (1) becomes:

a—}‘3+Pw+.iE=O. (7)
ds

From this, and from equations (4), (5), and (6), we get the following diffusion equation:

%’ +aP+ib/P=0, (8)

“where a and b are the constants which are mentioned bellow. This equation can be solved easily
setting P(s) = x (s)* which x (s)* is a function of s. Finally, we get the power flow P(5), the beam
acceleration £,(5), and the gain V,(L), as follows:

P(s) =1 (fFr0) expl-S5) -2212, (9)
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_ ib a i‘/r—sb
Eb(s)“ﬂars(\/P_o-'_?)eXp(_ES) _—\/_Tf {10)

where, P, and L are the input RF power and the length of structure, respectively. We notice for a
and &:

a:izzq
g2 | (11)
g
r w
= s = 12
b V.0 J2or,, (12}
caL=1, (13)
or,

ir :
E(s) .;=/2ar _Pje - 2; (1-e™%), | (14)

where w, and t are the angular frequency and the total attenuation, respectively. Remember the
attenuation constant is proportional to RF frequency, which means that power dissipation rises at
higher RF frequencies. Equation (14) shows that higher frequencies can generate higher accelerating
gains. Physically, this occurs because the lengths of high frequency waves in the accelerating structure
become shorter.

Finally, from equation (9) and (10), and using the total attenuation t, thus the gain V., the
conversion efficiency from RF to beam power 1, (hereafier we call this transmission efficiency) and
the power fed out into the dummy load of the accelerating structure P(L)q, are as follows:

l-exp (- , l-exp(-t
VCI=,/2rSPOLI—i¥—1ISL (1——‘?-.f_(_)) , (15)

2tr L 1_ - r L - -
n.=i sY l-exp(-1) _j2ts (1_1 exp{-T1) ), (16)
cr
P0 T PO : 1
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r L
Po (L) =[/Byexp(-1) -1 o (1-e7")12. (17)

Transmission efficiency increases when the attenuation constant decreases, i.e. when the RF
frequency decreases. Transmission efficiency depends also on the O value and the shunt impedance.
Hence, it is an attractive method for high transmission efficiency to employ a superconducting
accelerating structure, if it were provided that the operation can easily produce a high beam current.

A.1.2 Constant gradient accelerator

We can deduce the formula for CG with equation (7) like the case of CI. It is assumed here that
the electric field is constant with no beam loading. In general, from equation (5),

dp_ E dE_ E da
== (e —) . (18)

Hence, with equation (7)

2
ipz—iE-Z(xP:—iE—_E_:i (Euf__q?_() . (19)
ds r. ar, ds 2ods

5

The electric field and the attenuation for CI and CG are determined by the above equations using the
condition without beam loading. That is,

dE dot

—=-gxE, —=0 cr

.ds " g (CI) (20)
dE dol 2

—_—= —=2 CG) .

35 ' s ; (CG) (21)

Remember the elementary formula,

E? dP_ dP do
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The attenuation of CG is dertved via the output power ratio to the input:

P(L) E.E/ZO‘LIS o

0 -21
—=e . 23
P(0) E2/20,r. o, (23)

Finally for the attenuation of CG,

A
o=
1—20108' (24)
1-e2t :
o =, 25
0 27 {(25)

The power in the CG is derived from equation (18) associated with equations (22) and (23), under
the assumption that the shunt impedance is approximately constant. The equation (18) is solved by
the method used for the case of CI, and the basic start equation is as bellow:

2t 2r
G 0 pey VE5% (26)
ds 1—20(0 /1_20(05

Hence the power flow P(s), the electric field Eco(s) and the gain V; are

—= - 172 i rs _ _ 2
PCG(S)—[\/FO(l 20,5) +-2- 2, (1-2a,s) Log (1-2a,s) 1%, (27)
2r P ir
E,(s)= 21" l—e’2‘+—E—SLog(l—20t03), (28)
_ iI‘SL 2 -21 .
VCGz /rsPOL(l—e 21)1/2__2_(1- ]::_Zt), (29)
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where we can realize that each equation consists of the generator part and the beam loading part. The
transmission efficiency nqg and the power into the load Pog(L) are

r L i1%r I 21
=i | == (1-ev2n) 2 “s7(n 2T (30)
PO 2P0 . :]_—e_zT
e'2'l’ . » .
P..(L)= So T [‘/20(01'5130"_11"5'[] ; (31}
0" s
respectively.

