Refine your search:     
Report No.
 - 

Positron study of electron irradiation-induced vacancy defects in SiC

Kawasuso, Atsuo; Yoshikawa, Masahito; Ito, Hisayoshi; Krause-Rehberg, R.*; Redmann, F.*; Higuchi, Takatoshi*; Betsuyaku, Kiyoshi*

In this presentation, we report identification of vacancy defects in cubic and hexagonal SiC irradiated with fast electrons through electron-pisitron momentum distribution measurements and theoretical analyses. In cubic SiC isolated silicon vacancies are responsible for positron trapping. The lifetime of positrons trapped at silicon vacancies is prolonged due to the outward lattice relaxation. Because of the local tetrahedral symmetry of silicon vacancies, the observed momentum distributions are consistently explained. In the case of hexagonal SiC, one particular vacancy defects appearing after annealing of isolated silicon vacancies have dangling bonds along the c-axis. From the enhancement of positron annihilation probability with carbon 1s electrons, the above defects are attributed to carbon-vacancy-antisite-carbon complexes.

Accesses

:

- Accesses

InCites™

:

Percentile:48.8

Category:Physics, Condensed Matter

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.