Refine your search�ソスF     
Report No.

Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

Kotaki, Hideyuki

We investigate a nonlinear phenomena in laser-plasma interaction, a wakefield excited by intense laser pulses, and a possibility of generating an electron beam by an intense laser pulse. Ionization of gas with a self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We have found the spectrum shifts to fixed wavelength independent of the laser power and gas pressure. We call the phenomenon "anomalous blueshift". An intense laser pulse excites a wakefield in plasma. The wakefield excited by 2TW, 50fs laser pulses in a gas-jet plasma is measured with a time-resolved frequency domain interferometer (FDI). This is the first time-resolved measurement of the wakefield of 20GeV/m in a gas-jet plasma. The FDI and the anomalous blueshift will be modified to an optical injection system as an electron beam injector. In a simulation we obtain a high quality intense electron beam. The result illuminates the possibility of a high energy and a high quality electron beam acceleration.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.