The current dependence of the gradient on CI structure is shown in Fig. 1 by means of a
normalized current 7 (v, L/P,)"* and a normalized voltage V/(r, L/P, )", using the variation of the
attenuation parameters. The dotted line in this figure corresponds to the dependence on a CG
structure. A CG structure does not make great difference with a CI case in the beam loading (Fig.
1). Alower attenuation is suitable to high current acceleration without the change of the considerable
energy gain.

Fig. 2 gives the transmission efficiency for both a CI and a CG in the variation of the attenuation.
Apparently, both types have almost the same magnitude of the efficiency because of the equal
attenuation of accelerator guides. The structure which has low attenuation has the maximum in
higher normalized current. The transmission efficiency in t=0.05 is about 97%. But, zero current
energy reduces about one third. It is notable that the efficiency depends not only on RF frequency
but also on the length of the accelerator guide. A long guide favors high energy efficiency,
meanwhile, however, a short guide is favorable in preventing a cumulative Beam Break-Up (BBU)
which determines the current limit.
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A2 TWRR in high power CW linac

When there is no reflection in TWRR, the power build up 4, and the power into dummy load N,
in TWRR in resonance for # times RF round trip are

(1-{Ty1-c®) "¢

A= A, (32)
1-1y1-¢?
_ ,0' _ 2y n
N = 1—C2AD—1 A C*a,, (33)

1-T/1-¢c2

where 7, C, and 4, are the voltage propagation constant, the coupling of the directional coupler and
the RF amplitude, respectively. In the optimum coupling, after sufficient round trips, the voltage
multiplication factor A is represented by the following;

A, c
Me—r=e——— , C=/1-T%, (34)
0

1—T\/1—C2

while &, = 0.

In principle, the power dissipation in TWRR is caused only by wall loss when the coupling C is
optimum. The characteristics of the field multiplication versus the coupling are shown in Fig. 3,
employing the parameters for PNC linac.

Considering the amplitude inside the TWRR in equilibrium, and by means of the coupling constant
C, the field multiplication factor A and energy gain ¥}, for TWRR in the CI and CG structure arel™®!
as follows:

< EeCrir (1-eT ) i

RCI” T 1T+ T ) 5
E, (l-e o1 -C%)

, (35)

E C-ir_(l-e ')y/1-C? et et
v, =0 s Le ) iy pqr-Lze

RCI
1-e"/1-C? T T

), (36)
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- T AT T ) _ 2
_EOC ir te v1-C

M= (37)
RCG (T AT, T ) !
Eﬂ(l—e Wiz 1/].—C'z)
. E,C-ir_te 'Wy1-C? ir_L " 2.[e—2t) ,
- _ - 38)
RCG 1—8_-{\/1—_(:2 2 1_e-21' r
and

E;=[2tr P /L, (39)

where £ is the electric field just in the first cavity. Moreover Ty, and Ty, are the attenuation of
upstream and downstream in the recirculator, which are neglected in the presentation of the voltage
term.

We neglect the attenuation from the recirculator, and assume that the accelerator guide in TWRR
is CI, because there is an approximate accordance in the RF characteristics of CI and CG when
attenuation is low just as it is our case.

