Refine your search:     
Report No.

Structural integrity of beam window of mercury target

Kogawa, Hiroyuki  ; Ishikura, Shuichi*; Futakawa, Masatoshi  ; Kaminaga, Masanori  ; Hino, Ryutaro

The developments of a MW-class spallation neutron source facility are being carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. A mercury target will be used as a neutron source in the facility. The mercury target vessel made of 316LSS will be subjected to pressure wave generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will make huge stress on the vessel and will deform the vessel, which would cause cavitation in mercury. To estimate the structural integrity of the mercury target vessel, especially beam window, dynamic stress behaviors due to 1MW-pulsed proton beam injection were analyzed by using FEM code. In the analyses, two types of the target vessels with semi-cylindrical and flat type windows were used as analytical models. As the results, it has been understood that the stress generated in the beam window by the pressure wave could be treated as the secondary stress. Also it was confirmed that the flat type window would be more advantageous from the structural viewpoint than the semi-cylindrical type window.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.