Refine your search:     
Report No.

Compatibility of reduced activation ferritic/martensitic steel specimens with liquid Na and NaK in irradiation rig of IFMIF

Yutani, Toshiaki*; Nakamura, Hiroo; Sugimoto, Masayoshi

In the high flux region of the International Fusion Materials Irradiation Facility (IFMIF), the neutron irradiation damage for iron-based alloys will exceed 20 dpa/ year. An accurate specimen temperature measurement under a large amount of nuclear heating is a key issue but the change of heat transfer of gap between irradiation specimens and specimen holder during irradiation test is inevitable, if gap is filled with an inert gas and temperature is monitored by a thermocouple buried in the specimen holder. A solution to make heat transfer predictable is to fill the gap with a liquid metal (sodium or sodium-potassium alloy). An issue of compatibility between Reduced Activation Ferritic/Martensitic steels and the liquid metalsis addressed in this paper, and some recommendations for designing irradiation rig are presented, such as a purification control before filling liquid metals, or a careful selection of material of rig to avoid carbon mass transfer.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.