Refine your search:     
Report No.

Extra radiation hardening and microstructural evolution in F82H by high-dose dual ion irradiation

Ando, Masami; Wakai, Eiichi; Sawai, Tomotsugu; Matsukawa, Shingo; Naito, Akira*; Jitsukawa, Shiro; Oka, Keiichiro*; Tanaka, Teruyuki*; Onuki, Somei*

The objectives of this study are to evaluate radiation hardening on ion-irradiated F82H up to 100 dpa and to examine the extra component of radiation hardening due to implanted helium atoms (up to $$sim$$3000 appmHe) in F82H under ratio of 0, 10, 100 appmHe/dpa.The ion-beam irradiation experiment was carried out at the TIARA facility of JAERI. Specimens were irradiated at 633 K by 10.5 MeV Fe ions with/without 1.05 MeV He ions. Micro-indentation tests were performed at loads to penetrate about 0.40 mm in the irradiated specimens using an UMIS-2000. The results are summarized as follows:1) As a result of the single irradiated F82H, the micro-hardness tended to increase about 30 dpa. 2) The extra radiation hardening was obviously caused by co-implanted helium atoms more than 1000 appm in F82H irradiated at 633 K. 3) In the dual-beam (100 appmHe/dpa) irradiated microstructure, nano-voids and fine defects were observed. It is suggested that the formation of nano-voids causes the extra radiation hardening by helium co-implantation.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.