Refine your search:     
Report No.

Temperature evaluation of core components of HTGR at depressurization accident considering annealing recovery on thermal conductivity of graphite

Sumita, Junya ; Shibata, Taiju ; Nakagawa, Shigeaki ; Hanawa, Satoshi ; Iyoku, Tatsuo; Ishihara, Masahiro 

Graphite materials are used for structural components in High Temperature Gas-Cooled Reactor (HTGR) core because of their excellent thermo/mechanical properties. Thermal conductivity of graphite components is reduced by neutron irradiation in reactor operation. The reduced conductivity is expected to be recovered by thermal annealing effect when irradiated graphite component is heated above irradiated temperature. In the present study, temperature analyses considering the annealing effect of the HTGR core at a depressurization accident were carried out and influence of annealing effect on maximum fuel temperature was investigated. The analyses show that the annealing effect can reduce the fuel temperature about 100$$^{circ}$$C at the maximum, and it is possible to evaluate the maximum fuel temperature more appropriately. It was also shown that the core-temperature of High Temperature Engineering Test Reactor (HTTR) at the safety demonstration tests can be analyzed with the developed evaluation method considering annealing effect.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.