Refine your search:     
Report No.
 - 

Experimental study on thermal-hydraulics and neutronics coupling effect on flow instability in a heated channel with THYNC facility

Iguchi, Tadashi; Shibamoto, Yasuteru ; Asaka, Hideaki; Nakamura, Hideo 

Thermal-hydraulic and neutronic dynamics are always interrelated in BWR core. This is called thermal-hydraulic and neutronic (T/N) coupling. Channel stability experiments with T/N coupling under non-nuclear condition are very limited. This is mainly due to the difficulties in the real-time simulation of neutron dynamics and in the fast-response void fraction measurement under high-pressure and temperature conditions. Authors have developed techniques to solve the above difficulties, and have succeeded in experimentally simulating T/N coupling under non-nuclear conditions with the THYNC facility. Using THYNC facility, T/N coupling effect on channel stability was investigated. Experiments were performed under Pressure=2-7MPa, Subcooling=10-40K, and Mass flux=270-660kg/m$$^{2}$$s. THYNC results indicated T/N coupling lowered the channel stability threshold. The reduction of channel stability threshold due to T/N coupling was small within 10% at 7MPa in the present THYNC experiment, although the experimental condition was set to be more severe than that supposed in a reactor.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.