Refine your search�ソスF     
Report No.
 - 

Application of microstructure based brittle fracture model to biaxial strength of graphite materials

Hanawa, Satoshi ; Ishihara, Masahiro ; Shibata, Taiju 

From a viewpoint of advanced design method of graphite components, it is important to apply the realistic fracture model in the design method. The applicability of the microstructure based brittle fracture model under multiaxial stress condition was, therefore, investigated. The fracture model is possible to treat grain size as well as pore size with fracture mechanics approach taking account of the crystal structure of the graphite. The model was applied to the biaxial strength prediction of near isotropic nuclear graphite using grain/pore related microstructural parameters. Prediction results were compared with biaxial strength data obtained by simultaneous loadings of inner pressure and longitudinal load with thin-walled cylindrical specimen. From this study, it was found that the fracture model predicted fairly good not only mean strength but also strength distribution under biaxial stress condition, and it was concluded that the microstructure based brittle fracture model would be applicable as the advanced design method.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.