The power into the dummy terminator in TWRR for CI and CG is derived by the same manner
in an equilibrium, Then, '

(YI-CP-e 41 [FITE,C 1J;T] (40)

At 1

eI -
ARP 1 = i

A 1
_ e _ Tt -
NtCG_A — [y1-C*-e "+ifr L/P Cte™" . (41)
re l-e Y1l-C

When there is no beam loading, those two equations is reduced to optimum coupling relation which
is seen in before. If we have a beam loading, the exact relationship between the coupling C and the
attenuation T is given by solving those equations. It is notable that the field multiplication factor has
maximum value when there is no power flow into the dummy terminator and that the transmission
does not have the maximum with the condition where there is no power in the terminator.
Fig. 4 shows the energy gain dependence due to normalized current mentioned in Section A.1.
Around unit current area, the gain is increasing compared with ones from the ordinary traveling wave.
Fig. 5 shows the transmission efficiency of TWRR by normalized current and voltage, where the
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curves for both a CI and CG are depicted. When there is actually a RF reflection in TWRR, the
multiplication factor is reduced by cancellation by the backward wave.

The actual accelerator parameters are summarized in Table Al which includes not only achieved
value but also design value. The total beam loading characteristics is shown in Fig. A6, in which both
0f 200 kW and 1 MW RF inputs into TWRR are displayed. The two RF powers are produced by 1
MW (CW mode) and 4.1 MW (short pulse mode) operation of klystrons.
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Table 1 Cases of the envelope calculation

Case Beam energy Normarized emittance Beam current
1 10 MeV) |0.1x (mm mrad) | 0 (A)
T 0.1
10
2 100 0.1x 0
0.1
g 10
3 3.0 n 0
0.1
10

Table A1 Design and achieved parameters of TWRR accelerator structure

B AC1 AC2 AC3 AC4 ACS AC6 AC7
T (D)* 0.0408 0.0320 0.0352 0.0389 0.0432 0.0482 0.0540  0.0608
(Ay**  10.0392 0.0331 0.0330 0.0396 0.0435 0.0440 0.0499 0.0594
QD) 18407 20195 20181 20166 20153 20140 20130 20118
(A) 19300 19400 21400 19700 19500 21900 21600 20400
C (D 0.4472 0.4472 0.4693 0.4930 0.5175 0.5439 0.5720 0.6025
(A) 0.448 0.448 0.470 0.494 0.521 0.542 0.575 0.599
rg (D) 28.57 34.07 34.75 3545 36.14 36.84 37.54 38.25
(A) - FEE - - - - - - -

*  Designed value

**  Achieved value

***¥ not measured R/ Q

The every designed value is an arithmefic sum of individual cavities in the structure, Units are 1 (Nep.}, re (M),

in each.
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canonical
transformation

Fig. 1 Conceptual figure of a canonical transformation. The areas volume elements dV and dV’
are conserved under canonical transformation.

P4 /%
Pp AII)W

——*7
Py

Fig. 2 Transformation of square element by the developing of infinitesimal time df in phase space.
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Fig. 3 Graphical representation of beta functions ¢,  and y with the beam envelope in phase space.

The cross section of the beam envelope is assumed me.
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Fig. 4 Deformation of beam orbit for phase space in the case of relativistic particle. This picture
is referred from [5]. '
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First Order Dependence,
Effi. = 10~(-2),107(0),10~ (1)
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Normalized (s/al)

Fig.5  Contribution of A in envelope equation in accelerating beam. A is 10~7 (dashed

line), 108 (Parallel) and 10-10 (diverging) and the emittance is 10 © mm mrad with no
space charge effect. Both s and envelopes are normalized by a) .

