Refine your search:     
Report No.

Flux dependence of carbon erosion and implication for ITER

Roth, J.*; Kirschner, A.*; Bohmeyer, W.*; Brezinsek, S.*; Cambe, A.*; Casarotto, E.*; Doerner, R.*; Gauthier, E.*; Federici, G.*; Higashijima, Satoru; Hogan, J.*; Kallenbach, A.*; Kubo, Hirotaka; Layet, J. M.*; Nakano, Tomohide; Philipps, V.*; Pospieszczyk, A.*; Preuss, R.*; Pugno, R.*; Ruggi$'e$ri, R.*; Schweer, B.*; Sergienko, G.*; Stamp, M.*

In the frame work of the EU Task Force on Plasma-Wall Interaction and the International Tokamak Physics Activity an attempt was made to establish a possible dependence of the chemical erosion yield of carbon on the ion flux, $$Phi$$, involving ion beam experiments, plasma simulators, and fusion devices. After data normalization a fit using Bayesian probability analysis was performed yielding a decrease of the erosion yield with $$Phi$$$$^{-0.54}$$ at high ion fluxes. With this dependence on ion flux a comprehensive description is available for chemical erosion as function of energy, temperature and ion flux. Using this dependence the erosion and redeposition of carbon in the ITER divertor can be calculated using the ERO code and the steady-state plasma scenario given by the ITER team. The resulting gross and net erosion rates are compared to previous estimates using a constant erosion yield of 1.5%. The use of the complete parameter dependence results in an order of magnitude lower erosion, most strongly determined by the temperature dependence and the reduction at the highest fluxes.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.