Refine your search:     
Report No.

Global profile effects and structure formations in toroidal electron temperature gradient driven turbulence

Idomura, Yasuhiro  ; Tokuda, Shinji; Kishimoto, Yasuaki

Using a global gyrokinetic toroidal particle code, the toroidal electron temperature gradient driven (ETG) turbulence is studied in positive and reversed shear tokamaks. In the nolinear turbulent state, the ETG turbulence in the positive and reversed shear configurations show quite different structure formations. In the positive shear configuration, the ETG turbulence is dominated by streamers which have a ballooning type structure, and the electron temperature $$T_e$$ profile is quickly relaxed to the marginally stable state in a turbulent time scale. In the reversed shear configuration, quasi-steady zonal flows are produced in the regative shear region, while the positive shear region is characterized by streamers. Accordingly, the electron thermal diffusivity $$chi_e$$ has a gap structure across the $$q_{min}$$ surface, and the $$T_e$$ gradinet is sustained above the marginal value for a long time in the quasi-steady phase. The results suggest a stiffness of the $$T_e$$ profile in positive shear tokamaks, and a possibility of the Te transport barrier in reversed shear tokamaks.



- Accesses




Category:Physics, Fluids & Plasmas



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.