Refine your search�ソスF     
Report No.

Bubble dynamics in the thermal shock problem of the liquid metal target

Ishikura, Shuichi*; Kogawa, Hiroyuki  ; Futakawa, Masatoshi  ; Kikuchi, Kenji; Hino, Ryutaro; Arakawa, Chuichi

The thermal shock stress in the mercury target vessel was analyzed: the target receives the incident proton beam at the energy of 1 MW with the pulse duration of 1ms. Negative pressure of maximal 61MPa was generated when the initial pressure of 52MPa propagated in mercury. It is expected then that the cavitation may be arisen by the negative pressure. So in order to know the cavitation behavior, the simulation study was carried out by using the equation of motion based on the bubble dynamics for a single bubble, and fundamental parameter analysis was carried out. It is found that a bubble has a potential expansion more than 1000 times with a change of the pressure at the window of the target vessel. Consequently wave propagation will be affected. Theoretical consideration was given to the wave motion of propagation in bubbly liquid. The equation of state in bubbly liquid can be approximated by the polynomial. The diameter of a bubble and the bubble volume fraction inherent in mercury can be decided if the critical pressure, the sound velocity, and resonance frequency is successfully measured by static and dynamic experiment.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.