Refine your search:     
Report No.

Evolution of voids in Al$$^+$$-implanted ZnO probed by a slow positron beam

Chen, Z. Q.; Maekawa, Masaki; Yamamoto, Shunya; Kawasuso, Atsuo; Yuan, X. L.*; Sekiguchi, Takashi*; Suzuki, Ryoichi*; Odaira, Toshiyuki*

Introduction and annealing behavior of defects in Al$$^+$$-implanted ZnO have been studied using energy variable slow positron beam. Vacancy clusters are produced after Al$$^+$$-implantation. With increasing ion dose above 10$$^{14}$$ Al$$^+$$/cm$$^2$$ the implanted layer is amorphized. Heat treatment up to 600 $$^{circ}$$C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by the further heat treatment above 600 $$^{circ}$$C. Afterwards, implanted Al impurities are completely activated to contribute the n-type conduction. The ZnO crystal quality is also improved after recrystallization.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.