検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

ニューラルネットワークを用いたHTTR制御棒引抜き試験の事前解析手法

Pre-test analysis method using a neural network for control-rod withdrawal tests of HTTR

大野 富生*; Subekti, M.*; 工藤 和彦*; 高松 邦吉; 中川 繁昭 ; 鍋島 邦彦 

Ono, Tomio*; Subekti, M.*; Kudo, Kazuhiko*; Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Nabeshima, Kunihiko

日本原子力研究所の高温工学試験研究炉(HTTR)では高温ガス炉の安全性実証を目的とした制御棒引き抜き試験が行われている。試験の実施には事前解析が必要で、本報ではニューラルネットワークを用いた原子炉出力及び反応度変化の予測手法について報告する。本研究で提案するのはリカレントネットワーク(RNN)を基本とし、時系列データの処理性能を向上させるため時間同期信号(TSS)を加えたモデルである。ネットワークの入力とするのは中央制御棒位置変化と他の重要な炉心情報で、原子炉出力及び反応度変化を出力とする。学習後、今後の試験における原子炉出力及び反応度変化の予測が可能となる。

Control-rod withdrawal tests simulating reactivity insertion are carried out in the HTTR to verify the inherent safety features of HTGRs. This paper describes pre-test analysis method using artificial neural networks to predict the changes of reactor power and reactivity. The network model applied in this study is based on recurrent neural networks. The inputs of the network are the changes of the central control rods position and other significant core parameters, and the outputs are the changes of reactor power and reactivity. Furthermore, Time Synchronizing Signal(TSS) is added to input to improve the modeling of time series data. The actual tests data, which were previously carried out in the HTTR, were used for learning the model of the plant dynamics. After the learning, the network can predict the changes of reactor power and reactivity in the following tests.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.