Refine your search:     
Report No.

Improved cavitation resistance of structural materials in pulsed liquid metal targets by surface hardening

Koppitz, T.*; Jung, P.*; M$"u$ller, G.*; Weisenburger, A.*; Futakawa, Masatoshi ; Ikeda, Yujiro

Cavitation damage of structural materials due to pressure waves is expected to be one of the majior life-time limiting factors in high power liquid metal spallation targets under pulsed operation. Two methods are developed for the European Spallation Source (ESS) to mitigate this damage: Introduction of gas bubbles to surpress the pressure pulse and surface-hardening of structural materials. Surface-hardening of four 8-13%Cr martenstic steels was examined by thermal treatment with pulsed or scanned electron- and laser-beams as well as by nitriding in plasma. A specimens of the 12%Cr steel were tested in liquid mercury under pulsed proton irradiation, and under mechanical pulsed-loading. Surface damage was analysed by optical, confocal-laser, or scanning-electron microscopy, showing in both tests much better resistance of the hardened material compared to standard condition.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.