Refine your search:     
Report No.

Numerical analysis of plasma spatial uniformity in negative ion sources by a fluid model

Mizuno, Takatoshi*; Kitade, Yuki*; Hatayama, Akiyoshi*; Sakurabayashi, Toru*; Imai, Naoki*; Morishita, Takatoshi; Inoue, Takashi

Spatial non-uniformities of extracted negative ion beam were observed experimentally in tandem-type negative ion sources. To improve the beam uniformity, it is important to analyze the plasma profile in the ion source including magnetic filter effect. In the filter region, Lorentz force is important for both ions and electrons. However, their dynamics are completely different, i.e. electrons are magnetized and ions are not magnetized. Then, the system of two-dimensional two-fluid model equations is solved simultaneously to obtain self-consistent profiles of the plasma parameters. The result shows that a possible cause of spatial non-uniformity is the ion flow rather than ExB drift motion of electrons. This flow of ions is caused by synergetic effect of the force by electric field, Lorentz force and inertia force. To verify the results above and more quantitative comparisons with experiments, full 3D analysis is needed, because the electron loss along the field line is important for the plasma potential and the electric field in the filter region. Full 3D analysis is now in progress.



- Accesses




Category:Instruments & Instrumentation



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.