検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Simulation of $$^{3}$$He minority Ion Cyclotron Range of Frequency (ICRF) Heating in International Thermonuclear Experimental Reactor (ITER)

ITERにおける$$^{3}$$He少数イオンを用いたICRF加熱のシミュレーション

松本 宏

Matsumoto, Hiroshi

ITERにおける$$^{3}$$He少数イオンを用いたICRF加熱を1.5次元トカマクコードであるPRETORとICRF加熱計算コードPIONを組み合わせて行った。少数イオンによる燃料希釈の効果を入れて評価すると少数イオンの量が 0.5%の割合のところが核融合出力の点から、加熱効率が最も良いこと、またプラズマ中心から、小半径の1/2の付近までどこに少数イオンのサイクロトロン共鳴層をおいても、加熱効率があまり変わらないことが明らかとなった。一つの共鳴層に高周波加熱入力を集中させすぎると加熱効率が悪くなるので3つの周波数を使い加熱入力を分散させて加熱を行うと、Q=10の標準運転領域ではNBIより8%、純粋の電子加熱より20%、また低電子密度領域ではNBIより15%、電子加熱より50%加熱効率が良いことが示された。

$$^{3}$$He minority ICRF Heating in ITER was simulated by the 1.5 D tokamak simulation code PRETOR and ICRF heating simulation code PION. It was found that the best heating efficiency in terms of the fusion power output is achieved with the smallest miority concentration ratio、0.5%, when the fuel dilution effect by the minority ions was taken into account. The overall heating efficiency is insensitive to the location of the resonance layer over a wide range of the minor radius position. Very efficient heating of the ITER plasma with $$^{3}$$He minority ICRF heating by spreading the RF depostion at three resonant locations was demonstarted by the PRETOR/PION simulation. In the Q=10 reference operation regime, ICRF is better than NBI by 8%, better than pure electron heating by 20%. In the low density region, ICRF is better than NBI by 15%, and better than electron heating by 50%.

Access

:

- Accesses

InCites™

:

パーセンタイル:0

分野:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.