Refine your search:     
Report No.
 - 

Incorporation of CO$$_{2}$$ exchange processes into a multilayer atmosphere-soil-vegetation model

Nagai, Haruyasu  

This paper describes the incorporation of CO$$_{2}$$ exchange processes into an atmosphere-soil-vegetation model SOLVEG and examination of its sensitivity and impact of its stomatal resistance calculation on the latent heat flux over a winter wheat field. The model framework for the heat and water exchanges between the atmosphere and ground surface was validated in the previous papers (Nagai 2002, 2003). In this study, CO$$_{2}$$ exchange processes are incorporated in the model and the performance is examined. In the test calculation, the model simulated the CO$$_{2}$$ flux at 2 m above the ground well as a whole. A sensitivity test to clarify uncertainties for the model settings and parameters showed that the CO$$_{2}$$ production in the soil is the most important factor for the CO$$_{2}$$ calculation. Also, the impact of the CO$$_{2}$$ processes on the latent heat flux is discussed. The results indicate that the new model is effective and preferable to study surface exchanges of heat and water as well as CO$$_{2}$$.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.