Refine your search:     
Report No.

Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

Sherrill, M. E.*; Abdallah, J. Jr.*; Csanak, G.*; Kilcrease, D. P.*; Dodd, E. S.*; Fukuda, Yuji; Akahane, Yutaka; Aoyama, Makoto; Inoue, Norihiro*; Ueda, Hideki; Yamakawa, Koichi; Faenov, A. Y.*; Magunov, A. I.*; Pikuz, T. A.*; Skobelev, I. Y.*

In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He$$_alpha$$ spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model.



- Accesses







[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.