Refine your search:     
Report No.

Microdroplet evolution induced by a laser pulse

Smirnov, M. B.*; Skobelev, I. Y.*; Magunov, A. I.*; Faenov, A. Y.*; Pikuz, T. A.*; Fukuda, Yuji; Yamakawa, Koichi; Akahane, Yutaka; Aoyama, Makoto; Inoue, Norihiro*; Ueda, Hideki

Interaction between high-power ultrashort laser pulse and giant clusters (microdroplets) consisting of 10$$^9$$ to 10$$^{10}$$ atoms is considered. The microdroplet size is comparable to the laser wavelength. A model of the evolution of a microdroplet plasma induced by a high-power laser pulse is developed, and the processes taking place after interaction with the pulse are analyzed. It is shown theoretically that the plasma is superheated: its temperature is approximately equal to the ionization potential of an ion having a typical charge. The microdroplet plasma parameters are independent of the pulse shape and duration. The theoretical conclusions are supported by experimental studies of X-ray spectra conducted at JAERI, where a 100-terawatt Ti-sapphire lasersystem was used to irradiate krypton and xenon microdroplets by laser pulses with pulse widths of 30 to 500 fs and intensities of 6$$times$$10$$^{16}$$ to 2$$times$$10$$^{19}$$ W/cm$$^{2}$$.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.