Driving force of PCMI failure under reactivity initiated accident conditions and influence of hydrogen embrittlement on failure limit
Tomiyasu, Kunihiko; Sugiyama, Tomoyuki ; Nakamura, Takehiko ; Fuketa, Toyoshi
In order to clarify the driving force of PCMI failure on high burnup fuels and the influence of hydrogen embrittlement on failure limit under RIA conditions, simulated-RIA experiments were performed on fresh fuel rods in the NSRR. The driving force was restricted only to thermal expansion of pellet by using fresh pellets, and fresh claddings were pre-hydrided to simulate hydrogen absorption of high burnup fuels. In seven experiments, test rods resulted in PCMI failure, which was observed on high burnup fuels, in terms of transient behavior and fracture configuration. It indicates that the driving force is sufficiently explained with thermal expansion of pellet and a contribution of fission gas is small. Many incipient cracks were generated in the outer surface of the cladding, and they stopped at the boundary between hydride rim and metallic layer. It suggests that a toughness of metallic region except hydride rim has particular importantance for failure limit. Fuel enthalpy at failure correlates with the thickness of hydride rim, and tends to decrease with thicker hydride rim.