Space Charge Dependence, 10 MeVv
eN = 0.1 Pi: Radius = 0.1cm : 1 = 0 ,0.1 ,10 A

Normarized Envelope (a/a0)

0 0.2 0.4 0.6 0.8 1
Normalized (s/al x105)

Fig.6 Beam envelopes of 10 MeV acceleration with 0.1 and 10 A electron beam with
the beam emittance 0.1 ® mm mrad. The dashed line corresponds to no space charge

effect. Flight paths are normalized by initial waste radius aq and multiplied by 107 here.
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Space Charge Dependence, 10 MeV

eN = 1 Pi: Radius = O.1lem : i =0 ,0.1 ,10 A
4 — v T T T : . . . .

ot [} w
[%)] wn [&)]
T T T T T

Normarized Envelope (a/a0)
[ S

<
(&)
T

0 0.2 0.2 0.6 0.8 1
Normalized (s/a0 x1074)

Fig.7  Beam envelopes for 10 MeV acceleration and 7t mm mrad emittance. The solid
lines for 0.1 (lower) and 10 A (upper) beam are presented and the line for O current is

almost in accordance with 0.1 A line. Flight paths are normalized by 104 in this figure.

Space Charge Dependence, 100 MeV
eN = 0.1 Pi: Raddus = O0.1lem : i = 0 ,0.1 ,10 A

w
5]

[ 8]
n

=
o

Normarized Envelope {a/a0)
(%]

o
wn

0 0.2 0.4 0.6 0.8 1
Normalized (s/a0 x10-5)

Fig. 8  Beam envelopes for 100 MeV acceleration and & mm mrad emittance. The solid
lines for 0.1 (lower) and 10 A (upper) beam are presented and the line for 0 current is

naerly in accordance with 0.1 A line. Flight paths are normalized by 107 in this figure.
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Space Charge Dependence, 100 Mev
eN =1 Pi: Radiue = 0.1cm : i = 0 ,0.1 ,10 A

Normarized Envelope (a/al)
b

0 0.2 0.4 0.6 0.8 1
Normalized (s/al x10"4)

Fig.9  Beam envelopes for 100 MeV acceleration and ® mm mrad emittance. All lines for
0, 0.1 and 10 A beam are closing together. Flight paths are normalized by 104 in this figure.

Space Charge Dependence, T=3 MeV
eN = 1 Pi: Radius = 0.1lem : 1 = 0 ,0.1 ,10 A

Normarized Envelope {(a/al)
| %]

0 0.2 0.4 0.6 0.8 1
Normalized (s/al x10-4)

Fig.10 Beam broadening by space charge for 3 MeV injector of PNC linac. The emittance
is © mm mrad here in order to make the differense clear, although the designed value is 10
7 for the electron gun.
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Energy Gain with Beam Currnt CI(sol.) CG(dash.)

1t ]

Normalized Voltage

Normarized Current

Fig. Al Current dependence of gradient on traveling wave CI and CGstructure. A normalized
current I(r,L/Py)" and a normalized voltage V/(rL/Py)" are used with the variation of the attenuation

parameters.

Transmission of CI(solid) and CG(dashed)

T

L]
Qo

Transmission
o Q
N o

Normarized Current

Fig. A2 Transmission efficiency for both travelin g wave Cl and CG in variation of the attenuation.
Both types have almost the same magnitude of the efficiency.
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Field Multiplication Factor (ACC.—p)
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pe=t 10 10
(&}
o 5 t 5
=]
-—
i |
=
=
o)
1 1
D
|
0.5 0.5
0.1

) 0.2 0.4 0.6 0.8 1
Coupling C

Fig. A3 Characteristics of ficld multiplication versus coupling, employing the parameters for PNC
linac TWRR.

Cl dash.)

T T

TWRR(C=0.5) CG Gain with Beam Currnt CG sol.

Normalized Voltage
o
(o)}

Normarized Current

Fig. A4 Energy gain dependence of TWRR due to normalized current mentioned. Around unit
current area, the gain is increased compare with ones from the ordinary traveling wave.
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Fig. A5 Transmission efficiency of TWRR which is using normalized current and voltage, where
the curves for both a CI and CG are depicted.
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Fig. A6 Total beam loading characteristics for 200 kW and | MW RF inputs
into each TWRR units in PNC. Vertical Jine inside means 0.1 A,



