Refine your search:     
Report No.

Microstructure property analysis of HFIR-irradiated reduced-activation ferritic/martensitic steels

Tanigawa, Hiroyasu; Hashimoto, Naoyuki*; Sakasegawa, Hideo*  ; Klueh, R. L.*; Sokolov, M. A.*; Shiba, Kiyoyuki; Jitsukawa, Shiro; Koyama, Akira*

Reduced-activation ferritic/martensitic steels (RAFs) were developed as candidate structural materials for fusion power plants. In a previous study, it was reported that ORNL9Cr-2WVTa and JLF-1 (Fe-9Cr-2W-V-Ta-N) steels showed smaller ductile-brittle transition temperature (DBTT) shifts compared to IEA modified F82H (Fe-8Cr-2W-V-Ta) after neutron irradiation up to 5 dpa at 573K. This difference in DBTT shift could not be interpreted as an effect of irradiation hardening, and it is also hard to be convinced that this difference was simply due to a Cr concentration difference. To clarify the mechanisms of the difference in Charpy impact property between these steels, various microstructure analyses were performed.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.